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Abstract We compute the weak stability boundary in the planar circular restricted three-body
problem starting from the algorithmic definition, and its generalization by Garćıa and Gómez.
In addition, we consider a new set of primaries, Sun–Jupiter, to replace the case of Earth–
Moon considered in previous studies. Numerical enhancements are described and compared to
previous methods. This includes defining the equations of motion in polar coordinates and a
modified numerical scheme for the derivation of both stable sets and their boundaries. These
enhancements decrease the computational time. New results are obtained by considering the
Sun–Jupiter case which we compare to the Earth–Moon case.

Keywords Restricted Three-Body Problem · Weak Stability Boundary · Ballistic Capture ·
Invariant Manifolds · Lyapunov Orbits · Stable Sets

1 Introduction

The concept of weak stability boundary, or equivalently WSB, was first introduced in 1986 to
design low energy transfers to the Moon [1,2]. The idea was to to find a location about the Moon,
in phase space, where a spacecraft could be captured ballistically, that is, with no propellant.
The utilization of this region has generated new low energy transfers to the Moon, and other
locations in space, as is well known, such as Japan’s Hiten, for example. The WSB region gives
rise to a sensitive dynamics about the Moon, as it defines a location that lies at the transition
between lunar capture and escape. In fact, a hyperbolic network was proven to be associated to
this region in the restricted three-body problem [2].

The original computation of the WSB was based on a straight forward numerical algorithm.
This algorithm measures the change in stability of the motion of zero-mass point, P3, in the
restricted three-body problem, as it moves about the secondary mass point, P2, after making
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one cycle about it. The motion of P3 is gravitationally perturbed by the primary mass point
P1, where it is assumed that the mass of P2 is much smaller than the mass of P1. Although
this definition worked well for applications, it seemed that it could be generalized further. For
example, instead of measuring the stability of motion after one cycle about P2, why not after
two or more cycles?

A satisfactory generalization of this region was published by Garćıa and Gómez in 2007 [3].
They examined the stability of motion of P3 about P2 after it performed n cycles. A generalized
numerical algorithm was described to do this. Using this methodology, they were able to define
an n-th weak stability boundary. A generalized weak stability boundary was then defined as the
union of these sets for n = 1, 2, 3, . . . They did this for the case of the mass ratio of P1, P2 for
the Earth–Moon system.

This paper has two purposes. The first is to reexamine the numerical approach in [3] by using
certain modifications to enhance the numerics. These modifications include the use of polar
coordinates, to compute the stable sets, and a bisection algorithm, to obtain their boundaries.
We will demonstrate that these modifications allow us to compute the stable sets more efficiently
and their boundaries with greater accuracy. This is demonstrated with numerical examples.
The second purpose of this paper is to compute the weak stability boundary for another basic
example not yet considered, the Sun–Jupiter system. In this way, insights into the mass parameter
variability of the stable sets can be gained. The change of mass ratio has indeed the effect of
changing the geometry of the stable sets, where new regions about P2 are found if the Sun–Jupiter
case is compared to the Earth–Moon system [3, 4]. Finally, we discuss the possible relationship
of the weak stability boundary to the invariant manifolds associated to the Lyapunov orbits.

The paper is organized as follows. The planar circular restricted three-body problem and its
representation in various coordinate systems, including polar coordinates, is defined below. In
Section 2 a general algorithmic definition of the WSB is given and its computation is described in
Section 3. The computed stable sets and WSB are presented in Section 4 for the Sun–Jupiter sys-
tem for a wide class of parameter values (i.e., eccentricity and stability number). Some comments
into the dynamics governing the orbits lying on the WSB are described. Concluding remarks are
given in Section 5.

This paper can be viewed as a note to [3] where an additional basic example is given, using
the Sun–Jupiter system, and some numerical enhancements are described.

