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0.1. Preliminaries.

0.1.1. Point Spaces and Vector Spaces. We shall denote the object representing
the physical space as E3 and term it the euclidean 3–D manifold. The elements
of E3 are the points or placements in space. The operation of difference between
points is defined on the manifold E3: the resulting object is a distance vector. The
set of all distance vectors and their derivatives is the linear space E

3, termed the
Translation Space underlying E3. This is an euclidean 3–D linear space, or a linear
space endowed with the euclidean norm. On the other hand, R

3 = R × R × R is
simply the real 3–D linear space, without any specific norm defined. We shall use
the symbols R

4 and R
6 with the same meaning, as cartesian products of 4 and 6

copies of R, respectively, with no metric defined.
We also consider the Kinematic Space K

6, which is a 6–dimensional linear space
defined as K

6 := E
3 × E

3. The elements of K
6 are termed kinematic vectors,

and represent ordered pairs of standard 3–D vectors. The letter K instead of E

is a reminder that K
6 is not an euclidean linear space. The metric structure of

K
6 is inherited from the metric of the E

3 pair as separated components. In fact,
the extension of the standard euclidean norm is meaningless in this case. Clearly,
R

6 corresponds to K
6 when deprived of the euclidean metric structure of its E

3

components.
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0.1.2. Tensor Spaces and Groups. The linear operators on R
3, R

4 and R
6 form the

linear spaces denoted by Lin(3), Lin(4) and Lin(6), respectively. The elements of
these sets are simply called 3, 4, or 6–D tensors. Note that the term “tensor” is a
shorthand for “second order tensor” throughout this work, since we do not consider
any tensor of higher order and shall term “scalars” and “vectors” the zeroth order
and first order tensors, respectively.

Within these sets, some subsets are of special interest in the following. The 3, 4,
and 6–D general linear groups GL(3), GL(4), and GL(6) are formed by all invertible
3, 4, and 6–D tensors. The 3, 4, and 6–D special linear groups SL(3), SL(4) and
SL(6) are subgroups of the preceding ones formed by all 3, 4, and 6–D tensors with
positive unit determinant (i.e., all transformations that preserve the volume and
the mutual orientations of vector bases). The subgroup of SL(3) denoted by SO(3)
is the well known 3–D special orthogonal group, or rotation group, formed by all
orthogonal tensors with positive unit determinant (i.e., all transformations that
preserve the volume, the mutual orientations of vector bases, and the euclidean
norm). The set so(3) is given by all skew–symmetric 3–D tensors, and represents
the Lie algebra of SO(E3).

0.1.3. Special Symbols. For the sake of clarity, we shall denote the zero vector of
the linear spaces R

3, R4, R6, with 03 ,04 ,06 , respectively. Also, we indicate with
I3 , I6 the identity 3 and 6–D tensors, respectively, and with O3 ,O6 the null 3 and
6–D tensors. Lastly, we make use of symbols such as •, �,♠,♣ to indicate generic
vectors and tensors.

1. Frame Motion Representation

1.1. Frame Configuration.

1.1.1. Position and Orientation. We consider a frame, defined as the set composed
by a point in the 3–D euclidean manifold E3, called pole, and an orthonormal triad
of vectors in E

3 with origin in the pole. We denote a frame based on the pole • ∈ E3

by F•. The motion of the “moving” frame Fx := (x, {ek}k=1,2,3) is described with
respect to a fixed “base” frame Fo := (o, {ik}k=1,2,3) through the frame position
vector ux ∈ E

3 and the frame orientation tensor α ∈ SO(3) defined as

ux := x − o,(1)

α := ek ⊗ ik,(2)

respectively. The reason for the terms “moving” and “base” will become clear in
the following. For the time being, let us consider the base frame coincident with
the “reference frame”. The orientation tensor transforms the base triad into the
moving triad as follows:

(3) ek = α ik, k=1,2,3.

The pair (ux, α) specifies the configuration of the moving frame with respect to
the base frame.

A point y rigidly attached to the frame Fx is located at a distance uy := y − o
from the base pole o and at a distance r := y − x from the moving pole x. The
quantity r := α−1r can be viewed as the vector of “material coordinates” of the
point y convected by the frame Fx. Thus one gets:

(4) uy = ux +α r.
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This relation between uy and r corresponds to a rigid displacement, or a particular
affine transformation on E3 and E

3, featuring the rotation of vector r by tensor
α followed by a translation by vector ux (note the order of these two operations).
These transformations form a set that is known as the Special Euclidean Group,
often denoted by SE(3). There are two interesting representations of the group
SE(3) as matrix groups, respectively on 4 and 6–dimensional linear spaces.

1.1.2. 4–D Representation. We get the 4–dimensional representation by resorting
to the so–called “homogeneous form” of the relations written above. This form
implies that the position vectors are represented as column vectors composed by
the position vector itself and the real number 1, as, for instance,

uy4
:=

[
uy

1

]
,(5)

r
4
:=

[
r
1

]
.(6)

In this way, the affine transformation given in eq. 4, with an extra identity appended
as the last row, can be rewritten as the homogeneous (linear) transformation

(7) uy4
= D4(ux, α) r

4
,

where the 4–D displacement operator D4 is defined as

(8) D4(•, �) :=
[

� •
0T

3
1

]
.

The displacement operator D4 may be understood as the product of two operators.
In fact, defining the 4–D translation operator T 4 as

(9) T 4(•) :=
[

I3 •
0T

3
1

]
,

and the 4–D convection operator A4 as

(10) A4(�) :=
[

� 0
0T

3
1

]
,

one simply gets

(11) D4(•, �) = T 4(•)A4(�).

Note that, since det T4(•) = 1 for any • ∈ E
3 and detA4(�) = 1 for any � ∈ SO(3),

it follows that detD4(•, �) = 1. Looking at the 4–D displacement operator D4 as
the (left) product of the two operators T4 and A4 , reflects the interpretation of
equation 4 as the rotation of r by α followed by a translation by ux.

