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ABSTRACT. We develop a reformulation of the study of airplane trim
and stability intended mainly for teaching purposes. This approach
yields a slightly different form of the governing equations with respect
to that commonly adopted in the literature and in education programs.
Under hypotheses of linear, low subsonic, steady-state aerodynamics in
symmetric flight, the constitutive laws for lift and pitching moment are
rewritten in homogeneous form and appropriate characteristic points are
introduced: the first is the well known neutral point, while the second
is termed the control point. This allows for a reduction of the complex
system of aerodynamic forces acting on the airplane to an equivalent one
consisting in only two applied forces. Basic considerations of trim and
stability are easily carried out within this framework by simple, intuitive
reasoning upon the resulting force distribution patterns. In order to help
the reader to familiarize with this approach, applications to level flight
in both the stick-fixed and stick-free settings, as well as to maneuvering
flight, are briefly addressed.

1. INTRODUCTION AND MOTIVATION

Simple models are extremely useful in teaching engineering subjects, al-
though they may have been surpassed by far when computations on actual
problems are concerned. In fact, the approach adopted in basic education,
being deliberately simplified with respect to sophisticated modeling possi-
bilities available for the researcher or the applied engineer, allows to focus
on the fundamental concepts related to a certain subject without diverting
the student’s attention on the specific details of a model problem.

This work is concerned with a reformulation of the study of basic equi-
librium and stability of airplanes, within a course in flight dynamics at the
undergraduate and/or graduate levels. In this reformulation, we stress the
fundamental qualitative features of the governing equations without placing
a priori assumptions on a particular airplane model. Therefore, design de-
tails on the surface arrangement, layout of the controls, and so on, are left
aside while deriving, in a general way, all the fundamental results concerning
trim and stability.

This somehow contrasts with the customary approach to flight mechanics

education, where the typical learning path involves a step-by-step process
1
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that basically traces back to the traditional approach in preliminary aircraft
design (examples are found in reference textbooks such as Refs. [1, 2, 3, 4,
5, 6, 7, 8,9, 10]. Within this approach the student is typically led through
the following phases:

a) trim and stability analysis of an isolated wing,

b) justification of the need of an horizontal stabilizer (or other means
of stabilization),

c) generalization of the results taking into account the effect of a fuse-
lage (and eventually of nacelles, propellers and other parts),

d) buildup of formule for lift and pitching moment from the sum of
wing-body and tail contributions,

e) introduction of longitudinal control, leading back to trim considera-
tions,

f) eventually, derivation of level and maneuvering flight characteristics.

At this point, the student has gone through a considerable number of for-
mulae which are mathematically simple, but considerably unattractive and
uneasy to remember, given the involvement of a remarkable amount of quan-
tities that describe specific details of the assumed airplane model.

An example of this can be seen in the expression of the total pitching
moment at the center of mass as a function of the airplane angle of attack
and elevator deflection. Adopting Ref. [2], the desired result is obtained by
composing eqs. (6.3,33), (6.3,34), (6.3,35), (6.4,1), (6.4,7):

Cm = Cmacy, + V(g0 —it) <1 S e (1- 6a)>
w a S

+ CMOp + (a (h - hnwb) - a’tVH (]' - 804) + Cmpa) a
+ (Cmacwb(; + CL5 (h - hnwb) - G’EVH)) J.

The ‘cluttered’ appearance of the previous equation often intimidates the
student, by conveying an overall idea of complexity that, as a matter of
fact, involves only the constitutive expression of constant coefficients in an
otherwise extremely simple formula: in fact, a linear equation in («, d).
Furthermore, we note that the derivation of such an expression results —
as far as education is concerned — in some possible additional drawbacks.
A first one is the fact that the same equation, by simply adopting different
choices in grouping certain quantities, as well as different nondimension-
alization strategies, may look different. Others are more substantial: for
example, a different expression for the various terms appearing in an equa-
tion of the type shown can be obtained depending on the level of refinement
adopted in the modeling process of the airplane and the corresponding aero-
dynamic field; also, for a different aircraft layout one often has to reconsider
the derivation of a formula from the very start and append/substitute/delete
various terms here and there (as an instance, considering a canard configu-
ration would call for introduce a term on the right-hand side of the previous
equation in account for the significant contribution of the wing-body to the
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pitching moment derivative with respect to d, while downwash effects on the
wing would modify the expressions of the wing-body derivative with respect
to ). Another important point is the fact that the student may develop the
impression that the validity of a general result in trim and stability analysis
is related to the way it was derived. In other words, one may attribute un-
justified importance to modeling assumptions other that linear dependence
on (a,¢) for lift and pitching moment.

Motivated by this considerations, we propose a simplified formulation
where modeling details remain hidden behind the various coefficients that
appear in the equations, allowing for a general derivation of the most im-
portant results in trim and stability analysis. Clearly, this is not intended
as an alternative to the traditional approach as described before, but more
as general framework for the governing equations that, for the sake of com-
pleteness, must be supplemented by basic phenomenological reasoning first
as an input condition, to motivate the functional dependencies in general,
and also in the end, to comment the results in relation to sample design
types, which forms the core of a course in airplane preliminary design.

In this way, we are able to formulate the problem of airplane equilibrium
and stability by first stating the constitutive laws pertaining to the flight con-
ditions at hand: stick-fixed steady level flight, stick-free steady level flight,
steady maneuvering flight, etc. This allows to determine qualitative features
of an airplane that depend on the nature of the forces acting on it, regardless
of its architecture and design details. This conceptual approach is standard
in other engineering disciplines (e.g. continuum and structural mechanics,
electromagnetics, thermodynamics), but seems to have been somehow over-
looked within the flight mechanics community.

