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Abstract In this paper a dilerkential algebra version of the gravity assist space pruning algo-
rithm is presented. The use of di[erkntial algebraic techniques is proposed to overcome the two
main drawbacks of the existing algorithm, i.e., the steep increase of the number of function eval-
uations with the number of planets involved in the transfer, and the use of a bounding procedure
that relies on Lipschitzian tolerances. DiLerential algebra allows us to process boxes in place of
grid points, and to substitute point-wise evaluations of the constraint functions with their Taylor
expansions. Thanks to the particular instance of multi-gravity assist problems dealt with, all the
planet-to-planet legs can be treated independently, and forward and backward constraining can
be applied. The proposed method is applied to preprocess the search space of sample interplan-
etary transfers and it also serves as a stepping stone towards a fully rigorous treatment of the
pruning process based on Taylor models.

Keywords Global Optimization - Multi-Gravity Assist Transfer - Search Space Pruning -
Di [erkntial Algebra.

1 Introduction

Multi-gravity assist (MGA) transfers are usually made up by a sequence of planet-to-planet
transfers in which the spacecraft exploits each planet encounter to achieve a velocity change
by a gravity assist maneuver. A class of these trajectories can be preliminary designed in the
frame of patched-conics approximation. In this context, di [erknt conic arcs are linked together to
define the whole transfer trajectory. This paper focuses on a particular instance of patched-conics
trajectories. More specifically, each planet-to-planet leg in the whole transfer is modeled as a conic
arc, which is obtained as solution of a Lambert’s problem (Battin 1987). Subsequent arcs are
then linked together at the intermediate planet by means of a powered gravity assist maneuver

Roberto Armellin, Pierluigi Di Lizia, Francesco Topputo, Michéle Lavagna, and Franco Bernelli-Zazzera
Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano

Via La Masa, 34 — 20156, Milano, Italy

E-mail: {armellin, dilizia, topputo, lavagna, bernelli}@aero.polimi.it

Martin Berz

Department of Physics and Astronomy, Michigan State University

East Lansing, MI 48824, USA

E-mail: berz@msu.edu



(Labunsky et al. 1998). For the sake of brevity, this instance of interplanetary transfers is referred
to as multi-gravity assist transfer in the remainder. Constructing MGA space trajectories is a
well-known procedure in astrodynamics that has been used to reach both inner and outer planets.

The first MGA trajectories were designed using “ad hoc” methods developed for a specific
mission. Approaching MGA problems from a global optimization standpoint has been proposed
more recently. If the minimization of the propellant mass is concerned, MGA problems show an
objective function with a large number of clustered minima (Di Lizia and Radice 2004; Vasile
and De Pascale 2006), which are prevalently associated to the relative motion of the planets
involved in the transfer. This causes classical local optimization methods to converge to one of
these local minima (Betts 2001). Hence, despite their e [ciehcy, local methods have to be avoided
when looking for the global minimum of an MGA problem, at least in the first stage of the search
process. Consequently, e [edtive global optimization algorithms should be developed and used to
find the best solution of an MGA problem.

Extensive work has been devoted to address the global optimization of MGA transfers, which
was mainly based on global optimizers used as “black-box” tools. More specifically, an extensive
test campaign was run, where stochastic (Yao 1997; Ingberg 1993; Sentinella and Casalino 2009),
branch & bound (Jones et al. 1993), meta-model based (Jones 2001), and even combined (Vasile
et al. 2005) methods were applied to the design of interplanetary transfers. Although some of
them showed good performances in identifying the known best solutions for the test problems,
a key point for the development of e [edtive and more e [cieht algorithms was identified as the
definition of global optimization strategies that are built to exploit the structure of the search
space and the nature of the MGA problem (Di Lizia and Radice 2004).

It has recently been shown that the search space of MGA problems can be e [edtively pruned.
This observation was successfully coded in the gravity assist space pruning (GASP) algorithm
(Myatt et al. 2004). With GASP, the search space is pruned by exploiting imposed constraints.
These are physical and technological constraints typical of an interplanetary trajectory (i.e.,
the minimum pericenter radius of fly-by hyperbolae and the maximum magnitude of impulse
burns). Thanks to the particular class of interplanetary transfers dealt with, all planet-to-planet
legs making up the whole transfer can be treated independently, and forward and backward
constraining can be applied. In this way, the search space is pre-processed and global optimization
algorithms are employed in the reduced domain. This procedure showed better performances if
compared with the standard implementation of some stochastic global optimization solvers over
the entire search space.

The classical implementation of GASP is based on a systematic evaluation of the objective
and constraint functions on a grid of points distributed over the search space. This intrinsically
involves a steep increase of the number of function evaluations with the number of planets
involved in the transfer. Indeed, the grid must be kept su Lciehtly fine to avoid loosing accuracy
on the description of the shape of the constraint functions over the search space. Moreover, the
pruning process relies on a bounding procedure that makes use of Lipschitzian tolerances, which
must be either estimated or guessed in some way. It is worth noting that inaccurate estimations
of this tolerance may lead to prune away feasible portions of the search space, and therefore
to get rid of potential zones where the global minimum could lie. Thus, proper heuristics must
be used to obtain good estimates, in order for the Lipschitzian tolerance to have only minor
influence on the results.

In this paper we propose the use of di[erential algebraic (DA) techniques as a viable option
to improve the GASP algorithm. DA techniques serve the purpose of automatic di Lerentiation,
i.e., the accurate computation of the derivatives of functions in a computer environment (Berz
1999b). More specifically, the classical implementation of the real algebra is substituted with the
proper implementation of a new algebra based on Taylor polynomials. Given a generic function f
of v variables, the Taylor expansion of f up to any desired order n with respect to all v variables
can be easily obtained from a computer algorithm.
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Fig. 1 Reduction of the MGA transfer to a cascade of two-dimensional subproblems.

In the DA version of GASP the search space is split into boxes, processed in place of grid
points, and the point-wise evaluation of the constraint functions is substituted by the computation
of their Taylor expansion over the sampling boxes. In addition, a suitable devised polynomial
bounder is used to estimate the ranges of the functions within each box. In this way guessing
the Lipschitzian tolerance typical of the GASP method is avoided. Furthermore, the order of the
Taylor expansion can be used to tune the accuracy of the approximation and the size of the grid
boxes. This might result in the possibility of enlarging the grid for the domain discretization
with a consequent reduction of the computational burden.

We point out that this paper is not aimed at formulating a novel global optimization strategy,
but rather it addresses the pruning of the search space for a particular class of MGA transfers.
In this context, a modification of classic GASP is presented, and the features of its DA version
are discussed. The goals of the paper are:

1. to state the classic GASP algorithm into the perspective of DA formalism;

2. to derive a DA version of GASP requiring a fewer number of function evaluations and less
computational e [ant than classic GASP;

3. to avoid the use of a Lipschitzian constant in the approximation of the constraint functions
over the search space.