We term C4 := D4(ux, α) the 4–D frame configuration tensor of the moving
frame Fx, since it is a “global” measure of the rigid displacement that takes Fo in
Fx, taking into account both position and orientation:

(12) C4 =
[

α ux

0T
3

1

]
.

Equation 7 is then rewritten as

(13) uy4
= C4 r

4
.

The 4–D configuration tensor C4 is then a convenient way to represent the config-
uration pair (ux, α) as a linear operator on a 4–D vector space.



4 MARCO BORRI

1.1.3. 6–D Representation. Now let us look at a different representation of the
configuration pair (ux, α), given as a linear operator on a 6–D vector space. The
motivation for this choice will become clear in the following. In the 6–dimensional
representation the 6–D frame configuration tensor of frame Fx is defined as C6 :=
D6(ux, α), which implies the matricial form

(14) C6 =
[

α ux × α
O3 α

]
.

In fact, the 6–D displacement operator assumes the following expression:

(15) D6(•, �) :=
[

� • × �
O3 �

]
,

and it is still possible to write it as a product:

(16) D6(•, �) = T6(•)A6(�),

where the 6–D translation operator T6 is defined as

(17) T6(•) :=
[

I3 •×
O3 I3

]
,

and the 6–D convection operator A6 as

(18) A6(�) :=
[

� O3

O3 �

]
.

Again, since det T6(•) = 1 for any • ∈ E
3 and detA6(�) = 1 for any � ∈ SO(3),

it follows that detD6(•, �) = 1. The 6–D displacement operator D6 is the (left)
product of the two operators T6 and A6 and thus reflects the interpretation of
the rigid displacement taking Fo to Fx as the application of a rotation and a
subsequent translation. Clearly, as C6 is made of the same ingredients as C4 , it is
again a “global” measure of this displacement.

Both the 4–D and 6–D versions of the configuration tensor are good candidates
to represent the euclidean group SE(3). While C4 is somewhat simpler than C6 ,
which implies a certain amount of “redundancy”, we find the 6–D version more
convenient. In fact, while the 4–D configuration tensorC4 may be usefully employed
to perform the rigid displacement that takes Fo to Fx transforming positions (in
their homogeneous representation), the 6–D configuration tensor C6 may be used
to transform velocities, as it will be shown in the following subsections.

1.1.4. Properties of the Displacement Operator. We mentioned above the unimodu-
larity property (positive unit determinant) of the displacement operatorsD4 and D6 .
These operators possess several other remarkable properties, which may be inter-
estingly characterized by looking at the behavior of the corresponding translation
and convection operators T4 , T6 and A4 ,A6 .

The properties shown in the following rely on the algebraic structure owned by
the sets of tensors generated by all these operators: the group structure. Moreover,
the fundamental identity between the 4 and 6–D corresponding quantities (what
is termed isomorphism between matrix groups in the theory of abstract algebra)
allows us to write these properties in a general way, valid for both the 4–D and
6–D versions of the operators. Thus, all the relevant properties are written below
dropping the subscripts 4, 6. It should be realized that the difference in dealing
with the 4–D or the 6–D versions of the configuration tensor is just a matter of
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representation. However, we claim that the latter shall lead us to the development
of a richer and somewhat more intuitive representation.

Given a vector • ∈ E
3 and a rotation tensor � ∈ SO(3), the following relations

hold for the inverses:

T (•)−1 = T (−•),(19)

A(�)−1 = A(�−1).(20)

Given two generic vectors •1 and •2 in E
3 and two generic rotation tensors �1 and

�2 in SO(3), the following relations hold for the combinations:

T (•2) T (•1) = T (•1 + •2) = T (•1) T (•2),(21)

A(�2)A(�1) = A(�2�1).(22)

Moreover, we have

(23) A(�) T (•)A(�)−1 = T (� •).
Thus, the displacement operator inherits the following properties:

D(•, �) = A(�) T (�−1•)(24)

D(•, �)−1 = D(− �−1 •, �−1),(25)

D(•2, �2)D(•1, �1) = D(•2 + �2•1, �2�1).(26)

The preceding relations may be usefully interpreted geometrically to gain deeper
understanding of both representations employed. Eq. 24 shows that one may switch
from an interpretation based on the sequence of a rotation followed by a translation
to that of a translation followed by a rotation (this is closely related to a “convec-
tive” representation of motion, and is not investigated further in this work). Eq. 25
states that the inverse transformation of a rigid displacement is a rigid displace-
ment that rotates with the inverse of the original rotation and translates with the
opposite convected picture of the original translation. Finally, eq. 26 shows that
the application of two rigid displacements is the same as the application of a single
rigid displacement, with the given relation between the translation and rotation
components.

1.1.5. Rigid Displacement Group. Before closing this subsection we spend some
words on the special subgroups of the 4 and 6–D configuration tensors. These
sets are given by all the possible values of D4 and D6 on the frame configuration
manifold E

3 ×SO(3). The 4–D group is sometimes denoted by SE(3), while for the
6–D version no specific name is established in the literature. We denote it as SR(6).
In fact, as SO(3) is the group of all 3–D Special Orthogonal transformations, SR(6)
is the group of all 6–D Special Rigid transformations. We stress that the term
“rigid” must be understood in the sense that the orthonormality of the triads is
preserved, and that there is no intention to suggest that these developments apply
exclusively to problems of rigid body motion. On the contrary, typical fields of
theoretical and numerical application of these concepts lie in the area of deformable
body motion, such as beam and shell elastodynamics, and multibody dynamics. In
such cases the present formulation leads to the definition of algorithms endowed by
remarkable properties of geometrical and dynamical invariance, and of non–linear
unconditional stability.

We remark that the groups SE(3) and SR(6) constitute two special subgroups of
SL(4) and SL(6), the sets of linear transformations on R

4 and R
6 with positive unit
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determinant. To prove that they are subgroups it is enough to check that (i) they
contain the unity of the group, (ii) the product of any two elements of the subgroup
are in the subgroup, and (iii) the inverse of any element is in the subgroup. The
existence of the unity is trivial to check, while the latter conditions are equivalent
to require that the product of any element of the subgroup by the inverse of any
other element lies in the subgroup.