Encouraged by the striking simplicity in deriving meaningful results, the
proposed approach has been employed in delivering flight mechanics courses
at both the undergraduate and graduate levels at the Politecnico di Milano
for a number of years. The experience accumulated has shown that the
student basic reasoning on trim and stability problems is facilitated and
made more intuitive.

Here, we limit our scope to steady symmetric flight conditions, since they
are most basic in understanding airplane behavior. Analogous consider-
ations of trim and stability for nonsymmetric flight conditions have been
carried out following the same guidelines.

The paper is organized as follows. In Sect. 2, we recall the basic ingre-
dients for the derivation of the governing equations for steady symmetric
flight. We stress that, in general, it is neither necessary, nor always conve-
nient to reduce the moments to the center of mass. The student should be
familiar with moment transport relations between different poles, as well as
with the concept that, in general maneuvering flight, the angle of attack is
different from point to point, due to the geometry of rigid motion, regardless
of any possible perturbation of aerodynamic or aeroelastic origin.
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In Sect. 3, we present the formulation for stick-fixed (i.e. control-fixed)
level flight conditions. From the mere investigation of the constitutive equa-
tions related to this case, we reduce the complex distribution of aerodynamic
forces acting on the airplane to an extremely simple system composed of only
two applied forces, one which depends only on the angle of attack, while the
other depends only on the elevator deflection. These forces are applied at
two material points on board the airplane, the first being the well known
neutral point, while the second (termed the control point) is introduced here
for the first time. Results for trim and stability are then given in terms of
relative distances between these points and the center of mass.

In Sect. 4, we present the parallel formulation for the stick-free case. Here,
we are led to a similar reduction of the aerodynamic system of forces, but
the two forces have to different values from those of the stick-fixed case.
As it is well known, the neutral point placement is also affected, while the
control point remains unchanged.

In Sect. 5, we address the formulation for maneuvering flight conditions
(limited to the stick-fixed setting, for the sake of brevity). Constitutive
equations for this case account, on the one hand, for rate of pitch effects
and, on the other hand, for the measure of the angle of attack at arbitrary
points on board the airplane. By extending a notion from unsteady airfoil
theory, we introduce the equivalent angle of attack point, obtaining con-
siderable effects on the constitutive equations that lead to the consistent
characterization of the pitching moment derivative with respect to the rate
of pitch, regardless of the pole of reduction. Eventually, resorting to the
maneuver point is instrumental in deriving a greatly simplified interpreta-
tion of the aerodynamic force distribution in maneuvering flight. The force
increments with respect to level flight conditions at the same altitude and
airspeed, are expressed again through a scheme based on only two applied
forces.

2. BASIC INGREDIENTS

2.1. Body axes. We adopt the customary body-fixed reference axes, where:
the z-axis (longitudinal axis) lies along the fuselage, within the material
symmetry plane of the aircraft, oriented from tail to nose; the y-axis (lateral
axis) lies normal to the material symmetry plane of the aircraft, oriented
from left to right wing; the z-axis (normal axis) lies within to the material
symmetry plane of the aircraft, such as to form a right-handed orthogonal
triad together with the z and y axes. We do not need to fix a specific origin
for the body-fixed reference frame.

In this work we are concerned with the case of symmetric flight conditions.
Therefore, adopting the usual notation, the two nonvanishing components
of the velocity of a material point P on board the aircraft are the longitu-
dinal velocity up and the normal velocity wp, while the only nonvanishing
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component of the aircraft angular velocity is the rate of pitch ¢. Correspond-
ingly, the two nonvanishing components of the aerodynamic force acting on
the airplane are the longitudinal force X and the normal force Z, while the
only nonvanishing component of the aerodynamic moment about a material
point P is the pitching moment Mp.

2.2. Transport relationships. For symmetric flight conditions, the rigid
body velocity distribution translates into the following rule of transport of
velocities between material points P and @, both lying on the longitudinal
axis:

ug = up,

wg = wp + (zg —zp)q.

(1)

This result entails a corresponding rule for the of angles of attack. In fact,
the angle of attack at P is defined as

(2) ap = atan——.
up

Within the usual approximation, this amounts to

up =V,

(3)

wp = V(XP,

where the airspeed V is the value adopted in the definition of the reference
dynamic pressure.
By combining eq. (3b) and eq. (1b) we obtain
_ q
(4) aQ =ap +(zQ — zp) 17,
which is the rule of transport of angles of attack.
These relations have an analog when torques are considered. The rela-

tionship between pitching moments about two material points P and @,
both lying on the longitudinal axis, reads

(5) Mg =Mp+ (zg —zp) Z.

Within the usual approximation of small angle of attack and high lift to
drag ratio, we can substitute the normal force with the lift L changed in
sign, neglecting the contribution of the aerodynamic drag.

so that we can refer to the following

(6) Mg =Mp—(z¢g—zp)L

as the rule of transport of moments.
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3. LEVEL FLIGHT — STICK-FIXED CASE

3.1. Aerodynamic force model. In steady symmetric level flight condi-
tions we consider the following linear constitutive equations for the aerody-
namic resultant actions L and M p:

L =L(a,9)

0 Mp = Mp(a, ).

In this work, we do not need to consider the constitutive equation for drag,
as it will be clear in the following, when looking at trim conditions.

In the previous equations, § represents a longitudinal control parameter
(an angle) that, for the sake of simplicity, is hereafter termed the elevator
deflection. Note, however, that in the following the model airplane is left
completely arbitrary, and that the resulting formulz are valid regardless
of the actual realization of the longitudinal control, i.e. regardless of the
presence of traditional elevators, stabilators, elevons, etc. We assume that o
follows the same orientation rule as «, so that downward elevator deflections
correspond to positive variations of d, and vice versa for upward deflections.