The paper is organized as follows. A short description of the method underlying GASP
is given in Section 2. A brief introduction to dilerkntial algebra is given in Section 3. More
specifically, being at the base of the algorithms presented in this work, the solution of parametric
implicit equations using DA techniques is illustrated in Section 3.1. The algorithm for the Taylor
expansion of the constraint functions typical of MGA transfers is described in Section 4. The
main problems encountered introducing DA techniques into GASP are illustrated in Section 5,
together with the adopted solutions. Finally, the assessment of the performances of the resulting
algorithm is addresses in Section 6, based on MGA transfers of increasing complexity.

2 Gravity Assist Space Pruning

GASP was originally introduced by Myatt et al. (2004) as a pruning strategy to design MGA
transfers. As stated in Sect. 1, an MGA transfer is modeled as a sequence of conic arcs, each one
patched to the subsequent one by a powered gravity assist maneuver. Consequently, an MGA
transfer involving n planets is a n-dimensional problem, as n variables are needed to identify the
position of the planets at each gravity assist and, consequently, the conic arcs that define the
trajectory. Referring to Figure 1, the main idea behind GASP is splitting the whole trajectory in
its elementary arcs. More importantly, if the epochs T; of all the planet encounters are selected
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Fig. 2 Constraint propagation mechanism in GASP.

as design variables, each arc can be dealt with separately as a 2D problem defined by the two
epochs necessary to compute the position of the departing and arrival planets.

For each two-dimensional subproblem, a set of constraints is usually available. These con-
straints can be gathered into three main groups:

— maximum allowed AV at departure (first arc) and arrival (last arc);
— maximum allowed corrective AV at each gravity assist;
— minimum allowed pericenter radius at each gravity assist.

The previous constraints can be profitably used to prune the search space. Consider, as an
example, the first two arcs of an MGA transfer, which are fully characterized in the (T1, T»)-
and (T2, T3)-plane, respectively (see Figure 2). A uniform grid of points is built on each plane to
sample the associated search space. For each point in the (T1, T2)-plane, the related constraint
functions are evaluated. If any constraint is violated, the point is pruned away, together with all
its subsequent combinations. In particular, if an entire row corresponding to an epoch T, =T,
is pruned away based on this analysis, then the entire column corresponding to T, = T, in
the (T2, T3)-plane can be pruned away as well, since T, turns out to be an unfeasible value
for T,. Similar statements hold for the subsequent arcs. Consequently, thanks to the previous
mechanism, constraints can be propagated forward and backward in the MGA transfer. The final
result is a reduced search space, made up by feasible regions, where optimization tools are run.
The reduced dimension of the search space improves the performances of the algorithms in this
optimization phase.

As already pointed out in Sect. 1, the pruning process is performed on a grid of points dis-
tributed over the search space. Consequently, the grid must be kept su Lciehtly fine to accurately
describe the constraint functions. Moreover, an estimate of the Lipschitzian constant is used to
loosen the constraints, in order to compensate for the e [edts of the grid sampling of the search
space. In particular, as a grid point is representative of its neighborhood on the search space, the
Lipschitzian tolerance value must be estimated in accordance with grid spacing and functions
properties to avoid the pruning of feasible regions.

3 Di[erential Algebra

DA techniques find their origin in the attempt to solve analytical problems by an algebraic
approach (Berz 1999b). Historically, the treatment of functions in numerics has been based on
the treatment of numbers, and the classical numerical algorithms are based on the mere evaluation
of functions at specific points. DA techniques are based on the observation that it is possible to
extract more information on a function rather than its mere values. The basic idea is to bring
the treatment of functions and the operations on them to the computer environment in a similar



way as the treatment of real numbers. Suppose two su Lciehtly regular functions f and g are
given. In the framework of di [erkntial algebra, the computer operates on them using their Taylor
series expansions, F and G respectively. Therefore, the transformation of real numbers in their
floating point representation is now substituted by the extraction of the Taylor expansions of
f and g. For each operation in the function space, an adjoint operation in the space of Taylor
polynomials is defined, such that extracting the Taylor expansions of f and g and operating on
them in the space of Taylor polynomials returns the same result as operating on f and g in the
original space and then extracting the Taylor expansion of the resulting function.

The straightforward implementation of di Lerkntial algebra allows to compute the Taylor co-
e [ciehts of a function up to a specified order n, along with the function evaluation, with a fixed
amount of el[ant. The Taylor coe [ciehts of order n for sums and product of functions, as well
as scalar products with reals, can be computed from those of summands and factors; therefore,
the set of equivalence classes of functions can be endowed with well-defined operations, leading
to an algebra, the so-called truncated power series algebra (Berz 1986; Berz 1987). Similarly
to the algorithms for floating point arithmetic, the algorithm for functions followed, including
methods to perform composition of functions, to invert them, to solve nonlinear systems explic-
itly, and to treat common elementary functions (Berz 1991; Berz 1999a). In addition to these
algebraic operations, also the operations of di [erkntiation and integration are introduced, which
are invaluable for developing solvers for ODE and DAE. An algebra that is also equipped with
a derivative-like operation satisfying the common sum and product rules of dilerentiation is
called a derivation; and an algebra that also has a derivation is called a di [erkntial algebra. The
di [erential algebra sketched in this section was implemented by M. Berz and K. Makino in the
software COSY INFINITY (Berz and Makino 2006a). We conclude the discussion by pointing
out that the DA methods can be extended to include a rigorous treatment about remainder
bounds (Makino 1998), which in the future may be used to make the arguments of this paper
fully rigorous.

3.1 Solution of Parametric Implicit Equations

As will be highlighted in Sect. 4, the evaluation of the constraint functions typical of MGA
transfers involves the solution of implicit equations. These equations become parametric in case
the Taylor expansion of the functions is of interest rather than their point-wise evaluation. DA
techniques can be eledtively used to identify the solution of parametric implicit equations in
terms of Taylor polynomials, as described in Berz (1999b), Hoefkens (2001), and Di Lizia at al.
(2008b), and here summarized for the sake of completeness.

Well-established numerical techniques (e.g., Newton’s method) exist, which can e [edtively
identify the solution of a classical implicit equation

f(x) =0. 1)

Suppose an explicit dependence on a parameter p can be highlighted in the previous function f,
which leads to the parametric implicit equation

f(x,p) =0. &)

Suppose the previous equation is to be solved, whose solution is represented by the function x(p)
returning the value of x solving (2) for any value of the parameter p. Thus, the dependence of the
solution of the implicit equation on the parameter p is of interest. DA techniques can e [edtively
handle the previous problem by identifying the function x(p) in terms of its Taylor expansion
with respect to the parameter p. The DA-based algorithm is presented in the followings for the
solution of the scalar parametric implicit Eq. (2); the generalization to a system of parametric
implicit equations is straightforward.



The solution of (2) is sought, where su Lcieht regularity is assumed to characterize the function
f;ie, f C"*1 This means that x(p) satisfying

f(x(p),p) =0 ©)

is to be identified. The first step is to consider a reference value p° of the parameter p and
to compute the value of the solution x° of the corresponding implicit equation by means of a
classical numerical method; e.g., Newton’s method. The variable x and the parameter p are then
initialized as n-th order DA variables, i.e.,

[X] = x° +8x

O]
[p] = p® + dp.