Thus, in our case it is enough to check that the quantity D(•2, �2)D(•1, �1)−1 is
an element of the group, which is clearly true given that

(27) D(•2, �2)D(•1, �1)−1 = D(•2 − �2 �−1
1 •1, �2�

−1
1 )

for the properties seen above. The preceding equation assumes an important geo-
metrical meaning for us: in fact, the operation in the left–hand side, evaluated for
the arguments (ux1 , α1) and (ux2 , α2) that correspond to the frames Fx1 and Fx2

and written as C2C−1
1 , represents a way to compare the configuration of the frame

Fx2 with respect to the configuration of the frame Fx1 , or the relative configuration
of Fx2 with respect to Fx1 . We shall return on the subject later on, and reserve
specific symbols for the quantities involved.

1.2. Frame Velocity.

1.2.1. Generalized Velocity. In this paragraph we justify the six–dimensional rep-
resentation of the configuration tensor by looking at the relationships holding for
linear and angular velocities.

Let us consider the frame Fx as a function of a single parameter t ∈ [0, T ], such
that the configuration pair (ux, α) describes a smooth curve in E

3×SO(3). In other
words, x(t) represents a smooth line in space and α(t) represents a one-parameter
family of orthogonal transformations. The tangent vector u̇x ∈ E

3 to the curve x
(the velocity of the moving pole) is termed the frame local linear velocity,

(28) u̇x = ẋ,

where the superimposed dot denotes derivatives with respect to t. For future needs
we define the convective picture of vector u̇x as u̇x := α−1u̇x, so that

(29) u̇x = α u̇x.

The orthogonality of the orientation tensor implies that

α̇ = ω × α,(30)

= α ω × .(31)

We denote by (•×) ∈ so(3) the skew-symmetric tensor associated through the
ordinary cross product operation to the vector • ∈ E

3, which is termed its axial
vector. The operator giving the axial vector corresponding to a skew–symmetric
tensor ♠ ∈ so(3) is denoted by axial×(♠) ∈ E

3. The vectorsω and ω are respectively
the frame angular velocity and its convected picture, sometimes termed the spatial
and convected frame angular velocities. They are defined as

ω := axial×(α̇ α−1),(32)

ω := axial×(α−1α̇).(33)

The relationship between these two rotational speed measures is clearly given by

(34) ω = α ω.
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For convenience, we define the frame local generalized velocity and the frame con-
vected generalized velocity as the kinematic vectors wx := (u̇x, ω) ∈ K

6 and
wx := (u̇x, ω) ∈ K

6, respectively. We understand these 6–D vectors as column
vectors, or

wx :=
[

u̇x

ω

]
,(35)

wx :=
[

u̇x

ω

]
.(36)

We refer to their first 3–D vector part as the “linear” component and to their second
3–D vector part as the “angular” component.

Given eqs. 29, 34, we easily get the relationship between vectors wx and wx

through the 6–D convection operator:

(37) wx = A6(α)wx.

The local generalized velocity vector wx is then obtained by simply “stacking”
the linear and angular velocity vectors usually considered in mechanics, while the
convected generalized velocity vector wx is obtained by rotating both the 3–D
components of vectorwx by tensor α−1. These “generalized” vectors are sometimes
termed twists in the literature. They both represent “global” measures of the frame
velocity, accounting for linear and angular rates in a single instance. However, there
is another generalized velocity field of interest for us. Its definition relies on that
of a special linear velocity which is the subject of the next paragraph.

1.2.2. Base Pole Velocity. Let us consider that the position vector ux may be ex-
pressed using scalar components as

ux = ik uk
x,(38)

= ek uk
x.(39)

These two expressions are respectively related to the constant–in–time base triad
{ik}k=1,2,3 and the time–varying moving triad {ek}k=1,2,3.

This entails that there are two possible natural definitions of velocity in corre-
spondence to the two expressions (38) and (39). The first one is the most familiar:

(40) u̇x := ik u̇k
x.

This quantity has been already encountered and called the “local” linear velocity
of the moving frame. The second one is obtained through the use of the convective
derivative, i.e. the derivative taken by an observer rigidly connected with the
moving frame:

(41)
◦
ux := ek u̇

k
x.

These two linear speed measures are clearly related. In fact, it is easy to show that

(42)
◦
ux= u̇x + ux × ω.

Vector u̇x is the velocity of a particular point rigidly attached to the moving frame,
that is, the moving pole x. Also vector

◦
ux can be interpreted as the velocity of

a point rigidly attached to the moving frame: the point that happens to coincide
with the base pole o at the time instant considered. This geometric interpretation
has suggested to us the name base pole linear velocity for the vector

◦
ux (meaning
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that it is the linear velocity “reduced to” the base pole, and clearly not the velocity
“of” the base pole, which is identically null).

Note that the base pole linear velocity may be seen as a “global” measure of
linear speed for the frame Fx. In fact, for any point y rigidly connected to Fx,
that is, a point featuring a constant–in–time convected distance vector r from x
(see eq. 4), it is easily shown that

(43)
◦
uy =

◦
ux .

Therefore, the velocity of any point rigidly connected to Fx, when reduced to
the base pole, is the same. To prove this result consider the scalar component
representations 38,39. We have

◦
uy = ek u̇

k
y,

= ek (u̇
k
x + ṙ

k
),(44)

= ek u̇
k
x,

since ṙ
k
= 0,(k=1,2,3), and eq. 43 is obtained. This is clearly consistent with the

geometric interpretation given above.
In the following we shall omit from the base pole linear velocity the subscript

denoting the pole, to underline its independence on the point chosen as reference
in the moving frame, and simply write it as

◦
u.

We define the frame base pole generalized velocity as the kinematic vector w :=
(
◦
u, ω). Given eq. 42, we easily get the relationship between vectors w and wx

through the 6–D translation operator:

(45) w = T6(ux)wx.