The explicit dependence on § addresses the classic ‘stick-fixed’ setting
where pitch control is exerted by imposing the elevator deflection (i.e. the
stick position, for aircraft without control automation). Note that, given
the steady, level flight conditions, the angle of attack « is the same for all
locations on board the aircraft, and consequently we dropped the subscript
representing the point where this quantity is evaluated.

Egs. (7), under the customary hypotheses that the angle of attack « and
elevator deflection ¢ are small, can be written as the linear relationships

3 L:L|aa+L|56+L0,
®) Mp = Mp|qa+ Mp50 + Mpy,

where we assume that the constitutive coefficients L)y, L5, Lo, as well as
Mp|o; Mp|s, Mpg, are proportional to the reference dynamic pressure
through suitable constants, while being independent on « and §. We limit
ourselves to consider low subsonic flight, so that no compressibility effects
have to be included in these coefficients. Throughout this work, we use
a vertical bar to indicate a partial derivative, i.e. L, denotes the partial
derivative of function L(c,d) with respect to a.

It is well known that the computation of Ly, Lj5, Lo, Mpjo, Mpys,
Mpy can be a daunting task, requiring the solution of an interactional
aerodynamics problem for the complete airplane. This can be performed by
increasing levels of complexity, depending on the stage of the analysis. As
it is well konwn, the difficulties related to this subject are even harder when
nonsymmetric flight conditions are considered.

In the following, we shall assume that the constitutive coefficients men-
tioned above are known, clearly cutting the derivation of trim and stabil-
ity results from the actual evaluation of the constitutive coefficients from
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computations or experimental measures, a task to be discussed within the
context of aircraft design and testing.

3.2. Characteristic points. Within the simple scheme based on egs. (8),
two characteristic locations, 4.e. material points, can be defined along the
longitudinal body axis: the first is the neutral point N, defined as the lo-
cation about which the pitching moment does not depend on the angle of
attack,

(9) Mo = 0;

the second is the control point C, defined as the location about which the
pitching moment does not depend on the elevator deflection,

(10) M5 =0.

The neutral point is also referred to as the aerodynamic center of the aircraft,
or as the focus of the aircraft, in analogy with thin airfoil theory. The
control point is introduced here, and will be instrumental in the following
developments.

The relative positions of points N and C with respect to any other point
P on the longitudinal body axis is readily obtained by deriving eq. (6) with
respect to a and 9§, respectively:

M@ o = Mplo — (2@ — zP) Liq,
MQ|5 = MP|5 — (:UQ — .%‘p) L|5,

choosing ) = N and () = C, respectively, and eventually applying the
defining properties expressed by egs. (9) and (10), to get

(11)

IN —Tp = MP|aa

(12) Do
Tc —Tp = MP|57

L,

for arbitrary P. These results allow us to write the pitching moment deriva-
tives as

(13) Mpla = (@§ = 2pP) Lo,
Mps = (z¢ — zp) L5,

and therefore to rewrite the constitutive equation for the pitching moment
as

(14) Mp = (.’EN—xp)L|aOd+(iL‘C_.’Ep)L|55+MP()-

It is straightforward to prove that the locations of the neutral and control
points, as long as the assumed hypotheses of low subsonic flight are met, does
not depend on airspeed and altitude, and consequently that they represent
fixed points with respect to the aircraft.

Their actual location depends on the specific airplane considered. How-
ever, it is an easy task to prove that, for an airplane with a conventional



8 MARCO BORRI AND LORENZO TRAINELLI

architecture, i.e. with either a traditional tail (behind the wing) or a canard
surface (ahead of the wing), and an almost nonlifting fuselage, the neutral
point lies in the vicinity of the wing aerodynamic center, while the con-
trol point almost coincides with the aerodynamic center of the horizontal
tailplane. Therefore, for this kind of airplane, the distance (zy —z¢), which
has a considerable importance in both trim and stability issues, basically
amounts for the space between wing and tail.

3.3. Trim. For steady symmetric level flight conditions, the balance equa-
tions for the vertical force and the pitching moment about a generic location
P on the longitudinal body axis read

L=W,

(15) MP:(SEG_:IZP)VV,
where W represents the airplane weight and G its the center of mass. Note
that we do not consider the equilibrium along the trajectory (given, within
the usual approximations for level flight, by D = T', where D is the drag and
T the thrust). In fact, from the hypothesis assumed above, this equation is
uncoupled from the trim equations (15), so that it may be considered plainly
as the definition for the thrust required for level flight.

We denote by arr and 0.y the values of the angle of attack and elevator
deflection that correspond to trimmed level flight conditions. Therefore, we
can solve the system

L|aaLF + L|(56LF + Lo =W,

16
(16) Mp|qare + Mp|soie + Mpo = (26 — zp) W,

for apr and d;r. Note that the determinant A of the coefficient matrix of
egs. (16) is

(17) A= MpioLis — MpisLiq = (o8 — z0) Lo L5,

and hence it does not depend on the point P, but only on the dynamic
pressure, being positive for traditionally tailed airplanes (zy > z¢) and
negative for canard configurations (zy < z¢). Solution of egs. (16) yields

MecoLis — Mais W
A = — A ’
McjaW = Mo Lo

A ?

where Myo = Mpy — (zx — 2p) Lo and Mcg = Mpo — (zc — zp) Lo
represent the values of the pitching moment about N and C, respectively,
when the angle of attack and the elevator deflection are null, as derived from
eq. (6), while Mg, Mg)s, are found from egs. (13) by setting P = G.