A DA-based evaluation of the function f in (2) delivers the n-th order expansion of f with respect
to x and p:

5F = M (8%, 3p), ®)

where M denotes the Taylor map for f. Note that the map (5) is origin-preserving as x° is the
solution of the implicit equation for the nominal value of the parameter p°; thus, 5f represents
the deviation of f from its reference value £° = 0, resulting from deviations of x and p from x°
and p°, respectively. The map (5) is then augmented by introducing the map corresponding to
the identity function on p (i.e., dp = 1,(dp)) ending up with

CI1C1C 1 CIT1C1
0F _ My dX

p Iy op ©)
The n-th order map (6) is inverted using COSY-Infinity built-in tools, obtaining
C1C 101 C_1C 1
X _ Mg —d of @)
o b op

As the goal is to compute the n-th order Taylor expansion of the solution manifold x(p) of (2),
the map (7) is evaluated for 6f =0

Ci1C 101 C 11
0X MfI:]:I 0

op - Ip op (®)
The first row of map (8), which will be indicated as
X = Mse=0(dp), ©)

is the n-th order Taylor expansion of the solution manifold. For every value of p, the approximate
solution of f(x,p) = 0 can be easily computed by evaluating the Taylor polynomial (9) at
dp = p — p°. Apparently, the solution obtained by means of map (9) is a Taylor approximation
of the exact solution of Eq. (2). The accuracy of the approximation depends on both the order
of the Taylor expansion and the displacement dp from the reference value p°. The performances
of the previous algorithm will be assessed in Sect. 4 referring to the implicit equations involved
in the evaluation of the constraint functions for MGA transfers.



Fig. 3 A two-impulse Earth-Mars transfer.

4 Taylor Expansion of the Objective and Constraint Functions

The idea behind the introduction of DA techniques into GASP is substituting the point-wise
evaluation of the constraint functions with a DA-based evaluation. However, expanding the
constraint functions that typically characterize an MGA transfer is not trivial: a major issue can
be identified, which is mainly related to the solution of implicit equations.

Three implicit equations appear in the evaluation process of the constraint and objective
functions for the MGA transfers at hand. Two of them can be identified by analyzing simple
planet-to-planet transfers. For the sake of clarity, consider the problem of transferring a spacecraft
from Earth to Mars by means of two impulsive maneuvers (see Figure 3). The typical objective
function for this problem is the overall AV that can be evaluated by means of two design variables.
A common choice is selecting the departure epoch from Earth, Tg, and the time of flight from
Earth to Mars, ten, as design variables. Given Tg and tgm, the arrival epoch at Mars, Ty, can
be easily computed, and the position and velocity of Earth and Mars at both ends of the transfer
are obtained through the evaluation of the planetary ephemerides. Then, given the initial and
final positions, and the time of flight, the corresponding Lambert’s problem is solved to compute
the heliocentric initial velocity, vi, the spacecraft must be supplied with at Earth to reach Mars
in the given time of flight, as well as the resulting heliocentric velocity at Mars, v,. The initial
relative velocity of the spacecraft with respect to Earth, AV 4, and the final relative velocity with
respect to Mars, AV », are readily computed. The optimization problem consists in minimizing

AV = AV + AV = AV + AV, (10)
subject to the constraints
(11)
AVZ = szvmax .

The evaluation of planetary ephemerides is required to compute the objective function (10) and
the constraint functions (11). An analytical ephemeris model is used, which is based on fitting the
orbital elements of the planets delivered by JPL ephemeris evaluations (Giorgini 1998). A third
order interpolation is selected to limit the interpolation error to the order of a few thousand km
for the position and m/s for velocities over the time windows of interest, an accuracy compatible
with the preliminary optimization problems at hand. In particular, the analytical model is able
to supply the eccentricity of the planet orbit, e, and the mean anomaly of the planet, M, as a
function of the input epoch. Then, the Kepler equation

f(E)=E —esinE—M =0 (12)

must be solved for the eccentric anomaly, E, which is necessary to evaluate the planet position
and velocity.
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Fig. 4 Powered gravity assist.

Moreover, given the positions of Earth and Mars, and the time of flight between the two
planets, the Lambert’s problem must be solved to obtain the initial and final heliocentric velocities
of the spacecraft. In particular, it is necessary to find the solution of the Lagrange’s equation for
the time of flight, that concisely reads (see Battin 1987 for details)

f(x) = A(X) —t =0, (13)

where X is related to the semi—major axis of the resulting transfer orbit, A is a function depending
on both x and some geometrical properties of the conic arc, and t is the transfer time. The solution
is found via a secant method applied to the logarithm of Eq. (13) to improve the convergence rate
of the numerical scheme. Once the solution is found, the initial and final heliocentric velocities
of the spacecraft are computed via algebraic and transcendental functions.

The third implicit equation occurs only when a powered gravity assist appears. Within this
model, the spacecraft can provide a tangential impulse at the pericenter of the incoming hyperbola
(see Figure 4), thus the planetocentric trajectory is made up by two arcs of hyperbola patched
together. The angle a, usually referred to as bending angle, between the incoming and the
outgoing asymptotic velocities, vi? and vt respectively, is related to the pericenter radius via
(Izzo et al. 2006)

_ at
+ arcsinf —a=0, (14)

a +r, +

f(rp) = arcsin
p ar+rp

where a= = 1/(vin-vin) and a* = 1/(vo4t.vout). Given the two heliocentric arcs to be connected
by the powered gravity assist maneuver, the angle a can be easily computed through geometrical
relations. The solution of the third implicit equation (14) delivers the pericenter radius of the
planetocentric trajectory. The planetocentric velocities v},” and vg“t at the pericenter, corre-
sponding to the incoming and outgoing hyperbolic arcs respectively, are computed using ry, vin,
and vot. Then, the required impulsive maneuver at the pericenter, Av,, is the mere diLerknce
between vp'* and v

If a point-wise evaluation of the objective and constraint functions is of interest, as in the
standard implementation of GASP, a classical numerical method for the solution of implicit equa-
tions can be used. This is not possible when the Taylor expansion of the objective and constraint
functions with respect to the optimization variables is of interest. Consider the evaluation of
planetary ephemerides for explanation purposes. When dealing with the Taylor expansion of the
ephemerides, the Kepler equation (12) cannot be solved for real values of the eccentric anomaly,
but for its Taylor expansion with respect to the epoch. More specifically, suppose the expansion
of the ephemerides of a planet about a reference epoch T 9 is sought. Once the epoch is initialized
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as DA variable (i.e., [T] = T% + 8T) the evaluation of the analytical ephemeris model delivers
the eccentricity e and the mean anomaly M as Taylor expansions with respect to the epoch,

e(dT) = M¢(8T)

(15)
M@GT) = My (BT).

The next step is solving the Kepler’s equation to obtain the Taylor expansion of the solution E
with respect to the parameter T. Indeed, the explicit dependence of e and M on T must be kept
and Kepler’s equation reads

f(E,5T) = E —e(3T)sinE — M (5T) = 0. (16)

The solution of this parametric implicit equation is attained in terms of the Taylor expansion
E(®T) = Mg (0T) using the techniques illustrated in Sect. 3.1. Once Mg (8T) is available, the
Taylor expansions of the planet position and velocity are readily obtained by carrying out the
remaining algebraica in the DA framework.

