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Abstract

This paper analyzes the formulation of energy preserving/decaying schemes for
dynamics problems. We argue that any energy preserving/decaying scheme can always
be seen as composed of an underlying temporal discretization, that is then slightly
modified in order to prove a discrete energy bound within a time step. While the
details of the modified scheme depend in a critical way on the governing equations,
the underlying discretization can in principle be applied to a variety of models. We
review some of the temporal underlying schemes recently proposed in the literature,
presenting them with a common notation. We show their similarities and highlight
their differences.

1 Background

Energy decaying schemes represent the most recent attempt at trying to develop robust
algorithms for integrating in time the semi-discrete equations associated with stiff non-linear
finite element problems. The basic motivation behind these schemes is the simple fact that
classical algorithms that are unconditionally stable and high frequency dissipative, two well
understood and appreciated characteristics that are commonly deemed necessary for many
practical engineering applications, do loose their properties in the non-linear regime. This
fact is unfortunate but fairly obvious, if one only realizes that most classical schemes, for
example the widely used generalized-a method [15], are designed for very general classes of
problems and consequently have no specific knowledge of the details of the model in question,
be it a geometrically exact beam model or a classical non-linear elastodynamic system.

In practice, all energy decaying schemes are carefully constructed so that it becomes
possible to prove the existence of discrete bounds on the algorithmic total energy F in a



typical time step I, = [t,, t,41] of size At =t,11 — t,, i.e.
En+1 - FE, = _Eda Eq > 07 (1)

for vanishing externally applied loads. We term the above property algorithmic decay, and
a scheme possessing it will be termed an algorithmic energy decaying scheme. The term
“algorithmic” stresses the fact that the discrete bound is obtained as a sole consequence of
the discretization of the equations.

The discrete bound (1) implies two fundamental consequences: a) unconditional stability
in the non-linear regime, according to the classical energy method; b) damping of the un-
resolved and spurious high frequencies through the numerical dissipation function E;. The
drawback is that one typically has to specialize the scheme to each new model; for example,
the implementation of a basic scheme for a beam or a shell will reflect the different forms
of the two sets of equations governing these two models. However, what is gained by this
approach seems to amply justify this minor limitation.

For algorithmic energy preserving schemes, the numerical dissipation function is identi-
cally equal to zero, i.e. E; = 0. In this case one still has a non-linearly unconditionally
stable algorithm, although clearly the high frequency dissipation properties are lost. These
schemes are typically not well suited for finite element problems, since high frequency oscil-
lations often corrupt the system response, especially in the velocity and stress fields [2].

There have been a few attempts documented in the recent literature to correct this
problem of energy preserving methods. The basic idea that has been pursued is to combine
standard high frequency damping numerical integrators with the explicit enforcement of total
energy conservation using Lagrange multipliers [22, 21]. These methods could be termed
enforced preservation methods, in contrast with the above algorithmic preservation/decay
methods, and these two categories could be used for a first grouping of methods in two
broad classes. However, in the rest of this paper we do not consider enforced preservation
methods in our analysis and attempt at classification, since in our opinion they do not seem
to offer a particularly appealing way of achieving non-linear unconditional stability. In fact,
since the higher modes are dissipated while the total system energy must at the same time
remain constant due to the enforced preservation constraint, these algorithms may transfer
energy from the higher (artificial) to the lower meaningful modes, a process that is non-
physical and should hence be avoided.

Although there appear to be no thorough review works on algorithmic energy decaying
and preserving schemes yet, an overview of the literature shows that each method as applied
to a specific model problem is essentially composed of two main ingredients: a) a basic
underlying time discretization scheme, that could in principle be applied unchanged to a
variety of models; b) a number of accompanying “details” that in general vary from one
model to another, but that are crucial for the final proof of the energy bound (1) in the
specific case considered. Among these additional ingredients, we can mention for example
the parameterization of finite rotations, if present in the model, or the details of the spatial
discretization scheme, or specific features of the governing equations. These details can also
impact other conservation properties, as for example the conservation of momentum [4, §].

In this paper we restrict our attention to the sole point a) above, i.e. we consider only the
underlying time discretization scheme. In reality, regarding this specific aspect, little can be



said for algorithmic energy preserving algorithms, that are in fact all based on some mod-
ification of the mid-point rule. In other words, the various energy conserving schemes that
have been proposed in the literature differ only in what we called above the accompanying
“details”. The fact that these depend critically on the specific structure of the governing
equations, makes a review of energy schemes a complex issue that can not be addressed in a
short paper. On the other hand, a few different underlying discretization schemes have been
proposed for energy decaying algorithms. These are reviewed and compared in the following
pages, with the hope of giving a first small contribution towards a more unified view on
this subject. With this goal in mind, we shall start by reviewing the governing equations of
motion of multibody systems in the next session.