(18)

5LF:_
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The preceding results can be meaningfully recasted as
_zg—zc W Meg
ey —ae L Meg

(19) ey —xg W Mng

5LF = NV
Ny —zc L Mngs

where My, and Mc|s are found from egs. (13) by setting P = N and
P = C, respectively. Inspection of the previous equations shows that the
trim values app and . are clearly independent on P, while they depend
on both airspeed and altitude, in a complex way. Indeed, in egs. (19), the
first term on the right hand side is inversely proportional to the dynamic
pressure, while the second term is constant with respect to both airspeed
and altitude.

3.4. Static stability. The derivation of the condition for stick-fixed static
stability is obtained immediately from the expression given in eq. (13). In
fact, the stability criterion

(20) Mcjo <0

entails the classical result that the center of mass GG must lie ahead of the
neutral point N,

(21) rg —xn > 0,

in order to ensure static stability.

Here we recover the meaning of the neutral point as the limit backward
location of the center of mass for static stability. In fact, this is often
employed as a definition for the neutral point. In this work, we introduced
the neutral point together with the control point because of their meaning
as constitutive quantities for the aerodynamic force distribution model. By
consequence, they appear very meaningful already in trim analysis. Eqgs. (19)
are a first example of usage of N and C., and more refined and revealing
applications will follow next.

3.5. Homogeneous constitutive equations. In order to develop a sim-
plified framework for the study of trimmed level flight, we define agy and d
as the values of the angle of attack and elevator deflection, respectively, that
yield a null aerodynamic force system, i.e. L = Mp =0,VP.

Therefore, by solving the system
L|a040 + L|550 + LO = 0,

(22) Mpjaco + Mpisdo + Mpo = 0,
for aig and &y, we get

_ MpjgLo — MpoLjs

= A 7

_ MpoLijg — MpjaLo

— A .

o
(23)
do
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or
o= — Mcy
Mare

24
(24) L
Muys

From their definitions, eqgs. (24), we see that «g and dy are independent from
P, as well as on both airspeed and altitude.

Using ag and Jg, we can cast the constitutive equations in their homoge-
neous form:

L = Ljy(a — ag) + Ly5(6 — do),
Mp = Mp|a(05 —ap) + MP|6(5 — o).

The variations (¢ —ay) and (0 —dg) therefore assume the meaning of absolute
angles, just as in airfoil theory with the absolute (or aerodynamic) angle of
attack. In other words, they represent intrinsic constitutive variables that
do not depend on the specific choice of reference body axes, and hence on
the conventional ‘origins’ for the measure of the angle of attack and elevator
deflection.

Given egs. (24), it is easily seen that the values of the angle of attack and
elevator deflection at trim satisfy the relations

(25)

Tqag—xc W

Qe —00 = ———— 7,

$N—$0L|a

(26) T g W
N — 4G
Opp —0p = ———

IN —XTC L_|57
Note that (aLr — ag) and (dpp — dp) are both inversely proportional to the
dynamic pressure. Given their dependency on length ratios, we lighten the
notation a bit by defining the quantity ¢ as

TG — T
(27) gi= 9N
IN —IC
By this nondimensional ratio, we can rewrite eqs. (26) as

arp —ap=(14+¢) —
(28)
6LF - 60 = —&—.

Note that ¢ is related to the classic notion of static margin, defined as e :=
(xg — zn)/c, where ¢ is the mean aerodynamic chord (MAC). However,
since the nondimensionalization is carried out dividing by (zy — z¢), € can
assume positive or negative values for statically stable (xg > 2x) airplanes
depending if the tail is located behind or ahead of the wing. As an example,
for a stable, traditionally tailed (zy > x¢) airplane, we get € > 0 and, by
consequence, apr > «p and d.p < 0, while for a stable, canard (zy < z¢)
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airplane we get € < 0 and d ¢ > dp. Since |e| < 1, arr > o also for the
case of a stable canard configuration.

Examples of ¢ for representative aircraft types in various flight conditions
are reported in Table 1, together with the corresponding values of the static
margin e, of the nondimensional distance d := (zy — z¢)/c, which roughly
accounts for the number of MACs that lie between wing and tail, and of the
sum (e +d) = (z¢ — z¢)/c. Note that € = e/d.

3.6. Simplified force diagram. By rewriting the pitching moment equa-
tion as
(29) Mp = (:L‘N—SEP)L|a(a—a())+(ZEC—:EP)L|5(5—50)

we are drawn to an extremely simple geometric interpretation of the aero-

dynamic force distribution. In fact, by egs. (25a) and (29) this distribution

can be idealized as the action of two single forces: a first one applied in N

with value L, (a—ap), and a second one applied in C with value L5(5 —do)-
We term these two forces the attitude lift L* and the control lift L,

LY .= L (a — ap),
(30) j. L:Z(((s - 50),)
and rewrite egs. (25) as
L=L"+1L°
Mp = (zny —zp) L* + (z¢c — zp) L°.
We denote with L%, and L, the values of the attitude and control lift com-

ponents that correspond to trimmed level flight conditions. Given egs. (28),
these values are

(31)

L%F = (1 + 5) W,
LiF = —¢€ W7

where € appears as the ratio of the control lift to the airplane weight, changed
in sign, and, therefore, as the fraction by which the attitude lift differs from
airplane weight. Note that L{, and L{, are constant with respect to both
airspeed and altitude.

The resulting force diagram at trim is depicted in Fig. 1. This should
be compared with the classical force diagram depicted in Fig. 2. The latter
results from the decomposition of the aerodynamic forces into wing-body
and tail contribution, with the application of the wing-body lift L%’ at the
wing-body aerodynamic center A", together with the corresponding wing-
body pitching moment Mﬁ]’ﬁ,b, and of the tail lift L! at the tail aerodynamic
center A’, together with the corresponding tail pitching moment Mf;ﬁ.