As seen above, we extend to the generalized velocity the same no–subscript conven-
tion when reduced to the base pole o. We further extend the convention requiring
no subscripts when the quantity is a convected picture of a local vector, that is, a
vector reduced to the moving pole x. For example, we shall write simplyw = (u̇, ω).

The combination of eq. 37 and 45 finally leads to the relation involving the 6–D
configuration tensor we are looking for:

(46) w = C6 w.

This equation clarifies our statements about the 6–D configuration tensor seen as
an extension of the orientation tensor. Consider eq. 34: it represents the transfor-
mation of the angular velocity components from the moving triad to the base triad,
given by a rotation by α. We look at eq. 46 as its extension to a complete rigid
displacement: it represents the transformation of the generalized velocity compo-
nents from the moving frame to the base frame, implying both the rotation from
the moving triad to the base triad and the reduction from the moving pole to the
base pole.

We remark that the meaning of the base pole generalized velocity w is much
more than the simple stacking of the base pole linear and angular velocity fields,
allowing for a unified formal treatment. In fact, this quantity is endowed with an
“intrinsic” meaning in this framework, that becomes clear when we consider the
derivative of the configuration tensor.
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1.2.3. Derivative of the Configuration Tensor. Consider the 4–D configuration ten-
sor C4 and define the rate tensor W4 := Ċ4C

−1
4
. By direct calculation it is

straightforward to see that W4 has a particular structure, given by

(47) W4 =
[

ω× ◦
u

0T
3

0

]
,

that makes use of the 3–D components of the base pole generalized velocity. If we
turn now to the 6–D configuration tensor C6 and analogously define the rate tensor
W6 := Ċ6C

−1
6
, we obtain that W6 also features a particular structure,

(48) W6 =
[

ω× ◦
u ×

O3 ω×

]
,

still involving the base pole generalized velocity. As apparent from both the 4 and
6–D representations, the local linear velocity u̇x plays no intrinsic role, while the
base pole linear velocity

◦
u is directly related to the time rate of the configuration.

Now consider the alternative definition of the 4–D rate tensor as W4 := C−1
4

Ċ4 .
This entails the matricial structure

(49) W4 =
[

ω× u̇
0T

3
0

]
.

In this case, corresponding to a “convective” description, we notice the appear-
ance of the convected local generalized velocity. Similarly, if we look at the 6–D
counterpart W6 := C−1

6
Ċ6 , we get the corresponding form

(50) W6 =
[

ω× u̇×
O3 ω×

]
.

The relations between the base pole and convected versions of the rate tensors are
easily found as

W4 = C4W4C
−1
4

,(51)

W6 = C6W6C
−1
6

.(52)

Thus, the configuration tensors C4 ,C6 transform the convected local rate tensors
W4 ,W6 into the base pole rate tensors W4 ,W6 , just as the orientation tensor
α transforms the convected angular velocity tensor (ω×) into the spatial angular
velocity tensor (ω×),

(53) ω× = α (ω×)α−1,

as it can be inferred from eq. 34. However, the 6–D version allows to use eq. 46
dealing directly with the 6–D velocity vectors instead of the 4 and 6–D rate tensors
here addressed. The last consideration, together with the relations seen above,
suggests the definition of a generalization of the ordinary cross product to kinematic
vectors.

1.2.4. The North-East Cross Product. Let us express the 6–D rate tensors W6 and
W6 as

W6 = w↗� ,(54)

W6 = w↗� ,(55)
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so that the evolution equation for the configuration tensor may be written as

Ċ6 = w↗�C6 ,(56)
= C6w↗� .(57)

These equations generalize eqs. 30,31. However, in this case the operation associ-
ated with the rate tensor is not the ordinary cross product ×, but what we term
the North-East cross product ↗� , which is defined as

(58) •↗� =
[

•A× •L×
O3 •A×

]
,

for a generic kinematic vector • := (•L, •A) ∈ K
6, with •L, •A ∈ E

3. This operation
represents a 6–D extension of the ordinary cross product in many ways. First, it is
a bilinear, antisymmetric operation on K

6, such that

(59) •↗� � + � ↗�• = 06 ,

∀•, � ∈ K
6. Second, it satisfies the Jacobi identity,

(60) (•↗��)↗�♣+ (�↗�♣)↗� •+(♣↗�•)↗�� = 06 ,

∀•, �,♣ ∈ K
6. These two properties together mean that the North–East cross

product acts as a commutator for the space K
6, which has then the algebraic

structure of a Lie algebra. Note that from eqs. 59,60 one gets

(61) (•↗��)↗� = •↗� � ↗� − �↗� • ↗� .

These results should be compared with those regarding the ordinary cross product,
which is the commutator for the space E

3 as a Lie algebra. In fact, in this case the
corresponding equations hold:

• × � + � × • = 03 ,(62)
(• × �)× ♣ + (� × ♣)× •+ (♣ × •)× � = 03 ,(63)

(• × �)× = • × � ×− � × • ×,(64)

∀•, �,♣ ∈ E
3. The set of all tensors generated by formula 58, simply termed North–

east cross product tensors, is a linear space denoted by sr(6). Let us remark that,
similarly to the ordinary cross product case, in the present work we denote by
(•↗� ) ∈ sr(6) the tensor associated through the North–East cross product operation
to the vector • ∈ K

6, which is termed its generalized axial vector. The operator
giving the generalized axial vector corresponding to a North–East cross product
tensor ♠ ∈ sr(6) is denoted by axial↗� (♠) ∈ K

6.1

Note that, given the preceding considerations, an alternative, intrinsic definition
of the base pole and the convected local generalized velocities w and w is offered
by w := axial↗� (ĊC−1) and w := axial↗� (C−1Ċ), respectively. We shall reserve
some more explanations on these algebraic structures with regard to the North–east
cross product and other generalized cross products in the following subsections.