1.1 Planar Circular Restricted Three-Body Problem

The model that we use to describe the motion of a particle of zero mass is the planar circular
restricted three-body problem (or simply RTBP). In this model, relative to an inertial frame, two
primary bodies P1, P2 of masses m1 >> m2 > 0, respectively, move under the mutual gravity
on circular orbits about their common center of mass. The third body P3, assumed to be of
zero mass, moves under the gravity of the primaries in their plane of motion. In our case, P3

represents, for example, a spacecraft, and P1, P2 represent Sun and Jupiter, respectively.

The motion of P3 is studied in a rotating coordinate system with coordinates x, y and whose
origin lies at the center of mass of P1, P2. This coordinate system rotates with the same angular
velocity as P1, P2 about their center of mass. In this system, we can assume P1, P2 are fixed on
the x−axis. Let µ = m2/(m1 + m2). It is well known that we can normalize the units so that
the distance between P1, P2 and their mutual angular velocity are both 1. Also, we can assume
that P1 is located at (−µ, 0) and P2 is located at (1 − µ, 0), where the mass of P1 is 1 − µ and
the mass of P2 is µ. In the case of the Sun–Jupiter system µ = 9.538754 10−4, which is assumed
for the remainder of the paper [5].
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Fig. 1 Rotating reference system.

The motion of P3 relative to the normalized co-rotating frame is described by the following
system of second-order differential equations

ẍ − 2ẏ =
∂Ω

∂x
, ÿ + 2ẋ =

∂Ω

∂y
, (1)

where Ω is given by

Ω(x, y) =
1

2
(x2 + y2) +

1 − µ

r1
+

µ

r2
+

1

2
µ(1 − µ). (2)

r1 and r2 represent the distances from P3 to P1 and P2, respectively, and are given by r2
1 =

(x + µ)2 + y2, r2
2 = (x + µ − 1)2 + y2 (Figure 1).

The motion described by (1) has five equilibrium points, known as the Euler–Lagrange libra-
tion points, labeled Lk, k = 1, . . . , 5. Three of these, L1, L2, L3, lie along the x-axis, while, L4,
L5 lie at the vertices of two equilateral triangles with common base extending from P1 to P2.
The RTBP admits also an integral of motion, the Jacobi integral,

J(x, y, ẋ, ẏ) = 2Ω(x, y) − (ẋ2 + ẏ2). (3)

Thus, each solution x(t) = (x(t), y(t), ẋ(t), ẏ(t)) of (1) always lies on an energy surface

J (C) = {(x, y, ẋ, ẏ) ∈ R
4|J(x, y, ẋ, ẏ) = C}, (4)

for some energy C. This energy surface is a three-dimensional in the four-dimensional phase
space (x, y, ẋ, ẏ) ∈ R

4. The projection of the energy surface J (C) onto the configuration space
(x, y) is called a Hill’s region, and is given by

H(C) = {(x, y) ∈ R
2|2Ω(x, y) − C ≥ 0}. (5)

The motion of P3 is always confined to the Hill’s region of the corresponding Jacobi energy C.
The Hill’s regions vary with the Jacobi energy C. Their topology changes at the values of C = Ck

corresponding to the libration points Lk (see [2, 5] for more details).

Computing WSB implies integrating many thousands of orbits, and some of them can result
in collision of P3 with either P1 or P2. As a result, the numerical integration fails as the equations
of motion (1) become singular for r1,2 → 0. It is therefore necessary to regularize the equations to
avoid such singularities. Levi-Citiva regularization is convenient to use. It is a local regularization
method, and requires two different transformations to eliminate the singularities at both P1 and
P2 (see [5, 6] for details). We briefly summarize:
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Let z = x + iy be a vector defined in the complex plane having real part x and imaginary
part y, and let w = u+ iv be another vector defined in the regularized complex plane (u, v). The
Levi-Civita transformation that regularizes a collision at P2 can be written as

z = f(w) = w2 + 1 − µ. (6)

It is also necessary to transform the independent variable t to a new variable τ . This is given by

dt

dτ
= g(w) = |f ′|2 = 4|w|2. (7)

It can be shown that the regularized equations of motion can be written as [5]

w′′ + 2i|f ′|2w′ = ∇w|f ′|2U, (8)

where U = Ω − C/2, ∇w = (∂/∂u, ∂/∂v), and (·)′ = d/dτ . Analogously, it can be shown that
the transformation z = f(w) = w2 − µ, together with the time transformation (7), regularizes
collisions with P1.