Clearly, the accuracy of the expansions depends both on the DA order and on the distance
from the reference epoch; i.e., on the value of dT. Figure 5 and Figure 6 display the accuracy
referring to Mars’ ephemerides. In particular, the reference epoch 1456 MJD2000 is selected. The
Taylor expansions of Mars’ position and velocity around the reference epoch are computed using
di Lerential algebra. The resulting polynomial maps are reported in Appendix, considering an
interval of 40 days around the reference epoch. For each 6T, the position and velocity of Mars
are evaluated using both the Taylor expansions and the point-wise evaluations. Figure 5 and
Figure 6 report the error of the Taylor expansions with respect to the point-wise evaluations,
in terms of the maximum norm of the dilerknce vectors between the corresponding positions
and velocities, respectively. The figures clearly show that, although the accuracy of the Taylor
expansion decreases while moving away from the reference date, it can be e [edtively kept to a
suitable level by varying the expansion order. Note that, although the ephemerides are already
expressed as polynomials, their DA evaluation is necessary to compute the Taylor expansion of
the position and the velocity starting from orbital parameters.
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5 Introduction of DA techniques into GASP

The complete extension of GASP algorithm is now possible in a rather straightforward fashion.
Two main di Cculties arise when the attempt to introduce DA techniques into GASP is made.
These di Cculties will be referred to as discontinuity and dependency problems in the following
subsections.

5.1 Discontinuity Problem

The extension of GASP would be straightforward in the case of regular constraint and objective
functions. Nevertheless, significant discontinuities characterize these functions in optimization
problems involving MGA transfers, which are mainly related to geometrical considerations. To
introduce the discontinuity problem, consider the following typical GASP-based pruning algo-
rithm for the representative Earth-Mars transfer of Figure 3:

1. Subdivide the search space into boxes and put them in a list L
2. While L =
i. take out a box [X] = {[Tg], [tem]} from L
ii. initialize Tg and tgpm as DA variables and compute the Taylor expansion of AV; on [X]
iii. bound the polynomial expansion of AVy on [X]; i.e., estimate its minimum AV; and
maximum AV; on [X]
iv. if AV1 > AVi max  discard the current box [X] and go to step i
v. compute the Taylor expansion of AV, on [X]
vi. bound the polynomial expansion of AV, on [X]; i.e., estimate its minimum AV, and
maximum AV, on [X]
vii. if AVs > AVy max  discard the current box [X] and go to step i
viii. keep [X] in a list of feasible boxes

It is worth mentioning that bounding the Taylor expansions, as required in steps 2.iii and 2.vi of
the previous algorithm, is not a trivial task. Although a quadratic estimation process is used in
the current version of the DA-based GASP (see Sect. 6.1), the basic tool used for the example
reported here is the linear dominated bounder described in Makino (1998).

The previous algorithm is implemented in COSY-Infinity. In particular, a search space of
5000 days on the departure epoch (Tg  [1000, 6000] MJD2000) and 500 days on the transfer
time (tem  [100, 600]) is selected. Figure 7 illustrates the AV landscape over the defined search
space. Quasi-periodicities related to the synodic period of the Earth—-Mars system (about 2.14
years) can be identified (see Di Lizia and Radice 2004 for details). Figure 8 reports instead the
search space remaining after imposing the fulfillment of two pruning constraints

AV, <5 km/s

n
AVo <5 km/s.

The DA-based pruning algorithm illustrated above is now applied to this relatively simple
problem. In particular, the search space is uniformly subdivided in boxes of size 50 days on each
design variable. The pruning process is then performed using the constraints (17). The boxes
remaining after pruning are reported in Figure 9 on the pruned search space of Figure 8, which is
aimed to be enclosed by the algorithm. Figure 9 clearly shows that the accuracy of the attained
enclosure is not satisfactory. Specifically, even if the remaining boxes enclose the desired portion
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of the search space, some boxes remain after pruning, which should have been pruned away. To
better understand this behavior, compare Figure 9 with Figure 7. As can be clearly recognized,
these unsought remaining boxes tend to lie on lines over the search space, which can be related
to discontinuities of this problem. Such discontinuities correspond to the so-called transitions
from the “short-way” to the “long—way” solutions of the Lambert’s problem (and vice versa)
when crossing regions of the search space where the transfer occur on an orbital plane that is
perpendicular to the ecliptic. This regions are actually lines over the design space (see Figure 7).
Consequently, they di Cer from the well-know singularities of the same problem corresponding to
both a 180 deg and a 360 deg transfer, which are due to the ambiguity in the selection of the
transfer plane. More specifically, as better detailed by Kemble (2006) and Bernelli et al. (2006),
the solution of the Lambert’s problem asks for transfer planes of higher and higher inclination as
one gets close to these lines in the design space. In the framework of a planet-to-planet transfer,
given the low inclination of the planetary orbits, this entails a steep increase of the AV. This
process continues until a transfer plane perpendicular to the ecliptic is achieved. Here, northerly
transfers switch to southerly transfers (and vice versa) to keep dealing with prograde orbits.
Switching from northerly transfers to southerly transfers implies switching from short-way to
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long-way solutions or from long-way to short-way solutions. Corresponding to these transitions,
a jump on the AV occurs. This jump is very small in general (especially referring to transitions
from the short-way to the long—way solution) due to the low inclination of the planetary orbits.

It is well known that high-order Taylor polynomial expansions fail when discontinuities on the
processed function occur. This can be deemed as the cause of the presence of undesired boxes after
pruning: Taylor expansions within boxes lying on the discontinuity do not accurately approximate
the constraint functions; consequently bounds of the corresponding ranges are wrongly estimated,
and the boxes tend to be kept in the list of admissible boxes.

Extensive work has been devoted to overcome the discontinuity problem, and to improve
the accuracy of the enclosure of the pruned search space (see Bernelli et al. 2006 for details).
The idea for the adopted solution came from the observation that the unfavorable discontinuity
lines (i.e., the lines close to good local minima) correspond to the transition from the short-
way to the long-way solution of the Lambert’s problem. These discontinuity lines vanish if a
planar planetary model is used instead of the actual three-dimensional model associated to the
ephemeris evaluator: the orbital plane of the connecting Lambert’s arc is uniquely determined
as coinciding with the ecliptic, and the transition from the short-way to the long—way solution
is continuous.

A major observation can be stated, which is the main driver for the following decisions. A
systematic analysis of the dilerence between the AV in the three-dimensional, AVsp, and the
planar, AV,p, planetary models over the entire search space was performed. It turns out that
AV3p = AV, on the whole search space. Consequently, if the pruning process is performed in
the planar planetary model, no branches of the feasible domain in the real three-dimensional
model are lost. In other words, the boxes remaining after the pruning process performed on the
planar model include the feasible domain of the real three-dimensional model.

Given the previous considerations, a planar planetary model is adopted in the DA-based
GASP algorithm to perform the pruning process. No mathematical proof is supplied about the
validity of this conservative hypothesis for a general transfer. The low inclination of all planetary
orbits, and geometrical considerations, lead to the decision of conjecturing its validity for in-
terplanetary transfers in the solar system. Although more rigorous mathematical considerations
should be sought in future works, the fairness of the hypothesis is confirmed by an extensive test
campaign (Bernelli et al. 2006).