1We remark that sr(6) is the Lie algebra of the Lie group SR(6), just as so(3) is the Lie algebra
of the Lie group SO(3), as one may infer by looking at eqs. 56,57 from a differential geometry
standpoint.
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1.2.5. Properties of the Base Pole Velocity. We already remarked that the base pole
linear velocity may be seen as a “global” measure, since it is the same for any point
rigidly connected to the moving frame. It is easy to extend this consideration to the
base pole generalized velocity with respect to any frame rigidly connected to the
moving frame. Such a frame, denoted by Fy, is characterized by a configuration pair
(uy, αy) and by a configuration tensor Cy := D6(uy, αy). To make our calculations
as clear as possible, we shall temporarily append a subscript x to the orientation
and configuration tensors of the original moving frame Fx, i.e. αx and Cx. The
quantities pertaining to the frame Fy are then given, in terms of those of the original
moving frame Fx, by

uy = ux +αxr,(65)

αy = αxQ,(66)

Cy = CxP,(67)

where r ∈ E
3, Q ∈ SO(3), and P := D6(r,Q) ∈ SR(6) are all time–independent

quantities, due to the rigidity of the connection.
We already proved that the base pole linear velocity is the same for both frames

Fx and Fy (eq. 44). Clearly, the angular velocity is also the same, since

α̇y = α̇xQ+αxQ̇,

= ω × αxQ,(68)
= ω × αy,

and the same holds for the base pole generalized velocity,

Ċy = ĊxP+CxṖ,

= w↗�CxP,(69)
= w↗�Cy,

given that Q̇ = O3 and Ṗ = O6 .

1.2.6. Change of Base Frame. It is important to realize that the configuration ten-
sor and the base pole generalized velocity depend on the choice of the base frame.
This choice is arbitrary and may be inspired by practical considerations in appli-
cations. For example, one may choose a frame that allows the simplest description
of a mechanical system in a given configuration, and then change it during the
analysis when the system in the actual configuration has moved far away from its
initial determination.

The nature of this dependency can be exploited considering a new (fixed) base
frame Fô := (ô, {̂ik}k=1,2,3). The new base frame is defined through its configura-
tion tensor B := D6(d, β) with respect to the old one, where

d := ô− o,(70)

β := îk ⊗ ik,(71)

are constant–in–time quantities. With respect to the new base frame Fô, the mov-
ing frame Fx is determined by its new configuration tensor Ĉ defined as

(72) Ĉ := B−1C.
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The definition implies that Ĉ = D6(ûx, α̂), where

ûx := β−1(x − ô),(73)

α̂ := β−1α.(74)

The pair (ûx, α̂) has then the meaning of the new configuration pair of Fx with
respect to Fô.

Now consider the base pole generalized velocities. Defining the rate tensor Ŵ =
ŵ↗� as seen before, and using eq. 72, we have

Ŵ := ˙̂CĈ−1,(75)

= B−1ĊC−1B,(76)
= B−1WB.(77)

This yields immediately the relation between the generalized velocity ŵ and the
generalized velocity w:

(78) ŵ = B−1w.

Note that, while w represents the generalized velocity of Fx reduced to the old base
pole o, ŵ is the generalized velocity of Fx reduced to the new base pole ô.

1.3. Kinematic and Co–Kinematic Spaces.

1.3.1. Compatibility Condition. A deeper insight into the intimate structure of the
configuration tensor and the North–east cross product is gained by looking at the re-
lation between mutually–independent variations. Consider C as a smooth function
of two parameters (s, t) ∈ [0, S]× [0, T ]. Then the moving pole x and the moving
triad {ek}k=1,2,3 are smooth functions of the two parameters (s, t). A straightfor-
ward application of this kind of parameterization is offered by the geometrically
non–linear beam theory. In this case, t represents time and s a material abscissa
along the beam axis. We shall address later this issue from a dynamical point of
view, while now our concern is of a purely kinematical nature.

In the case of the beam problem we have “spatial” rates together with “temporal”
rates (eqs. 28,30,31). These are given by the local tangent vector to the axis u′ ∈ E

3,

(79) u′
x = x′,

where the prime denotes derivatives with respect to s, and the curvature vector
κ ∈ E

3 and its convected image κ ∈ E
3, sometimes called the spatial and convected

curvatures, respectively:

α′ = κ × α,(80)

= α κ × .(81)

The “spatial” rate vectors of the configuration pair (ux, α) can be combined to form
the kinematic vectors χx := (u′

x, κ) ∈ K
6 and χ := (u′, κ) ∈ K

6, termed the local
generalized curvature and the convected local generalized curvature, respectively.
The transport to the base pole o yields the base pole generalized curvature χ :=
(u�, κ), where τ ∈ E

3 represents the base pole tangent vector,

(82) u� = u′
x + ux × κ.

This quantity may be defined as the convective derivative of uy with respect to s,
being u� the “spatial” counterpart to the base pole linear velocity

◦
u. Vector u� is
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clearly indifferent to the choice of point y, provided that it is rigidly connected to
the frame Fx.

In terms of the 6-dimensional representation, we have then

C′
6
= χ↗�C6 ,(83)
= C6 χ↗� ,(84)

with χ = C6 χ. By taking the mixed second derivative of C6 with respect to (s, t),
we obtain that the generalized velocity and the generalized curvature are related
by the integrability condition

(85) χ̇ = w′ +w↗�χ.

In fact, the mixed second derivative of the configuration tensor can be expressed
by the two equivalent forms

Ċ′
6
= (χ↗�C6)˙= χ̇↗�C6 + χ↗�w↗�C6 ,(86)

Ċ′
6
= (w↗�C6)

′ = w′↗�C6 +w↗�χ↗�C6 ,(87)

by simply interchanging the order of differentiation. Now, by right multiplying
these two equations by C−1

6
and then subtracting, we obtain

(88) (χ̇ − w′)↗� = w↗�χ↗� − χ↗�w↗� ,

and finally, taking into account property 61 we are led to the integrability condi-
tion 85.

Note that, working with the convective pictures and following the same procedure
we obtain a condition similar to eq. 85, i.e.

(89) χ̇ = w′ − w↗�χ.