2 Equations of Motion

In general, the equations of motion of flexible multibody systems after spatial discretization
using the finite element method, can be written as

d(J(\ifv)_Ffi_fr_fe = 07 (2)
Niu—v = 0, (3)
c = 0. (4)

Here the notation (-) = d(-)/dt denotes the derivative with respect to time, and u are the
generalized coordinates, v the velocities, M (u,t) the generalized inertia matrix, N (u,t)
the matrix relating the velocities to the time rates of the generalized coordinates, f;(u,v,t)
the discretized internal and possibly inertial forces, f.(u,v,t) the externally applied forces,
c(u, t) the holonomic constraints that model the mechanical joints of the system, and

fr=cuA (5)

their associated reaction forces, A being the Lagrange multipliers. Notice that, for perfect
scleronomic joints (c; = 0), the power of the reaction forces is null

frrv=X-cLv=0, (6)
given that
¢=cLw+c,=0. (7)

Consequently, with a suitable definition of the total mechanical energy E of the multibody
system, dot multiplying (2) by v one gets

o <d(]:1;Iv)

+fi_fr_fe>:E_v'.fe:Oa (8)

and energy is preserved for null external forces (a similar reasoning can be worked out for
the case of time-indepenedent non-holonomic constraints).

The construction of algorithmic energy preserving or decaying schemes for multibody
systems can be obtained by mimicking this situation at the level of the time-discretized



equations. First, algorithmic energy conserving or decaying schemes are constructed for each
body model, e.g. a rigid body, a beam, a shell, etc. This ensures that, without considering
the reactions due to the joints, we will have

By, —-E;=-E], Ej>0 9)
for each body B in the multibody system M. Next, we develop discretizations of each joint
model, e.g. a revolute joint, a prismatic joint, etc., such that (6) is satisfied at the level of
the discrete solution. Therefore, the algorithmic work of the reaction forces exerted by each
joint on its attached bodies within each time step will be identically equal to zero. This
way, since joints do not upset the energy balance of the system, the global multibody model
obtained by assembling an arbitrary number of bodies and joints will inherit the conservation
or dissipation properties of the temporal discretization of its body models:

Y (Bra—E) =~ Ej (10)

BeM BeM

This means that in the following we can neglect the presence of the joints and of their
reaction forces, and just consider the equations that govern the body models, a substantial
simplification of the forthcoming discussion. The interested reader will find details on the
discretization of the constraint reactions that will guarantee null algorithmic work in [4, 6, 10].
We can further simplify the analysis of the discretization of the body models, and just
restrict the attention in the following to the classical model problem of a linear oscillator

U o= v, (11)
mv = —ku, (12)

where u is the displacement, v the velocity, m the mass, and k the stiffness. The total
mechanical energy is E = K + V, where K = 1/2mv? and V = 1/2ku?. In fact, in
order to solve non-linear problems with an energy decaying scheme, one can first start with
a discretization scheme that is energy decaying for the scalar model problem. This basic
scheme is then appropriately modified so that a discrete energy decay property of the kind
of (1) can be proven in the fully non-linear case. This process has been demonstrated in
most references cited in this work, so we will content ourselves here with the underlying
linear scheme and leave the details to the specialized papers. With these simple equations
at hand, we are now ready to present in the next section the various discretization schemes
that have been used so far in algorithmic energy decaying methods.

3 Temporal Discretizations

3.1 Energy Decaying Discretization A

A first energy decaying finite difference scheme can be obtained through the application
of the Time Discontinuous Galerkin (TDG) method [19] to problem (11,12), that is here
rewritten as

Ay + By =0, (13)
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where y = (u,v)”, and

1 0 0 -1
a-fonl =0 W]
Casting the equations in weak form over one time step and discretizing with the finite element
method, we now get

/ " - (A + Byp) dt 4 wn(ts ) - (n(tes) — ya) = 0, (14)

t.+

where w, are test functions, and the symbol (-); indicates that we are restricting the choice
of functions within finite dimensional spaces. Furthermore, we let t,+ = lim._,o+ ¢, + &, s0
that we have a jump discontinuity between the initial conditions y,, at time ¢,, and the finite
element solution at time ¢,+, yu(t,+). Choosing w;, and y; as linear polynomials, we can
write

wp = (1 — T)’lbn + TWp41, (15)
Y = (1=7)Yn + TYn1, (16)

where 0 < 7 < 1, and w,, = wy(t,+), Yo = yn(t,+). Inserting into equation (14), integrating
and rearranging, yields the following difference equations