The regularized equations of motion (8) are numerically integrated when r1 < rLC or r2 <
rLC , i.e., when P3 enters a circle of radius rLC centered at either P1 or P2. Outside these circles,
the standard equations of motion (1) or those written in polar coordinates are used.

1.1.1 Polar Coordinates

It is convenient to use polar coordinates relative to P2, (r2, θ2), in our analysis below (see Figure
1). These P2-centered polar coordinates are related to the Cartesian coordinates through

x = 1 − µ + r2 cos θ2, y = r2 sin θ2. (9)

The pair (r2, θ2) defines a polar rotating reference system having the first unit vector aligned
with the P2P3 line (outward) and the second perpendicular to it (in the direction of increasing
θ2). In this reference system the equations of motion for P3 turn out to be

r̈2 − r2θ̇
2
2 − 2r2θ̇2 = (1 − µ) cos θ2

(

1 − 1

r3
1

)

+ r2

(

1 − 1 − µ

r3
1

)

− µ

r2
2

,

r2θ̈2 + 2ṙ2θ̇2 + 2ṙ2 = (1 − µ) sin θ2

(

1

r3
1

− 1

)

,

(10)

where r1, the distance from P3 to P1, is expressed in P2-centered polar coordinates as r1 =
√

r2
2 + 2r2 cos θ2 + 1. Analogously, using the coordinates (r1, θ1), the equations of motion in the

P1-centered polar reference frame are

r̈1 − r1θ̇
2
1 − 2r1θ̇1 = µ cos θ1

(

1

r3
2

− 1

)

+ r1

(

1 − µ

r3
2

)

− 1 − µ

r2
1

,

r1θ̈1 + 2ṙ1θ̇1 + 2ṙ1 = µ sin θ1

(

1 − 1

r3
2

)

,

(11)

with r2 =
√

r2
1 − 2r1 cos θ1 + 1. P1-centered polar coordinates map into Cartesian coordinates

through
x = −µ + r1 cos θ1, y = r1 sin θ1. (12)

Both systems (10) and (11) are equivalent to equations of motion (1). The polar coordinates
are used in cases where the angle with respect to one of the two primaries, θ1 or θ2, is required as
a smooth function of time. Nevertheless, when written as systems of four first-order differential
equations, the vector fields generated by (10) and (11) are computationally more intensive to
evaluate than the vector field associated to (1) due to the presence of trigonometric functions.
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2 Definition of Weak Stability Boundary

Let H2 be the Kepler energy of P3 with respect to the the primary P2. It is given by

H2 =
1

2
v2
2 − µ

r2
, (13)

where v2 is the speed of P3 relative to the P2-centered inertial reference frame. We consider the
case where the motion of P3 starts from the periapsis of an osculating ellipse around P2. In this
case we have

r2 = a(1 − e), v2 =

√

µ(1 + e)

r2
, (14)

where a and e are the semi-major axis and the eccentricity of the osculating ellipse. Throughout
the paper we consider the case where P3 initially lies at the periapsis of a prograde ellipse, i.e.,
P3 rotates counterclockwise in a P2-centered inertial frame. With relations (14) the initial Kepler
energy becomes

H2 =
1

2

µ(e − 1)

r2
. (15)

Let x(t) be a solution of (1). We say that P3 is ballistically captured by P2 at time t1,
if H2(x(t1)) < 0, and it is temporary ballistically captured (or weakly captured) by P2, if
H2(x(t)) < 0 for t1 ≤ t ≤ t2 and H2(x(t)) > 0 for t < t1 and t > t2, for finite times t1, t2,
t1 < t2. Regarding the opposite type of behavior, P3 is ballistically ejected (or ballistically
escapes) from P2 at a time t1 if H2(x(t)) < 0 for t < t1 and H2(x(t)) ≥ 0 for t ≥ t1. The region
where weak capture occurs can be used to define the weak stability boundary. This was first
defined in [1,2], and further improved in [3]. We describe the generalized version of the definition
of the WSB stated in [3], with some refinements.