1.3.2. Conjugation. For the dynamics applications that we are interested in, the
kinematic description of frames that we gave in the previous pages represents only
one part of the complete picture of the problem. In general we will have two force
fields associated with the two velocity fields: a force resultant, n ∈ E

3∗, and a
moment resultant with respect to the pole x, mx ∈ E

3∗, being E
3∗ the dual space

of E
3. These dual vectors, or co–vectors, will in general have different physical

meaning, depending on the problem at hand. For example, they may represent the
external forces and moments applied to a rigid body, or the internal stress resultants
on a given subsection of a beam. For the moment, it is not important to specify
their nature, and we will simply assume that they exist.

Typically, the association among the fields will be through some bilinear conju-
gation function. This function may be the mechanical power of a system of forces,

(90) W := u̇x · n+ ω · mx.

The linear and angular momenta are two other fields associated with the linear and
angular velocities, this time through the kinetic energy.

Let us define then a local generalized force reduced to x as fx := (n,mx) ∈ K
6∗,

K
6∗ being the dual of K

6, termed the co–kinematic space. In terms of this quantity,
the mechanical power above may be rewritten as

(91) W := wx · fx,

where the dot product between a kinematic and a co–kinematic vector is defined
simply as the sum of the standard dot products of their respective linear and angular
3–D components. We see that kinematic and co-kinematic vectors are related by a



14 MARCO BORRI

dot product operation inherited from the usual dot product in E
3. We remark that

there is no specific need of a metric in K
6 itself.

From the invariance requirements of the conjugation function, we easily get that
the force field associated to w = Cw is given by

(92) f = C−T
6

f ,

where we denoted by f := (n,m) the convective picture of fx. We employ with
co–vectors the same no–subscript convention already established for 3–D and 6–D
vectors. In fact, for co–kinematic vectors the rotation from the moving triad to the
base triad is performed via the convection operator A6 as

(93) fx = A6(α) fx,

while the pole reduction from the moving pole to the base pole is performed via
the translation operator T6 as

(94) f = T −T
6

(ux) fx.

The co–kinematic angular component reduction to different poles, i.e. the rule
of transport for the moment of a system of forces, reads my = mx + n × (y −
x). It corresponds to the kinematic linear component reduction to different poles,
thus implying the inverse–transposition appearing in eqs. 92,94, to be compared to
eqs. 46,45.

1.3.3. Generalized Cross Products. In order to gain more insight on the subject of
conjugation and on the role of the North–East and other generalized cross products,
we do not introduce explicitly the conjugation function, but we assume the existence
of a scalar field f as a function of two parameters (s, t) ∈ [0, S]× [0, T ] through the
configuration tensor C. An example of such a function may be found by looking
at the linear density of the total energy of a beam (i.e. the sum of the kinetic and
deformation energies).

The time derivative ḟ will then be a linear function of the temporal rate vector
w ∈ K

6, while the spatial derivative f ′ will be a linear function of the spatial rate
vector χ ∈ K

6. We can write then

ḟ = w · f∇,(95)

f ′ = χ · f∇,(96)

where the co–kinematic vector f∇ ∈ K
6∗ represents a quantity related to the deriv-

ative of f with respect to C. The second mixed derivatives write

ḟ ′ = (w · f∇)′ = w′ · f∇ +w · f ′∇,(97)

ḟ ′ = (χ · f∇)˙= χ̇ · f∇ + χ · ḟ∇.(98)

Taking the difference of the previous equations we get

(99) (χ̇ − w′) · f∇ = w · f ′∇ − χ · ḟ∇.

Note that also the derivatives ḟ∇ and f ′∇ are linear functions of the temporal rates w
and χ, respectively. This means that there exists a tensorial function F∇ such that
w · f ′∇−χ · ḟ∇ = χ ·F∇w. Then, taking into account the compatibility condition 85,
we obtain

w↗�χ · f∇ = χ · F∇w.(100)
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To investigate the nature of F∇ we define two further generalizations of the ordinary
cross product in 6–D space: the South–West cross product ↙� and the South–East
cross product ↘� . These operations are defined by the matricial forms

(101) •↙� =
[

•A× O3

•L× •A×

]
,

(102) �↘� =
[

O3 �L×
�L× �A×

]
,

∀• = (•L, •A) ∈ K
6 and ∀� = (�L, �A) ∈ K

6∗, respectively. As easily proved, the
South–West cross product is related to the North–East cross product by

(103) •↙� = −(•↗� )T ,

while the South–East cross product gives clearly a skew–symmetric tensor since

(104) �↘� = −(�↘� )T .

The relation between the South–East cross product and the South–West cross prod-
uct is given by

(105) •↙�� = − � ↘�•,
∀• ∈ K

6 and ∀� ∈ K
6∗. Taking into account the properties of these generalized

cross products, the mixed product in the left hand side of eq. 100 can be written
in the following forms

w↗�χ · f∇ = χ↙� f∇ · w,(106)

= f∇↘�w · χ.(107)

This shows that F∇ is related to f∇ by

(108) F∇ = f∇↘� .

As an alternative procedure, we may work from the start with the convective pic-
tures, writing

ḟ := w · f∇,(109)

f ′ := χ · f∇,(110)

where f∇ := C−T f∇. Following the same steps we obtain:

χ↗�w · f∇ = χ ·F∇w,(111)

where F∇ := CTF∇C is given by

(112) F∇ = f∇↘� .

Note the change of order in the left hand side of eq. 111 due to the change of sign
in eq. 89.
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1.4. Dynamic Equations of Motion.

1.4.1. Base Pole Equations. The equations of motion for a mechanical system may
be cast in base pole form, leading to remarkable simplifications in the numerical
discretization procedures, and giving rise to particular invariance properties, such
as conservation of linear and angular momenta.

The 6–D base pole form of the equations of equilibrium can be developed for a
broad class of dynamic problems, ranging from rigid bodies to beams, shells and
more generally polar and polar–like continua. Here we briefly give the equations
for two important cases for elastic multibody system dynamics, a rigid body and a
geometrically non-linear beam model.