Up — Unp

= 2 (= ), (17)
u"%;u” = % (U + Vni1), (18)
m {’"A_t”" - % % (i — Uns1), (19)
W = —k % (T + Upt1)- (20)

Multiplying now equation (17) by (19) and equation (18) by (20), and combining the results,
one gets
En+1 - FE, = _Eda
where
1

1
E; = 5™ (T — vp)* + 3 E (@, — up)® >0, (21)

which ensures an energy decaying scheme. In the present form, equations (17-20) can also
be interpreted as a Runge-Kutta scheme. Using classical results from Runge-Kutta theory
[16, 17], this scheme is L-stable (stiffly accurate) and third order accurate for the linear
model problem, while only second order accurate for arbitrary non-linear operators.

The scheme defined by equations (17-20) has been successfully used for constructing
energy decaying schemes for a variety of models, including rigid bodies, cables, geometrically
exact beams and shells, and multibody systems composed of these body models linked by
kinematic joints [5, 14, 12, 4, 7, 6, 10, 9, 8]. The performance of the algorithm has been
demonstrated on a number of complex realistic engineering applications [3, 11].
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3.2 Energy Decaying Discretization B

Armero and Romero have recently proposed energy decaying algorithms for non-linear elas-
todynamics [1]. For the linear model problem, their scheme writes

u — U
% = Geons T Ydiss> (22)
v — U

m % = _(fcons + fdiss)a (23)

where ¢eons, Gdisss feonss fdiss are discrete approximations. The conservative terms ¢eons, feons
are chosen to ensure

Gcons (vn+1 - vn) = Kn+1 - Kna (24)
fcons(un+1 - un) - Vn—l—l - VTU (25)

while the dissipative terms gqiss, faiss are designed so as to guarantee

Gaiss™ (Vnp1 — vn) = Ky, (26)
fdiss(un+1_un) - Vd- (27)

Then, setting £y = K4+ Vy, we get the required discrete energy bound
En+1 - En - _Eda

if we can show that E; > 0.
In this simple linear case, conserving discretizations geons and feons are easily obtained
using mid-point (trapezoidal) approximations

1
Geons = 5 (U1 + V), (28)

1
fcons = 5 k (Un+1 + Un) (29)

Dissipative discretizations are defined in terms of intermediate stage values 4,, and v,,, using
the expressions

1

Gdiss — 5 (vn - vn)a (30)
1,

fdiss - 5 k (un - Un) (31)

In turn, the intermediate stages are defined through the difference relations
Uy = Up+ At aar (U — Vnt1), (32)

mv, = muv, — Ataark (y, — pe1), (33)

for an algorithmic parameter aag. With these choices, it is easily shown that

1 1
E, = 5 M (T, — vp)* + 3 k (i, — up)® >0, (34)
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which ensures an energy decaying scheme. Note that for axg = 0 a conserving discretization
is recovered. Furthermore, while aar enters the definition of the internal stages u, and v,
it does not affect the amount of dissipated total energy FEj,.

This scheme and the one of the previous section are closely related. In fact, insert now
definitions (24,25) and (30,31) into (22,23) and rearrange terms to rewrite the integration
algorithm as

% = aar (Un — Vpy1), (35)
st~ %(ww), (36)
mﬂnA_tvn = —kaar (ln — Uns1), (37)
bt _k%(@ﬁunﬂ). (38)

Equations (35-38) represent a family of L-stable Runge-Kutta schemes with tableaux de-
pending on the algorithmic parameter asr. Applying standard results of the theory of
Runge-Kutta methods [16, 17|, it is easily verified that this tableaux guarantees second
order accuracy for any aar > 0 for arbitrary ordinary differential problems. Third order
accuracy is obtained for the scalar linear model problem for the special value aygr = 1/6.
The same value of the algorithmic parameter corresponds also to the finite difference scheme
previously obtained with the TDG method.