We consider trajectories of P3 with the following initial conditions:

(i) The initial position of the trajectory is on a radial segment l(θ) departing from P2 and making
an angle θ with the P1P2 line, relative to the rotating system. The trajectory is assumed to
start at the periapsis of an osculating ellipse around P2, whose semi-major axis lies on l(θ)
and whose eccentricity e is held fixed along l(θ).

(ii) The initial velocity of the trajectory is perpendicular to l(θ), and the Keplerian energy H2 of
P3 relative to P2 is negative, i.e., H2 < 0. The motion, for fixed values of the parameters θ and
e, and for a choice of direction of the initial velocity vector such that a prograde osculating
ellipse is achieved, depends only on the initial distance r.

(iii) The motion is said to be n-stable if the infinitesimal mass P3 leaves l(θ), makes n complete
turns about P2, and returns to l(θ) at a point with negative Kepler energy H2 with respect to
P2, without making a complete turn around P1 along this trajectory. The motion is otherwise
said to be n-unstable (Figure 2).

It is worth observing that the motion of P3 is unstable if either P3 performs a full circle about
P2 and returns on l(θ) on a point where H2 ≥ 0 or P3 moves away from P2 and performs a full
circle about P1. The former is a ballistic escape, the latter is said primary interchange escape [2].

We note that the n-stability condition is an open condition. This is due to the fact that
H2 < 0 is an open condition, and that the n-th return map to l(θ) is smooth, due to the smooth
dependence of solutions of differential equations on initial conditions. Thus the set of the n-stable
points on l(θ) is an open subset of l(θ), hence it is a countable union of open intervals

Wn(θ, e) =
⋃

k≥1

(r∗2k−1, r
∗
2k), (16)
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Fig. 2 Example of 1-stable and unstable trajectories relative to P2.

with r∗1 = 0. The points of the type r∗ that are at endpoints of intervals above (except for r∗1)
are n-unstable.

For the sake of a clear exposition, we define the set Wn(e) obtained by varying the parameter
θ and, at the same time, by holding fixed the eccentricity e

Wn(e) =
⋃

θ∈[0,2π]

Wn(θ, e). (17)

Thus, the n-stable set is

Wn =
⋃

e∈[0,1)

Wn(e). (18)

This is also an open set since the n-stability of points depends smoothly on e and θ.

Definition 1 The weak stability boundary of order n, denoted by ∂Wn is the locus of all points
r∗(θ, e) along the radial segment l(θ) for which there is a change of stability of the initial trajec-
tory, that is, r∗(θ, e) is one of the endpoints of an interval (r∗2k−1, r

∗
2k) characterized by the fact

that for all r ∈ (r∗2k−1, r
∗
2k) the motion is n-stable, and there exist r′ 6∈ (r∗2k−1, r

∗
2k), arbitrarily

close to either r∗2k−1 or r∗2k for which the motion is n-unstable. Thus

∂Wn = {r∗(θ, e) | θ ∈ [0, 2π], e ∈ [0, 1)}.

Analogously, we can define a subset of the n-th weak stability boundary, ∂Wn(e), obtained
by fixing the eccentricity of the osculating ellipse,

∂Wn(e) = {r∗(θ, e) | θ ∈ [0, 2π]}. (19)

Both Wn(e) and ∂Wn(e) have been defined for illustration purposes as they have one dimension
less than Wn and ∂Wn, respectively.

The generalized definition of the weak stability boundary just given slightly differs from the
definition given in [3] as the openness of Wn sets has been here considered.