1.4.2. Rigid Body Dynamics. For a given rigid body B, let Fx denote a material
frame, that is a frame rigidly connected to the body. We refer to this frame for
the constitutive characterization of the material properties of B. The convected
generalized inertia tensor M is defined as:

(113) M :=
[

m I3 −σ×
σ× J

]
,

where the mass m, convected static moment σ, and convected moment of inertia J
are respectively defined as

m :=
∫
B

ρ dV,(114)

σ :=
∫
B

ρ rdV,(115)

J := −
∫
B

ρ r × r × dV.(116)

In the preceding equations, ρ is the mass density of the body and r is the con-
vected distance vector from x to the actual “dummy” point in B. We refer to
convected quantities (denoted by the overbar) since for a rigid body they are all
time–independent.

Now we indicate with p ∈ K
6∗ the base pole generalized kinetic moment of B,

given by p := (l,h), where l ∈ E
3∗ is the linear momentum and h ∈ E

3∗ is the
angular momentum reduced to the base pole. The convected picture p := CTp is
related to the convected local generalized velocity w := C−1w by the constitutive
equation

(117) p = Mw.

The kinematic equation in convected form reads

(118)
dC
dt

= Cw↗� ,

and the convective 6–D equilibrium equation reads

(119)
dp
dt

+w↙�p = f ,

where f denotes the convected local generalized force. Note that the last equation
may be written also as

(120)
dp
dt

= p↘�w+ f ,
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stressing the role of the centrifugal generalized force p↘�w as a “forcing term”.
Eqs. 117,118,119 represent the governing equations for the motion of a rigid body, in
convected form, in the variables (C,w,p). These equations, defined on a differential
manifold, solve the initial value problem for the rigid body when suitable initial
conditions C(t)|t=0 = C|0 ∈ SR(6) and w(t)|t=0 = w|0 ∈ K

6 are assigned.
Given the time–independent convected inertia tensor M, the base pole inertia

tensor is given by

(121) M = C−T MC−1.

Thus, in terms of base pole quantities, the constitutive, kinematic, and equilibrium
equations governing the motion of a rigid body read

p = Mw,(122)
dC
dt

= w↗�C(123)

dp
dt

= f .(124)

The preceding equations form a system in the variables (C,w,p) that solves the
initial value problem for the rigid body when suitable initial condition C(t)|t=0 =
C|0 ∈ SR(6) and w(t)|t=0 = w|0 ∈ K

6 are assigned.
By comparison with the corresponding equations in convected form, we note that

the constitutive equation 117 is simpler than the corresponding base pole form 122,
due to the time–independence of M. The opposite is true for the equilibrium
equation, since in eq. 124 one achieves the maximum simplification of the differential
operator acting on the kinetic moment. This situation is typical of many physical
problems. A way to take advantage of these aspects is then found by writing the
governing equations as

dC
dt

= Cw↗� ,(125)

d(C−TMw)
dt

= f .(126)

In these equations the base pole generalized kinetic moment p has been eliminated
in favor of the convected local generalized velocity w. Thus, we enjoy both the
simplifications offered by the base pole form of the equilibrium equation and the
convected form of the constitutive equation.

1.4.3. Beam Dynamics. We define a beam as a solid generated by a cross subsection
S ⊂ E3 undergoing a smooth rigid motion in space. This motion is parameterized
by the material abscissa s ∈ [0, S]. The generic point x of S describes a smooth line
in E3, termed the beam axis. We attach a triad {ek}k=1,2,3 to the subsection S with
origin in x, and thus define a material frame Fx. We require u′

x ·e3 > 0, ∀s ∈ [0, S],
the prime denoting partial derivatives with respect to s.

The global configuration of the beam may then be characterized by the pair
(u, α) as a function of s, or by the configuration tensor C(s). We refer to the
notions and notation already introduced such as the base pole generalized curvature
χ = axial↗� (C′ C−1) and its convected picture χ = axial↗� (C−1C′).
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Following a similar path to that discussed for the rigid body case, the equations
governing the motion of the beam can be written as

∂ C
∂ t

= Cw↗� ,(127)

∂ C
∂ s

= Cχ↗� ,(128)

∂ (C−T Mw)
∂ t

− ∂ (C−TKε)
∂ s

= b.(129)

In eq. 129, b ∈ K
6 is the linear density of the base pole generalized body force, M is

the linear density of the inertia tensor of the beam, while K is the elasticity tensor
of the beam subsections, both in their constant–in–time convected form. The latter
is defined as the Hessian of the linear density of the strain energy U with respect
to the convected local generalized strain ε ∈ K

6. This is a consistent deformation
measure defined by

(130) ε := χ − χN ,

where χN indicates the convected local generalized curvature pertaining to a “nat-
ural” configuration, characterized by null internal stress resultants.

This system of partial differential equations in space–time in the variables (C,w, χ)
solves the motion of the beam when suitable initial conditions for (C,w) and bound-
ary conditions for (C,b) are given.

1.5. Relative Frame Motion.

1.5.1. Displacement Tensor. It is very instructive to study the structure of the
displacement operator D6 a little further, since this brings out even deeper analogies
between the rigid displacement tensors in SR(6) and the rotation tensors in SO(3).
Throughout the rest of this work we shall lighten a bit our notation dropping the
subscript 6 to indicate the 6–D quantities, while we shall leave the subscript 4 for
the 4–D quantities.

The configuration of two given frames differ by a rigid displacement. In fact,
let us consider two frames Fx1 := (x1, {e1k}k=1,2,3) and Fx2 := (x2, {e2k}k=1,2,3).
Their configuration with respect to the base frame Fo := (o, {ik}k=1,2,3) is defined
through their configuration tensors C1 and C2,

C1 := D(ux1 , α1),(131)

C2 := D(ux2 , α2).(132)

The relative configuration of Fx2 with respect to Fx1 may be characterized by the
displacement tensor D ∈ SR(6), defined as

(133) D := C2 C−1
1 .