It is important to remark that no confusion must be made between the
attitude lift and the lift generated by the wing, and between the control
lift and the lift generated by the tail. In fact, although for many airplanes
the control lift is almost entirely generated by the horizontal tailplane, this
surface also contributes to the attitude lift.

(32)
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Inspection of egs. (32) shows that, for a stable (z¢ > zx), traditionally
tailed (zny > x¢) airplane, the control lift is always negative, so that the
attitude lift must exceed the weight to compensate for the effect of pitch
control. On the other hand, a stable (z¢ > zn), canard (z¢ > zy) air-
plane features an uplifting effect of the longitudinal control at trim, with
the attitude lift being somewhat less that the weight.

Clearly, when dealing with airplanes featuring a low value of |¢|, the
control lift can assume negligible values when compared to the airplane
weight, at least when performing preliminary analysis and design. This is
certainly the case of the first airplanes considered in Table 1. Note that the
higher values of € correspond to ‘compact’ airplanes (i.e. with tail close to
the wing) in supersonic flight.

Although we assumed low subsonic conditions in our derivation, it is in-
teresting to note that the location of the control point C, as seen from
the values of (e + d), varies very slightly between low and high subsonic
conditions, and even supersonic conditions. We do not want to delve on
compressibility effects here, but it is also interesting to consider just the
typical phenomenon of the neutral point backward displacement from sub-
sonic to supersonic conditions (i.e. the ‘Mach tuck’ effect). Indeed, this
phenomenon induces at the same time a rise in e¢ and a drop in d. As a
result, although the location of C' differs only by 3% of the MAC for both
the F-104 and the F-4C between subsonic and supersonic conditions, the
variation of ¢ is remarkably high: around 40% for the F-104 and 70% for
the F-4C.

3.7. Trimmed lift. By eliminating the elevator deflection from eq. (25a)
using the trim condition, eq. (15b), in eq. (29) we obtain the formula for the
trimmed lift as a function of the sole angle of attack,

(33) L= L*(a) = Li,(a — ).

where the trimmed lift-curve slope L|*a is defined as
. 1

(34) |a = m[qa

Therefore, for a stable (zg > zx), traditionally tailed (zy > z¢) airplane,
the trimmed lift-curve slope (i.e. the quantity to be used in performance
analysis) is always lower that the nominal lift-curve slope L),. The opposite
results for a stable canard airplane.

4. LEVEL FLIGHT — STICK-FREE CASE

4.1. Elevator hinge moment and stick-free constitutive equations.
In steady symmetric level flight conditions, under the customary assump-
tions, we consider the constitutive equations for the elevator hinge moment
H in the following linear form:

(35) H = H(a,6) = Hjo(a — ag) + H|5(6 — do) + Ho,
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where H represents the hinge moment corresponding to the null aerody-
namic resultant condition, while H|, and H|s; are known as the floating
tendency and restoring tendency, respectively. All these quantities are pro-
portional to the reference dynamic pressure.
By eliminating the elevator deflection from eq. (35) we obtain
(36) 5= 0 = — )+ (H — Hy)
—0=—pm (a—ag)+ 5 (H — Hy

Hy; Hy; ’
and substituting this result in egs. (25), we obtain the stick-free constitutive
equations as:

L= L(a,H),

(37) Mp = Mi(a, H).

This plainly represents a change of variables from («,d) to («, H) when
compared to egs. (7).

It is easily found that the previous equations can be written in the homo-
geneous form

L=Li (o — ap) + L{,;(H — Hy),

38
(3 Mp = Mp,(a — ag) + Mp (H — H),

where Lia and M'P| ., are proportional to the reference dynamic pressure,
while LI g and M’Pl 7 are constant with respect to both altitude and airspeed.
In fact, the expressions of the stick-free derivatives are

Ljs
o= Lja = H—lem
oL

(39) T Hs

_ Mpys
MP|a MP|a - H|5 H|aa
Mps
! —
MP|H H|5

being easily justified as partial derivatives of a composite function.

Eqgs. (38) represent the basis of the ‘stick-free’ formulation for trim and
stability analysis. Indeed, the explicit dependence on H allows the applica-
tion of pitch control by imposing the elevator hinge moment (i.e. the force
applied to the stick, for aircraft without control automation). This repre-
sents a generalization of the situation that gives the name to this approach.
In other words, the case when the stick is left free (i.e. H = 0) is just a
particular case of the present formulation.

Now let us follow the steps already sketched for the stick-fixed case.



14 MARCO BORRI AND LORENZO TRAINELLI

4.2. Characteristic points and simplified force diagram. First, we
define the characteristic locations N’ and C’, i.e. the stick-free neutral and
control points, respectively, through the conditions
!

’ - 0
N |a )
(40) S,
c'|\H =Y

The relative positions of points N’ and C’ with respect to any other point
P on the longitudinal body axis are then given by

!
N Pla
:EN, - xP - LI 9
«
(41) /
" " P|H
Cc'—Ip = s
LI
|H

for arbitrary P. Note that, by eqgs. (12b) and (39), the last equation yields

M), Mpis Hy M
|H Pls H5 P|s
L, H; Ljs L

=Tc —Tp,

or C' = C. Therefore, we shall drop the apex from the control point in the
stick-free setting, writing the pitching moment constitutive equation as

(43) MP: (:EN/ —wp)Lia(Oz—Oé())—l—(iL‘C—CL'p)LIH(H—HO).

As seen in the stick-fixed case, eq. (43) inspires an extremely simple geo-
metric interpretation of the aerodynamic force distribution as the action of
the stick-free attitude lift L'® applied in N’, and of the stick-free control lift
L' applied in C. The forces are defined as

L' .= Lia(a —ap),

(44) L'e .— LIH(H _ H()),
yielding
s) poptern

MP — (:EN/ — ZUP) e =+ (ZEC — :IZP) L'e.