It is worth stressing that the use of the planar model is not strictly made to approximate the
real three-dimensional model, but rather to “filter” the three-dimensional model in such a way
that

— the unsought boxes remaining after the pruning process on the discontinuity lines are elimi-
nated;
— no branches of the feasible domain of the real three-dimensional model are lost.

We anticipate that the previous approximation is used within the pruning process only, whereas
the subsequent optimization processes in the remaining boxes are performed within the actual
three-dimensional planetary model.

As a further proof of the validity of the approximation, the performances of the resulting
pruning algorithm on the Earth—Mars transfer problem are analyzed in Figure 10. The boxes
remaining after the pruning process carried out in the planar model sharply enclose the pruned
search space of the three-dimensional model. A plain improvement in enclosure accuracy can be
detected by comparing Figure 10 with Figure 9.

5.2 Dependency Problem

The considerations reported in Sect. 5.1 are based on analyses performed within the framework
of a planet-to-planet transfer, where the departure epoch and the transfer time are selected



13

[tEM}{ [tMJ]{
—— Te " Tum
(Te] [Te] + [tem]
Fig. 12 Design space for the first arc of the Fig. 13 Design space for the second arc of the
Earth-Mars—Jupiter transfer. Earth-Mars—Jupiter transfer.

as design variables. However, an alternative problem formulation is preferable. In particular,
substituting the arrival epoch in place of the transfer time in the set of design variables has
already shown important advantages from a computational point of view (Izzo et al. 2006), as
it significantly reduces the number of ephemeris evaluations required by the pruning algorithm.
Together with the particular mathematical model adopted for the design of MGA transfers,
this allows the whole process to gain a polynomial complexity. Further reasons of selecting this
second formulation can be outlined, which are important alike for the DA-based GASP, especially
if actual MGA transfers are studied.

Consider the scheme of an Earth—-Mars-Jupiter transfer, reported in Figure 11. The set of
design variables usually selected for this MGA transfer is composed of the departure epoch from
Earth, Tg, the transfer time from Earth to Mars, tenm, and the transfer time from Mars to Jupiter,
tma - For the sake of clarity, this formulation is referred to as “relative times formulation” in the
followings.

The evaluation of the overall AV starts in general from the analysis of the first arc connecting
Earth to Mars. Suppose the relative times formulation is being used. Thus, referring to Figure 12,
the quantities related to the first arc are characterized in the (Tg, tem)-plane. As both Tg and
tenm are design variables, in the framework of the DA-based GASP, a box is readily identified
by the DA representation of both variables, and the computation goes on as depicted in the
previous sections. Suppose now the first arc has been processed, and the second arc from Mars
to Jupiter is of interest. The quantities associated to the second arc are characterized in the
(Tm, tma)-plane, where Ty is the arrival epoch at Mars. However, Ty, is not a design variable
in the relative times formulation, and it is computed as Tyy = Tg +tem. Even if tyy; is a design
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variable, the size of the corresponding interval on Ty, is the sum of the box size on Tg and tgm
in the DA-based GASP. The previous considerations can be easily extended to MGA transfers
involving more than three planets: the box size on the departure epoch from each planet increases
along the transfer. This e [edt is strongly related to the dependencies associated to the relative
times formulation.

The problem dependencies are highlighted in Figure 11. Focusing on the dependence of the
planetary ephemerides on the design variables, the position of Earth, rg, depends only on the
departure epoch Te. The position of Mars, ry, is evaluated using the epoch at Mars Ty,. Con-
sequently, ry will depend on the two variables Tg and tgp. Similarly, the dependence of the
position of Jupiter on the three variables Tg, tem, and tgj is highlighted. Thus, in an MGA
transfer involving n planets, the position of the i-th planet will depend on the departure epoch
from Earth, and all the transfer times associated to the prior i — 1 connecting arcs. Therefore,
the dimensionality of the dependency increases along the transfer, reaching its maximum cor-
responding to the last connecting arc, where quantities will depend on all n variables. Similar
arguments hold for the associated AV, on which inequality constraints are usually set.

The previous dependency problems can be overcome using the alternative strategy of Myatt
et al. (2004). In particular, the departure epoch from Earth is kept within the set of design
variables, whereas the transfer times are replaced by the epoch at eachs remaining planet of the
MGA sequence. Referring again to the Earth—-Mars—Jupiter transfer, the new set of variables
will include the epochs at Earth, Tg, Mars, Ty, and Jupiter, Ty. In contrast to the relative
times formulation, the new formulation is referred to as the “absolute times formulation” in the
followings.

A review of the previous analyses will be of help to gain a valuable insight on the advantages
of the new formulation. Consider again Figure 12 and Figure 13. Using the absolute times for-
mulation allows both arcs to be characterized within planes that are directly defined by design
variables. Thus, no increase in box size occurs along the transfer. Referring instead to Figure 11,
the planetary ephemerides will depend on the epoch of the planet, which is now included in the
set of design variables. If the AV associated to the whole transfer are of interest (which is the
case in the pruning process of GASP), it can be easily shown that the maximum dimensionality
of the dependency corresponds to the AV of the powered gravity assist maneuvers, which will
depend on three design variables. The outcome of the previous analysis led to the decision of
adopting the absolute times formulation as the baseline approach in the DA-based GASP.

6 Test Cases

In this section, relevant test cases are addressed to assess the performances of the DA-based GASP
algorithm. After the pruning, an optimization process must occur within the remaining boxes
to serve the purpose of optimizing the overall AV and identifying optimal transfer solutions.
Consequently, before illustrating the results of the test phase, Sect. 6.1 describes the philosophy
adopted for this optimization process. The performances of the algorithm on several test cases
are then reported, ordered by increasing complexity.

For each test, the problem is first defined. The search space is identified by indicating lower
and upper bounds on each variable. Referring to the box-wise approach of the DA-based GASP,
the size of the sampling boxes corresponding to each variable is reported. The cuto [values for
the departure and arrival AV, as well as for the corrective AV at each powered gravity assist,
are indicated. Concerning the minimum allowed pericenter radii for the gravity assist maneuvers,
a common rule has been adopted for all the planets: given the mean radius of a planet P, Rp,
the corresponding minimum allowed pericenter radius is set to 1.05Rp.

Then, the results of the pruning process are reported in terms of the total number of boxes,
the number of feasible boxes remaining after pruning, and the CPU time required by the pruning
process. It is worth observing that the total number of boxes is meant to give an idea on the
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dimension of the search space, and it is di [erent from the number of the boxes processed, thanks
to the forward and backward constraint propagation (see Sect. 2). The computational time is
relative to a PC, 1.9 GHz CPU, 512 Mb RAM. As far as the optimization process is concerned,
the best solution identified and the associated AV are reported.

6.1 Optimization Process

The outcome of the pruning process carried out by the DA-based GASP is a list of boxes, all
fulfilling the requirement that at least a portion of them satisfies the feasibility conditions related
to the constraining AV values and the minimum allowed pericenter values. An optimization
process is then necessary to locate the minimum of the objective function, which is the purpose
of the original optimization problem.