For the purpose of practical implementation of the scheme, the velocities v, and v, 1
can be eliminated, leaving a displacement based iteration scheme in the 2 X ngor unknowns
U, and u,y1. For a non-linear problem, once the unknown displacements have converged,
one recovers the velocities before starting a new step. This only involves vector, rather than
matrix, equations, and it is therefore inexpensive. However, the overall procedure is more
expensive than other one-stage schemes as the already cited generalized-a method, since the
matrix problems are twice as large. Predictor multicorrector schemes can be used to try
to circumvent this problem [20]. Armero and Romero [1] propose a similar nested iteration
scheme with the same goal, based on the idea of temporarily freezing the internal stages. Of
course, there is no guarantee that this will not negatively affect the convergence behavior
of the whole scheme. This discussion clearly applies also to the scheme A presented in
the previous section; both in fact are associated with nearly identical computational costs,
having the same structure.

We also note that the algorithmic parameter ag is not a tuning parameter for the
damping of the high frequencies in the classical sense. In fact, aar does not control the
asymptotic value of the spectral radius [18], which is always null irrespectively of the value
of the parameter. This is also apparent in the fact that the dissipated energy E,; in (34)
does not depend on a,r. Indeed, apr only controls the cut-off frequency of the scheme at
the price of degraded relative period errors [18]. The minimum amount of period elongation
is obtained for aar = 1/6, which corresponds to the energy decaying discretization A of the
previous section.

Spectral radii and relative period errors for this scheme are plotted vs. At/T, T =
2my/m/k, in Figure 1 and Figure 2, respectively, for different values of the algorithmic
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Figure 1: Energy decaying discretization B, spectral radius. [J: asr = 0; A: axr = 1/63; v:
aar = 1/6% o: asr = 1/6. The curve marked with the symbol o also applies to the energy
decaying discretization A.

parameter aaR.

3.3 Energy Decaying Discretization C

The drawback of both scheme A and scheme B is that they do not control the value of the
asymptotic spectral radius. In order to correct this deficiency, we have introduced [2, 8] a
modification of the scheme (17-20) that can be written with the present notation as

Up — Up

= 0 )t ), (39)
7“’”22 I % (B + Vnt1), (40)
m P = (0 (i )~ g ), (41)
Unt1 — On IA; Uno g % (il + Uns1), (42)

where « is an algorithmic parameter. In this case one obtains once again the energy bound
(1), where the dissipated energy is now given by

E;=ad, (43)

where
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Figure 2: Energy decaying discretization B, relative period error. [I: aar = 0; A: aar =
1/6% V: aar = 1/6% o: axg = 1/6. The curve marked with the symbol o also applies to
the energy decaying discretization A.

which ensures an energy decaying scheme for @ > 0 and a tunable amount of dissipated total
energy. In fact it is also easily proven that the asymptotic value of the spectral radius is in
this case given by

11—«

S l+4a’

which is the same expression obtained for the generalized-a method.

In the spirit of the TDG method, we typically interpret the stages w,, v, as field variables
associated with time #,+. In this sense, the unknown fields are allowed to create a jump
discontinuity at the beginning of the time step that is responsible for the high frequency
damping behavior of the scheme [13]. In fact, looking at equation (44), it is clear that
energy is dissipated through the jumps in the positions as well as in the velocities experienced
between t,, and t,+.

For a = 0 one recovers a conserving scheme, that is however fourth order accurate for
the scalar linear model problem. It is important to realize that for the scheme of §3.2 the
best performance in terms of relative period error is obtained for aag = 1/6. This case
corresponds to the choice a = 1 for our modified algorithm (39-42), which is the situation
characterized by the highest amount of dissipation and by the worst relative period error.
Therefore, the best performance in terms of frequency error for scheme B corresponds to the
worst case of the present scheme.

Spectral radii and relative period errors for this scheme are plotted in Figure 3 and
figure 4, respectively, for different values of the asymptotic spectral radius p.. In particular,
compare the superior dispersion characteristics of scheme C shown in Figure 4 with those of
scheme B in Figure 2.
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Figure 3: Energy decaying discretization C, spectral radius. 0: po = 1; A: py = 2/3; V:
Poo = 1/3; 01 po = 0.

4 Conclusions

In this work we have tried to very briefly clarify the similarities between some recently
proposed energy decaying approaches. More specifically, we have shown that the basic
underlying difference schemes are very strictly related: scheme A corresponds to one member
of the family of schemes B, obtained for the specific choice axg = 1/6. This choice yields
the method that gives the least frequency error and it is in this sense optimal within this
family; furthermore, the same choice also corresponds to the difference scheme obtained
from the TDG method. Scheme C is also very similar to scheme B, but it has the added
advantage of allowing true tunable high frequency damping, i.e. it gives direct control on the
asymptotic value of the spectral radius, while at the same time providing superior dispersion
characteristics.
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