Note that, again, the stick-free neutral point represents a material point,
i.e. a fixed placement on board the airplane.

4.3. Trim and static stability. Eqgs. (15), combined with egs. (38) can
be used to determine the angle of attack and elevator hinge moment corre-
sponding to trimmed level flight conditions.

By introducing the nondimensional length ratio ' as

TG — TN

46 ’::
(46) R



A SIMPLE FRAMEWORK FOR AIRPLANE TRIM AND STABILITY 15

we can write the trim values of (a r — o) and (Hyy — Hy),

w
O — Qo = (]. +EI) ?,
«
(47) w
HLF - H(] = —€ LI

Note that (Hpr — Hp) is independent from both altitude and airspeed. The
values of the stick-free attitude and control lifts are given by

L'zF =(1+HW,

48
(48) L', =W

Clearly, L'{, and L'{ . are constant with respect to both airspeed and alti-
tude, given egs. (39).

The analysis of trimmed lift, within the stick-free approach, yields a
trimmed lift-curve slope

(49) = (1—e) L,

o =™
The stick-free static stability criterion
(50) /G|a <0
translates in the following condition
(51) zg —xn > 0,
requiring that the center of mass G lie ahead of the neutral point N’ to ensure
static stability. Therefore, for a stick-free stable (zg > zn/), traditionally
tailed (zy > =z¢) airplane, ¢ > 0, so that the stick-free control lift is
negative and the trimmed lift-curve slope is lower than the nominal stick-

free lift-curve slope. Since H|;s is usually negative, Hyp > Hy. However, this
depends on the specific design of the elevator planform.

4.4. Stick-free vs. stick-fixed characteristics. We have already seen
that the stick-free and stick-fixed locations of the control point coincide. To
compare the relative positions of the stick-free neutral point with respect to
the stick-fixed neutral point we introduce the free elevator factor r as

L Hy, L
(52) PPl il i L

L, Hj; Ly,
Now, by comparing eqs. (12a) and (41a),

1—&

(53) TN — TN = (zn — zo).

This shows that, for a traditionally tailed (zy > x¢) airplane, the stick-free
neutral point N lies ahead of the stick-fixed neutral point N’ if k < 1, i.e.
if the stick-fixed lift-curve slope is steeper than the stick-free one. This is
the case most commonly encountered in practice.
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The above reasoning also shows that whether the conditions stated by
eq. (21) or (51) be the most demanding depends on the sign of (k — 1).
For example, when x < 1, stick-free static stability implies stick-fixed static

stability.
Note that, as a consequence of eq. (53) we get
14+¢€
54 =
(54) A
so that
(55) e=k(e+1) -1

These equations can be easily verified by comparing corresponding formula
for trim values, such as egs. (28a) and (47a) or egs. (34) and (49).

5. MANEUVERING FLIGHT

5.1. Aerodynamic force model. The constitutive equations for lift and
pitching moment in steady symmetric maneuvering flight conditions must
be modified with respect to eqs. (8) for two reasons: first, the dependence
on the rate of pitch must be specified, and, second, the dependence on the
particular point where the angle of attack is evaluated must be taken into
account. This leads to the following constitutive equations:

L= L(aR7Q7 5)7
MP = MP(aR7Q7 5)

(in the following we shall limit ourselves to a ‘stick-fixed’ formulation, for the
sake of brevity). The functional dependence on the point R where the angle
of attack is evaluated can be understood by writing explicitly the previous
equations in the following form

L= L|aaR + [L|q]Rq + L|55 + Ly,
Mp = Mpjqar + [Mplrg+ Mp ;0 + Mpy,

where the coefficients [Lj,|r and [Mp|4]r are proportional to the ratio of
the dynamic pressure to the airspeed, while the other derivatives coincide
with those already seen in the study of level flight conditions.

The [ |g notation used for these coefficients indicates their dependency
on the point R where the angle of attack is measured. In fact, it is an easy
task to verify that, chosen a different point S for the evaluation of the angle
of attack, the quantities Lo, L5, Lo, as well as Mp|o, Mp|5, Mpyg, are not
affected by the change, while

(56)

(57)

(58)

as a result of the rule of transport of the angles of attack, eq. (4).



A SIMPLE FRAMEWORK FOR AIRPLANE TRIM AND STABILITY 17

Given egs. (57), we are interested in a qualitative characterization of
the contribution of the rate of pitch derivatives [L|jJr and [Mp]r. In
particular, it is clear that the sign and absolute value of [Mp| ]z are not
meaningful at all until P and R are left arbitrary.

5.2. The equivalent angle of attack point. The solution of the problem
just addressed can be obtained in two steps. First, from the observation of
the derivative of eq. (6) with respect to the rate of pitch,

(59) (M@ Jr = IMpiglr + (@ — zp) [Lig]r,

we are inspired to find a way to annihilate the second term on the right-hand
side of the previous equation. In fact, in this case the pitching moment de-
rivative with respect to the rate of pitch would assume an intrinsic meaning,
i.e. it would represent a pure couple.

To this end, we seek a location F where the lift does not depend on the
rate of pitch,

(60) [L|q]E =0.

From eq. (58a), the relative position of this point, termed the equivalent an-
gle of attack point, with respect to any other point P along the longitudinal
axis is given by

(61) IrE —ITp = -V —

By this definition, the equivalent angle of attack point represents a material
placement on board the airplane, being independent from both altitude and
airspeed.