Before describing the details of the optimization process, some notes are given about the
polynomial bounders adopted in the pruning process. In all the previous examples, the linear
dominated bounder (LDB) algorithm is used to estimate the range of the constraint functions
over each box. The LDB algorithm is introduced in the framework of Taylor models (Makino 1998,
Makino 2005, and Berz et al 2006b) and it is based on the observation that the dominating part
of the total bounds of a polynomial are expected to come from the linear part. This algorithm
is capable of producing validated bounds for polynomials of any order. Unfortunately, range
overestimation problems appear when LDB is used for complex MGA transfers, which led to
the decision of implementing a non-validated quadratic bounder in the current version of the
DA-based GASP (Bernelli et al. 2006). The non-validated bounder makes use of the quadratic
part of the Taylor expansion to get estimates of the minimum of a function over each box.
More specifically, if the resulting quadratic polynomial is positive definite, its minimum is easily
estimated by locating the zero—gradient point, and checking its inclusion within the box. Only
linear information is used instead in the case of lack of positive definition properties. An evident
drawback is that, in contrast to the validated LDB, the non-validated quadratic bounder could
underestimate the exact enclosure. However, an extensive test campaign confirmed the validity
of the introduced approximations (Bernelli et al. 2006). Moreover, thanks to the second order
information, besides the minimum of the function within each box, estimates for its location are
returned.

It is worth pointing out that, if the non—-validated quadratic bounder is used, there are no
advantages and reasons to use expansion orders greater than two. Consequently, second order
expansions are used in all the test cases for the DA-based pruning process. This choice necessarily
constrain the size of the boxes, that must be selected in such a way to prevent excessive accuracy
loss. Furthermore, even in the case of smooth and regular functions, clustered minima may occur,
which further a [edts the maximum allowed box size. Therefore, a test campaign was carried out
to support the proper selection of the box size. More specifically, the DA-based GASP algorithm
was applied to test cases available in the literature using second order expansions. Estimates
for the maximum box size to be used in order to avoid losing the identification of the known
best solutions were obtained. The resulting estimates turned out to assure in any case a reduced
computational e [ont with respect to the classical implementation of GASP. The results of this
analysis supplied the heuristics for the selection of the box size in other applications.

It is now possible to detail the philosophy adopted for the optimization process, which mainly
relies on multiple runs of a local optimizer, based on the following steps:

1. the aforementioned non-validated bounding process is used to estimate the minimum value
of the objective function of the planar model, as well as its location, within each box;

2. the boxes are sorted based on the minimum objective function values estimated in step 1;

3. a number of these boxes are properly selected;
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4. starting from the estimated location of the minimum, a local optimization process is run
within each selected box by minimizing the overall AV associated to the actual three-
dimensional transfer problem.

The previous optimization philosophy deserves some comments. Dilerent models for the
constraint and objective functions evaluation are implemented in the two main phases of the
previous algorithm; i.e., search space pruning and total AV optimization. In particular, the pla-
nar planetary model is used within the search space pruning phase only. This decision relies
on the conservative hypothesis pertaining the planetary model depicted in Sect. 5.1. This ap-
proximation is abandoned in the subsequent optimization process of step 4, where the actual
three-dimensional planetary model, and the iterative Newton method are used to evaluate the
planetary ephemerides and to compute the solutions of the implicit equations.

Moreover, the box selection phase (step 3) is based on the following heuristics. Suppose the
overall objective function range is available, which is computed on all the minima identified
within each box in step 1. Only the boxes with an estimated function value that is 5% of the
maximum registered function value are selected. The 5% value is purely based on the experience
gained during extensive test campaigns. The parameter is anyway kept settable by the user.

The local optimization runs involved in step 4 are carried out within each box. This means
that the identified local minima are interior to the feasible boxes, as well as the finally estimated
global minimum. Moreover, the objective function used in the optimization phase is the overall
AV associated to the actual three-dimensional transfer problem. Consequently, based on the
conjecture in Sect. 5.1, local minima of the three-dimensional transfer problem are identified, as
the boxes remaining after the pruning process performed on the planar planetary model enclose
the feasible domain of the real three-dimensional planetary model.

The local optimization runs are carried out using sequential quadratic programming and they
require a first guess solution. Instead of using random first guesses, the information available
from the planar model adopted in the pruning process are used to identify good first guesses
for the local optimization runs, based on the heuristics that the planar model is an acceptable
approximation of the three-dimensional model for this purpose. More specifically, within each box,
the estimated location of the minimum of the objective function obtained in the planar planetary
model is used as first guess solution. It is worth observing that, based on this procedure, only
one local minimum is identified within each box. Consequently, good local minima are likely to
be lost if more than one local minimum is enclosed within a box. This constrains the size of the
boxes to be used in the pruning process.

6.2 Earth-Mars Transfer

The first test case is the Earth—Mars transfer. The search space is defined in Table 1. It is worth
observing that bounds on the departure epoch from Earth, Tg, and on the transfer time from
Earth to Mars, tem, are given. Consequently, the search space definition is made within the
relative times formulation. However, as stated in Sect. 5.2, pruning is carried out in the absolute
times formulation. This observation holds for all the following test cases. The box size along each
epoch is indicated in the fifth column. The cuto [values for the maximum allowed departure and
arrival AV are reported in the sixth column. A further constraint is imposed on the maximum
allowed overall AV , which is reported within round brackets on the head row in the same column.
The main results pertaining the performances of the DA-based GASP are:

Total number of boxes: 1000
Feasible boxes: 64 (6.4%)

CPU time: 0.220 s

— Best identified AV : 5.6673 km/s
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Table 1 Search space and best solution identified for the EM transfer.

planet variable lower bound upper bound size cuto[(10) solution

[days] [days] [days] [km/s] [days]
E Te 1000 6000 50 5 3573.188
M tem 100 600 50 5 324.047

The reported value of the best AV refers to the results of the optimization process described
in Sect. 6.1, which follows the DA-based pruning process. The last column of Table 1 lists the
values of the design variables corresponding to the best solution identified.

6.3 Earth-Venus-Mars Transfer

One planet is added to the sequence of planets involved in the transfer, where a powered gravity
assist maneuver is performed. In particular, an Earth-Venus—Mars transfer is investigated. The
search space is defined in Table 2. The cuto[Malues at Earth and Mars are still related to
the departure and arrival AV, whereas the cuto [alue of 2 km/s at Venus now refers to the
maximum allowed corrective AV at the pericenter of the corresponding hyperbolic trajectory, as
provided by the powered gravity assist model.

The main performance parameters are:

Total number of boxes: 14400
Feasible boxes: 165 (1.1%)

— CPU time: 1.8321 s

Best identified AV : 8.5226 km/s

The last column of Table 2 reports the optimal solution identified at the end of the optimization
processes. A two-dimensional plot of the corresponding trajectory can be found in Figure 14.