Taking into account the definitions 131,132 of the configuration tensors C1,C2, we
obtain that the displacement tensor may be expressed as

D = T (t2)A(R),(134)

= A(R) T (t1),(135)
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meaning that the transformation that brings Fx1 in Fx2 may be accomplished by
rotating first by R and then translating by t2, or equivalently translating first by
t1 and then rotating by R. The rotation tensor R ∈ SO(3) is defined as

(136) R := α2α
−1
1 ,

while the two translation vectors t1, t2 ∈ E
3, respectively referred to Fx1 and to

Fx2 , are defined as

t1 = R−1ux2 − ux1 ,(137)

t2 = ux2 − Rux1 .(138)

Note that

(139) t2 = Rt1.

Tensor R represents the rotational part of the rigid displacement between the
frames, or the relative orientation of Fx2 with respect to Fx1 , while vectors t1, t2

represent the linear part of the rigid displacement, as “seen” from the frames Fx1

and Fx2 , respectively.

1.5.2. Properties of the Displacement Tensor. The displacement tensor represents a
“global” measure of rigid displacement, meaning that it is a quantity that uniquely
defines the relative configuration of any two corresponding frames rigidly connected
to the frames Fx1 and Fx2 . In fact, consider the frame Fy1 such that its configu-
ration with respect to the base frame is Cy1 = D(uy1 , αy1). We express the rigid
connection between Fy1 and Fx1 by stating that Cy1 = D(uy2 , αy2) = C1 P, with
P constant in time. Now take the corresponding frame Fy2 such that Cy2 = C2 P.
Then

Cy2C
−1
y1

= C2PP
−1

C−1
1 ,(140)

= C2C−1
1 ,(141)

= D.(142)

This entails that also their relative rotation tensor is the same,

αy2α
−1
y1

= α2QQ
−1

α−1
1 ,(143)

= α2α
−1
1 ,(144)

= R,(145)

and analogously with their translation vectors, for example

uy2 − Ruy1 = (u2 +α2r)− R (u1 +α1r),(146)

= (u2 − Ru1) + (α2 − Rα1) r,(147)

= (u2 − Ru1),(148)

= t2.(149)

1.5.3. Translation and Displacement Vectors. The translation vectors t1, t2 repre-
sent two different measures of linear displacement compared to the displacement
vector between the poles, sx ∈ E

3, defined simply as

(150) sx = ux2 − ux1 .

The majority of the analysts are accustomed to attribute a stronger physical mean-
ing to this last quantity, which seems to be the most intuitive. On the contrary,
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the translation vectors are seldom used, even if their intrinsic character, as shown
by expressions 134,135, makes them highly meaningful.

In fact, t1 represents the amount of translation that all points rigidly connected
to the frame Fx1 are subjected to before being rotated by R, while t2 represents
the amount of translation that all points rigidly connected to the frame Fx1 are
subjected to after being rotated by R. We address the attention of the reader to
the emphasized text to remark that, in contrast to sx, vectors t1, t2 are “global”
linear displacement quantities, referred to different order in the two operations
of translation and rotation. In fact, taken any two corresponding points y1 :=
x1 + α1r, y2 := x2 + α2r connected to the frames Fx1,Fx2 , we have that the
displacement vector sx between the poles x1,x2 differs from the displacement vector
sy between the points y1,y2:

sy := uy2 − uy1 ,(151)

= (ux2 +α2r)− (ux1 +α1r),(152)

= (ux2 − ux1) + (α2 − α1) r,(153)

= sx + (R − I3)α1r,(154)

= sx + (I3 − R−1)α2r.(155)

Clearly, the translation vectors and the displacement vector between the poles are
related by the following expressions

t1 = sx + (R−1 − I3)ux2 ,(156)

t2 = sx − (R − I3)ux1 .(157)

In certain instances, the use of the translation vectors can be preferred to that of
the displacement vector, apart from their the intrinsic meaning. As an example,
the convected forms of the translation vectors coincide,

t1 := α−1
1 t1(158)

= α−1
2 Rt1(159)

= α−1
2 t2(160)

=: t2,(161)

so that the convected picture of the translation is simpler than the convected picture
of the linear displacement.

1.5.4. Convected Displacement Tensor. A similar situation arises when we consider
the convected pictures of the displacement tensor D with respect to the frames Fx1

and Fx2 . The two quantities coincide, since

C−1
1 DC1 = C−1

1 C2 C−1
1 C1,(162)

= C−1
1 C2,(163)

= C−1
2 C2 C−1

1 C2,(164)

= C−1
2 DC2.(165)

Thus, we denote by D their common value,

(166) D := C−1
1 C2,
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which has the structural decompositions

D = T (α−1
1 sx)A(R),(167)

= A(R) T (α−1
2 sx),(168)

where R := α−1
1 α2.

1.5.5. Derivative of the Displacement Tensor. Taking the time derivative of the
displacement tensor in its spatial form D, two relative generalized velocity measures
naturally arise. In fact,

Ḋ = ∆2w↗�D,(169)
= D∆1w↗� ,(170)

where the two quantities ∆1w,∆2w ∈ K
6 are defined as the “co–rotational” differ-

ences

∆1w := D−1w2 − w1,(171)
∆2w := w2 − Dw1.(172)

The relationship between them is clearly

(173) ∆2w = D∆1w.

Their convected pictures coincide,

C−1
1 ∆1w = C−1

1 (D−1w2 − w1),(174)

= C−1
2 w2 − C−1

1 w1,(175)

= C−1
2 (w2 − Dw1),(176)

= C−1
2 ∆2w.(177)

On the other hand, the time derivative of the convected form D yields

Ḋ = (C−1
1 ∆w)↗�D,(178)

= D (C−1
2 ∆w)↗� .(179)

The relative base pole generalized velocity ∆w is defined as

(180) ∆w = w2 − w1,

and represents a consistent measure of relative velocity that finds a convenient use
in mechanical applications. In fact, it uniquely defines the relative velocity between
two frames independently of any point that may be chosen as a reference point for
evaluating the linear velocity.