Evaluating the angle of attack at E yields thus a simplified constitutive
equation for lift,

(62) L= L|aOlE + L|(55 + Lo,
while the constitutive equation for the pitching moment reads
(63) Mp = Mppag + [Mpgle g+ Mp50 + Mpy.

The second step is now performed by looking closer to the term depending
on ¢ in the latter equation. As anticipated, if P is left arbitrary in eq. (63),
the influence of the rate of pitch is difficult to characterize. However, by
eqs. (58b), (61) and (59), we get

TE — T
Mp e = [Mpilr + =2 - B Mpia
(LR
(64) = [Mp]r - L|(|]a Mpia

= [MpJr — (N —zp)[L)g]r
= [Mnglr
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Note that we can suppress the notation | |g from the derivative of the
pitching moment about N with respect to the rate of pitch. In fact, by
definition, N is a placement where the pitching moment does not depend
on the angle of attack, and hence it does not depend on the point chosen to
evaluate it. Therefore, we obtain the desired characterization of the term
depending on the rate of pitch by

(65) [Mpigle = My

for arbitrary P. Note that typically My, <O0.

As a result, the constitutive equations can be cast in the remarkably
simple homogeneous form:
L= L (ar — ag) + Li5(6 — do),

66
(66) Mp = Mp|o(ar — ag) + Mpi5(6 = 60) + Mnjqq-

5.3. Trim. In steady symmetric maneuvering flight with load factor n, the
balance equations for the vertical force and the pitching moment about a
generic location P on the longitudinal body axis read

L=nW,

(67) Mp = (xg—zp)nW.

We denote by ap,r and dyr the values of the angle of attack at F and
elevator deflection that correspond to trimmed conditions. Therefore, we
can solve the system

L|a(O‘E‘MF —ap) + L|6(5MF —dp) =nW,

68
(68) Mpio(@Eyr — @) + Mp|5(0ur — 00) = (g —zp)n W — MnN |44,

to find (apyr — o) and (dyr — dp) for a given ¢g. These values read

Mg
apyr — g = n (e 040) MC| )
(69) Mty
Oour — 00 =1 (5LF 50) - MN|Z q-

The preceding equations show that the amount of elevator deflection re-
quired by maneuvering flight with respect to that required by level flight
does not depend only on n (which indeed represents the major effect), but
is further increased due to My,.

For a traditionally tailed airplane (zy > z¢), Mc|o > 0 and Myj; <0,
so that (apur — @g) — n (oL — ap) has the sign of ¢ (for example, it is
positive in a pull-up), while (0yr — dg) — n (dLr — d9) has the opposite sign
of q. These increments, however, are typically small due to the low values
of ¢ compared to V/(zy — z¢).



A SIMPLE FRAMEWORK FOR AIRPLANE TRIM AND STABILITY 19

5.4. The maneuver point. In order to gain a better understanding of the
difference between maneuvering flight and level flight at the same airspeed
and altitude, we consider the ‘incremental’ equations

L|C¥(aEMF - aLF) + L|6(6MF — 6LF) = ('n; — 1) VV7

70
(70) Mngq+ My 5(0ur — 0ur) = (26 —2n) (R = 1) W,

where the pitching moment is referred to the neutral point N. In order to
include the effect of the rate of pitch in the total inertial loading, we define

the maneuver point M as the placement along the longitudinal axis given
by

M
(71) M — TN = ( N|q

n—l)Wq'

If the maneuver is a pull-up, considering the lowest point in the trajec-
tory (i.e. the most demanding conditions), the relation between the rate of
pitch and the load factor, within the usual approximations for performance
analysis, is given by

g

(72) Gpull—up = (n - 1) V

In this case, eq. (71) yields a maneuver point behind the neutral point. Also,
the position of M does not depend on the load factor,

Mg

mV '’

where m := W/g is the airplane mass, nor it depends on airspeed. It does
vary with altitude, however.

If the maneuver is a coordinated turn, the relation between the rate of
pitch and the load factor is

(73) (:EM - ':EN)pull—up =

n?—1g
4 — =
(7 ) qturn n V’
so that
]. MN|q
75 - =(1+ =) —19
( ) (J:M xN)turn ( + n) m V

Note that again the maneuver point lies behind the neutral point and does
not depend on airspeed, while depending on altitude. Furthermore, for high
values of n it gets very close to the position found for the pull-up.

The maneuver point can be used to obtain meaningful expressions for
values of the relevant quantities at trim. In fact, definition (71) entails

(76) MnNgq = (xm —zm) (R = 1) W,
and, by consequence, the moment equation about the neutral point reads

(77) MN|5(5MF —0ur) = (z¢ —xpm) (n — 1) W.
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Now, solving the previous equation for (0 —d.r) and substituting the result
in eq. (70a) to find (apyr — aLr), We obtain

TN —

Apyr — OLp = (1 + U) (n—1) (arr — ),

TG — TC

(78)
TN —

rG —ITN
As done before, let us lighten the notation by defining the nondimensional
quantity ¢ as

IN — TM
(79) pim TN TN

IN — ZC
to rewrite eqgs. (78) as

w

Opmp — O = (1 + (5+¢)) (TL - 1) Ka
(80) ’
w

|&

These equations should be compared with eqgs. (28), to remark that the
maneuver, in addition to changing W in (n — 1) W, has the effect of trans-
forming € in (¢ + ¢). Evaluation of the ‘absolute’ values (ap\r — ap) and

. Apyp — Q) = (n +(n—1) %) (o — ap),

e =0 = (n= (0 =1 2) (s~ o)

In both the cases considered of pull-up and coordinated turn we get ¢ > 0
for traditionally tailed airplanes (zy > z¢) and ¢ < 0 for canard airplanes
(rny < z¢). The values of ¢ are typically small. Those corresponding to the
airplanes and flight conditions considered in Table 1 ranges between O(1073)
and O(1072), with the lower values for highly maneuverable aircrafts.