6.4 Cassini-like Transfer

This section is devoted to an MGA transfer problem which has already been analyzed in the
past (l1zzo et al. 2006; Di Lizia and Radice 2004). Saturn is set as the target planet, which is
reached after four gravity assists. Thus, the overall transfer involves six planets, so leading to
a six-dimensional optimization problem. The sequence is fixed to Earth-Venus-Venus—Earth-
Jupiter-Saturn (EVVEJS), which can be evidently recognized to be the sequence of the Cassini
mission (Peralta and Smith 1993), except no deep space maneuvers are allowed.

Before presenting the results for this test case, some notes must be reported about a further
necessary expedient which has to be added in the case of MGA transfers where resonances
might play an important role in the optimization, as in the case of the EVVEJS transfer. The

Table 2 Search space and best identified solution for the EVM transfer.

planet variable lower bound upper bound size cuto[(12) solution

[days] [days] [days] [km/s] [days]
E Te 1000 6000 50 5 5611.480
\Y tev 100 500 50 2 157.603
M tvm 100 1000 50 5 255.596
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Fig. 14 Trajectory of the best EVM transfer.

discontinuity problem is solved by adopting a planar planetary model. Nevertheless, this strategy
is not able to solve the same problem for the transition from the long-way to the short-way
solution. The occurrence of this discontinuity is particularly undesirable in arcs where resonance
conditions are known to improve the overall transfer performances, such as the Venus—Venus
arc in the EVVEJS sequence. An expedient is introduced to overcome the previous di [culty,
which is based on the observation that, in a planet-to-planet transfer involving only one planet,
the discontinuity disappears if multi-revolution solutions for the Lambert’s problem are used (Di
Lizia 2008a). In particular, given a box to be processed, if the enclosed transfer times include
resonance conditions, the multi-revolution solution is allowed. In this manner, the EVVEJS test
case can be e[edtively managed by the DA-based GASP, as illustrated in the followings.

The search space for the optimization problem is set as defined in Table 3. A maximum value
of 12 km/s is used for the overall AV. The main results pertaining the performances of the
algorithm are listed below:

— Total number of boxes: 32768000
— Feasible boxes: 1085 (0.003%)

— CPU time: 1.93 s

— Best identified AV : 4.9307 km/s

Table 3 Search space and best solution for the EVVEJS transfer.

planet variable lower bound upper bound size cuto[(12) solution

[days] [days] [days] [km/s] [days]
E Te -1000 0 50 4 -790.2077
\Y tev 10 410 25 2 158.0403
\Y tvv 100 500 25 2 449.3858
E tve 10 410 25 2 55.1819
J tes 400 2000 200 2 1019.7660
S tis 1000 6000 200 6 4543.5110
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Fig. 15 Trajectory of the best EVVEJS transfer. Fig. 16 EVVEJS transfer: detail of Figure 15.

Note that the best identified AV refers to the final insertion of the spacecraft into an orbit
around Saturn of eccentricity 0.98 and periapsis 108950 km, as considered in 1zzo et al. (2006).
For the sake of clarity, it is worth observing again that the total number of boxes is di[erkent
from the number of boxes that must be processed during pruning. Thanks to the forward and
backward constraint propagation, the latter is significantly lower then the former. Specifically
for the problem at hand, the actual number of boxes processed turns out to be 4065.

Figure 15 reports a two—dimensional plot of the trajectory corresponding to the best identified
solution, whose solution vector is listed in Table 3. The occurrence of a resonance at Venus can be
verified in Figure 16, which gives a detail of the whole transfer. The identified objective function
value agrees with the known best one (http://www.esa. int/gsp/ACT/inf/op/globopt/evvejs.htm
accessed on 7/7/2009).

7 Conclusions

This work investigated the benefits that DA techniques can bring to the pruning of the search
space of a specific class of MGA transfers. More specifically, di [erential algebra was introduced
to substitute the point-wise evaluation of objective function and constraints used in GASP with
their Taylor expansions over sampling boxes. A 2D version of the MGA transfer modeling used in
GASP was adopted. Significant work was devoted to address the discontinuity and dependency
problems. The solution to the discontinuity problem was the use of a planar planetary model
for the solar system, which was conjectured to be a conservative hypothesis for the analyzed
transfers. The validity of this approach, limited to planetary transfers, was shown by the optimal
solutions found running a sequential quadratic programming algorithm on the feasible domain.

The resulting DA-based GASP can handle wide sampling grids, ranging from 50 up to 200
days. Thus, as the computational e[ant for a second order DA evaluation is on average 20%
greater than for its point wise counterpart, a more computationally e [Cieht pruning algorithm is
obtained. Furthermore, the additional nuisance of estimating the Lipshitzian tolerance is avoided
at the price of selecting a box size compatible with the expansion order. The test cases showed
that

1. the pruning process is fast;
2. regions containing known optimal solutions are kept in the feasible domain;
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3. asecond order Taylor expansion is appropriate for both estimating the range of the objective
function and constraints, and for obtaining good first guess solutions for the subsequent
optimization process;

thus proving the e [edtiveness and the e [ciehcy of the DA-based GASP.

The favorable results obtained also suggest to study the use of verified Taylor model based
methods, which in addition to the polynomial approximations obtained with DA also provide
rigorous bounds for the accuracy with which the polynomials represent the function over the local
domain of interest. This may represent a viable approach towards the eventual development of
fully rigorous optimization tools eventually for the pruning and optimization problem.
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Appendix

The polynomial maps resulting from the application of the algorithm for the Taylor expansion
of the solution of parametric implicit equations to the evaluation of planetary ephemerides are
reported here. More specifically, the Taylor expansions of Mars’ ephemerides analyzed in Figure
5 are presented. The epoch is first initialized as a DA variable: [T] = T? + 3T, where T? is the
reference epoch for the expansions. An analytical ephemeris model is then used to evaluate the
eccentricity e and the mean anomaly M as Taylor expansions with respect to the epoch; i.e.,
e(dT) = Me(0T), and M(6T) = Mm(OT). The Kepler equation is then solved in parametric
form to attain the resulting Taylor expansion of the eccentric anomaly with respect to the epoch;
i.e., E(0T) = Mg(dT). The identification of Mg (6T) relies on the use of the algorithm for the
expansion of the solution of parametric implicit equations presented in Sect. 3.1. Once Mg (8T)
is available, the Taylor expansions of the planet position and velocity with respect to the epoch,

r(3T) = M,(3T)

(18)
v(0T) = M, (8T),
are readily obtained by means of mere algebraic manipulations.

Referring to the analysis performed in Figure 5, the resulting 10-th order Taylor polynomials
for each component of Mars’ position are reported in Figure 17. For each polynomial, the first
column lists the coe [ciehts of the Taylor expansions, whereas the second column shows the
corresponding order. As the polynomials are monovariate expansions, the order coincides with
the associated exponent for the expansion variable T. The polynomials reported in the figure
refer to the maps

r(dT) = M,(3T)

~ - (19)
V(ET) = My(8T),

with T = T/(w/2), where w is the amplitude of the interval of epochs analyzed in Figure 5;
i.e., w = 40 days. The variable T is introduced to suitably rescale the resulting polynomials, so
avoiding possible numerical problems associated to the representation of the coe [ciehts in the
computer environment.
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r. [AU] r, [AU] r, [AU]
COEFFICIENT EXPONENT | COEFFICIENT EXPONENT | COEFFICIENT EXPONENT
0.9738329507571694 0 1.099506478391541 0 -0.9266849660391702E-03 0
-0.1988798644119760 1 0.2094385320182159 0.9274449212580083E-02 1
-0.1819229419906598E-01 2 -0.2053934734202566E-01 2 0.1731648672053160E-04 2
0.1546964348858368E-02 3 -0.9557735495179728E-03 3 -0.5804033450867999E-04 3
0.2471398672024257E-04 4 0.9665526115527965E-04 4 0.1415764649290540E-05 4
-0.5300282535152253E-05 5 -0.1048090239315998E-05 5 0.1083624047135448E-06 5
0.2042278294266370E-06 6 -0.2439243475129716E-06 6 -0.1012727829134618E-07 6
0.7518486511117514E-08 7 0.1839884777439683E-07 7 0.2003301909863849E-09 7
-0.1268281031785555E-08 8 -0.1164851727376397E-09 8 0.2874195393096650E-10 8
0.4524767746777855E-10 9 -0.6986097539252299E-10 9 -0.2574915925467360E-11 9
0.2725058616222821E-11 10 0.4841629105965710E-11 10 0.3436162201645452E-13 10

Fig. 17 10-th order expansion of Mars position: polynomial maps corresponding to each component of

the position vector.

References

N

© oN o a0 ~ W

10.
11.
12.
13.

14.

15.
16.
17.

18.
19.

Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Second Printing.
AIAA Education Series, Providence (1987).

Bernelli-Zazzera, F., Berz, M., Lavagna, M., Armellin, R., Di Lizia, P., and Topputo, F.: Global
Trajectory Optimisation: Can We Prune the Solution Space when Considering Deep Space Maneu-
vers?. Final Report, Ariadna id: 06/4101, Contract No. 2007/06/NL/HI (2006).

Berz, M.: The new method of TPSA algebra for the description of beam dynamics to high orders.
Technical Report AT-6:ATN-86-16, Los Alamos National Laboratory (1986).

Berz, M.: The method of power series tracking for the mathematical description of beam dynamics.
Nuclear Instruments and Methods A258, 431 (1987).

Berz, M.: High-Order Computation and Normal Form Analysis of Repetitive Systems. Physics of
Particle Accelerators, Volume AIP 249, 456 (1991).

Berz, M.: Di[erkential Algebraic Techniques. Handbook of Accelerator Physics and Engineering, M.
Tigner and A. Chao (Eds.), World Scientific (1999a).

Berz, M.: Modern Map Methods in Particle Beam Physics. Academic Press (1999b).

Berz, M., and Makino, K.: COSY INFINITY version 9 reference manual, MSU Report MSUHEP-
060803, Michigan State University, East Lansing, MI 48824 (2006a).

Berz, M., Makino, K., and Kim, Y.-K.: Long-Term Stability of the Tevatron by Validated Global
Optimization,Nuclear Instruments and Methods, 558, pp. 1-10, (2006b).

Betts, J. T.: Practical Methods for Optimal Control Using Nonlinear Programming. Society for
Industrial and Applied Mathematics, Philadelphia, PA (2001).

Di Lizia, P., and Radice, G.: Advanced Global Optimisation for Mission Analysis and Design. Final
Report, Ariadna id: 03/4101, Contract No. 18139/04/NL/MV (2004).

Di Lizia, P.: Robust Space Trajectory and Space System Design using Di [erential Algebra. Ph.D.
dissertation, Politecnico di Milano (2008a).

Di Lizia, P., Armellin, R., and Lavagna, M.: Application of High Order Expansions of Two-Point
Boundary Value Problems to Astrodynamics, Celestial Mechanica and Dynamical Astronomy, 102,
pp. 355-375 (2008b).

Giorgini, J.D., Yeomans, D.K., Chamberlin, A.B., Chodas, P.W., Jacobson, R.A., Keesey, M.S.,
Lieske, J.H., Ostro, S.J., Standish, E.M., and Wimberly, R.N.: Horizons, JPL’s On-Line Solar
System Data and Ephemeris Computation Service. User’s guide (1998).

Hoefkens, J., Rigorous Numerical Analysis with High-Order Taylor Models, PhD dissertation thesis,
MSU (2001).

Ingberg, L.: Simulated Annealing: Practice versus theory. Mathl. Comput. Modelling, 18, pp. 29-57
(1993).

l1zzo, D., Becerra, V., Myatt, D., Nasuto S., and Bishop, J.: Search space pruning and global
optimisation of multiple gravity assist spacecraft trajectories. Journal of Global Optimisation, 38,
pp. 283-296 (2006).

Jones, D.R., Perttunen, C.D. and Stuckman, B.E.: Lipschitzian Optimization without the Lipschitz
Constant. Journal of Optimization Theory and Applications, 79, pp. 157-181 (1993).

Jones, D.R.: A taxonomy of global optimisation methods based on response surfaces. Journal of
Global Optimisation, 21, pp. 345-383 (2001).



22

20.
21.

22.
23.
24.
25.
26.

27.
28.
29.

Kemble, S.: Interplanetary Mission Analysis and Design, Praxis Books Series, Springer (2006).
Labunsky, A.V., Papkov, O.V. and Sukhanov, K.G.: Multiple Gravity Assist Interplanetary Tra-
jectories, ESI Book Series, Gordon and Breach Science Publishers, London (1998).

Makino, K.: Rigorous Analysis of Nonlinear Motion in Particle Accelerators. Ph.D. Thesis, Michigan
State University, East Lansing, Michigan, USA (1998).

Makino, K., and Berz, M.: Range Bounding for Global Optimization with Taylor Models, Transac-
tions on Computers, 4,11, pp. 1611-1618, 2005.

Myatt, D., Becera, V., Nasuto, S., and Bishop, J.: Advanced Global Optimisation for Mission
Analysis and Design. Final Report, Ariadna id: 03/4101, Contract No. 18138/04/NL/MV (2004).
Peralta, F., and Smith, J.C.Jr.: Cassini Trajectory Design Description. AAS Paper 93-568,
AAS/AIAA Astrodynamics Conference, Vistoria, B.C., Canada (1993).

Sentinella, M.R., and Casalino, L.: Cooperative Evolutionary Algorithm for Space Trajectory Op-
timization, Celestial Mechanics and Dynamical Astronomy, 105, DOI 10.1007/510569-009-9223-4
(2009).

Vasile, M., Summerer, L., and De Pascale, P.: Design of Earth-Mars Transfer Trajectories using
Evolutionary-Branching Technique, Acta Astronautica, 56, pp. 705-720 (2005).

Vasile, M., De Pascale, P.: Preliminary Design of Multiple Gravity-Assist Trajectories, Journal of
Spacecraft and Rockets, 43, pp. 794-805 (2006).

Yao, X.: Global Optimization by Evolutionary Algorithms. Proc. Of the Second Aizu International
Symposium on Parallel Algorithm Architecture Synthesis, Aizu-Wakamatsu, Japan, IEEE Com-
puter Society Press, pp. 282-291 (1997).