5.5. Simplified force diagram. The constitutive equations for lift and
pitching moment in maneuvering flight can be cast in terms of the their
increment with respect to level flight at the same altitude and airspeed:

(82)
L— L= Lla(aEMF —app) + L|(5(6MF — Oir),
Mp = Mprp = (tn — 2p) Lio(@pyr — aur) + (¢ — 2p) Li5(dur — ur) + My |4q.
By combining eq. (70) with eq. (76), we get
(83) MN|qq = (mM - iL‘N) (L - LLF)
so that the pitching moment equation (56b) can be rewritten as

(84) Mp—Mpr = (xM _wP) L|a(aEMF _aLF) + (mB _mP) L|5(5MF _5LF)-
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In the previous equation, the position of the maneuver control point B is
defined as

(85) xp—zp:=(xc—xzp)+ (tp — xN),

for arbitrary P. Therefore, B represents a location that is separated from
C by the same distance by which M is separated from N. The effect of the
maneuver can thus be seen as the displacement of both the neutral point N
and the control point C' to the new positions M and B, respectively.

This leads to a straightforward geometric interpretation of the incremental
aerodynamic force distribution in maneuvering flight with respect to level
flight as the action of two two single forces: a first one applied in M with
value

(86) L* — Ly = L|a(04E — avr),
and a second one applied in B with value

(87) L = Lty = Ly5(6 — dvr),
so that

L— Ly = (La - LgF) + (Lc - LEF)’
Mp = Mpre = (xn —zp) (L* — Liy) + (zp — xp) (L° — Liy).
The values for these two incremental forces at trim are
Ly — Lo = (L4 (e + ) (n— D)W,
Ly —Lip=—(e+¢)(n-1)W.

(88)

(89)

As a consequence,
Lip=(n(l+e)+(n—1)¢) W,
L$e =—(ne+(n—1)¢) W.

These two incremental forces are independent on airspeed, while they depend
on altitude due to ¢. This situation is depicted in Fig. 3.

(90)

6. CONCLUSION

In this work we have presented a reformulation of the study of airplane
trim and stability aimed to undergraduate education on basic flight me-
chanics. This reformulation is based on the use of the rules of transport of
velocities (and hence angles of attack) and moments to different points on
board the airplane.

Starting from the hypotheses of linear, low subsonic, steady-state aero-
dynamics, in level symmetric flight, we have developed a new form of the
constitutive equations for lift and pitching moment that inspire a particu-
larly simple geometric interpretation of the aerodynamic force distribution
exerted on the airplane. This can be understood as the action of two ap-
plied forces, the attitude lift acting on the neutral point, and the control lift
acting on the control point. Within the cited hypotheses, both these points
represent material placements on board the airplane. The reduction to such
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a simple force scheme allows direct, intuitive reasoning on trim and stabil-
ity problems. The procedure is carried out in both stick-fixed and stick-free
conditions, and various results for trim and static stability are easily derived.

Within the same hypotheses, the approach is extended to symmetric ma-
neuvering flight. In this case, the definition of the equivalent angle of attack
point naturally emerges from inspection of the aerodynamic constitutive
equations, as well as that of the maneuver point. Again, we recover a simple
force pattern based on two applied forces only. Some analytic results are
derived to demonstrate the simplicity of the approach. Fundamental trim
and stability characteristics are easily expressed in terms of nondimensional
ratios, allowing the comparison between different flight conditions, as well
as between different airplanes.

Although similar reasoning can be applied to non-symmetric flight con-
ditions, we have limited the exposition to symmetric flight for the sake of
brevity.

In summary, the proposed formulation does not aim to form the basis of
a sophisticated computational method, but represents a fairly general setup
for the study of trim and stability of airplanes of arbitrary architecture.
This allows a quick understanding of the basic concept for trim and stability
without the need of going through a preliminary design process, a potential
advantage in those education courses in aeronautical engineering that do not
include airplane design as a compulsory subject.

The most evident novel element is the definition of the control point. This
is the key for the interpretation of the aerodynamic force distribution as a
pair of applied forces. The main features of this quantity, ¢.e. invariance
with respect to dynamic pressure and invariance to whether the formula-
tion is stick-fixed or stick-free (well approximated for realistic airplanes,
together with a very modest dependence on Mach number), legitimate its
introduction, which has proven useful in delivering the basic course of Flight
Mechanics at the Politecnico di Milano.
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FIGURE 1. The level flight simplified force diagram.
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FIGURE 3. The maneuvering flight simplified incremental

force diagram.

(n-DW

airplane | Mach | altitude [ft] | e d |e+d| ¢
B747 .25 0,000 2212 3.77 | 3.99 | .056
B747 .80 20,000 150 | 3.74 | 3.89 |.040
CV-880 | .60 23,000 120 1 2.94 | 3.06 | .041
CV-880 | .80 35,000 134 12.90 | 3.03 | .046
NT-33A | .40 0,000 .087 | 2.57 | 2.66 | .034
NT-33A | .75 20,000 .097 | 2.47 | 2.57 |.040
Jetstar | .525 0,000 128 [ 1.93 | 2.05 | .066
Jetstar | .75 20,000 129 1 1.93 | 2.06 | .067
F-104 .90 15,000 198 | 1.74 | 1.94 | .113
F-104 | 2.00 45,000 315 1.69 | 2.00 | .186
F-4C .90 15,000 .097 | 1.37 | 1.47 | .071
F-4C 1.80 55,000 .262 | 1.16 | 1.42 | .226

TABLE 1. Representative examples of values for e, d, (e + d)

and ¢ (data from Ref. [11]).