3 Computation of Stable Sets and Weak Stability Boundaries

From the definition given in the previous section, both the n-stable sets, Wn, and their weak
stability boundaries, ∂Wn, have to be determined for various values of n. We compute Wn

first, and then its enclosure ∂Wn. The derivation of these two sets involve the definition of a
computational grid of initial conditions and the integration of hundred thousands of orbits. The
first set, Wn, is defined over a relatively coarse grid, whereas the second set is achieved on a
locally refined grid in order to determine ∂Wn with a high level of accuracy.
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3.1 Computation of Wn

To accomplish this task it is necessary to integrate a large number of orbits and to keep track of
those that are n-stable. An initial condition is uniquely specified once the triple (r, θ, e) is given.
The initial condition to flow under dynamical system (1) is indeed

x = r cos θ + 1 − µ, y = r sin θ,

ẋ = −v sin θ + r sin θ, ẏ = v cos θ − r cos θ,
(20)

with v =
√

µ(1 + e)/r. The associated orbits have to be integrated for a large time span in order
to assess wether the orbit is stable or not. In [3], an interval of 80 adimensional units has been
used. Instead of assuming a fixed final time, in this work we use a different methodology that
allows us to get the final time in an automatic way, depending on the orbit being integrated. In
this section we show that this method requires the orbits to be integrated for a much shorter
time.

We recall that the orbits are taken on a radial line l(θ) emanating from P2 and making an
angle of θ with the x-axis. Using P2-centered polar coordinates (r2, θ2) introduced in Section
1.1.1, and the associated equations of motion (10), is a more natural choice to derive Wn sets.
Indeed, integrating the system in polar coordinates allows us to handle the angle θ2 as a smooth
function of time, θ2 = θ2(t) (discontinuous inverse trigonometric functions are involved if θ2 is
derived inverting equations (9)). By tracking this angle during the integration, we are able to
establish wether P3 makes a complete turn about P2 or not. We say in fact that P3 completes a
full turn about P2 at time t∗ if

|θ2(t
∗) − θ2(t0)| = 2π, (21)

for the smallest t∗ > t0 such that (21) is verified (t0 is the initial time). Using instead the P1-
centered polar coordinates (r1, θ1), it is possible to define the condition for a primary interchange
escape to occur in a totally analogous fashion. We say that P3 performs a primary interchange
escape at time t∗ if

|θ1(t
∗) − θ1(t0)| = 2π. (22)

Thus, the numerical integration terminates at t = t∗, i.e., when at least one of the two conditions
above is verified for the first time. The time span for integration is therefore [t0, t∗]. Numerical
experiments show that t∗ ≪ 80 for all orbits considered (see Figure 3(b) where the t∗ values are
reported for W1(0.0)). If condition (21) is verified (and the orbit is such that H2(t

∗) < 0) the
motion is stable, otherwise, if condition (22) is satisfied, the orbit is unstable. (There are certain
cases where the two conditions are satisfied simultaneously; in these cases the orbits are judged
unstable.) Thus, in order to assess the stability of the motion, both θ1 and θ2 have to be handled
as a smooth function of time. This is possible by simultaneously integrating the two systems (10)
and (11) with initial conditions

r2(t0) = r, θ2(t0) = θ,

ṙ2(t0) = 0, θ̇2(t0) =

√

µ(1 + e)

r3
− 1,

(23)

for system (10) and

r1(t0) =
√

r2 + 2r cos θ + 1, θ1(t0) = tan−1

(

r sin θ

1 + r cos θ

)

,

ṙ1(t0) = ṙ2(t0) cos(θ − θ1(t0)) − r2(t0)θ̇2(t0) sin(θ − θ1(t0)),

θ̇1(t0) =
ṙ2(t0)

r1(t0)
sin(θ − θ1(t0)) +

r2(t0)θ̇2(t0)

r1(t0)
cos(θ − θ1(t0)),

(24)
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for system (11). Integrating the coupled system of equations (10)–(11) is much more compu-
tational intensive than simply flowing equations (1). Nevertheless, as clearly shown in Table
1, integrating the coupled system (10)–(11) with a variable final time, determined by either
condition (21) or (22), is a more efficient choice than integrating (1) for a fixed, long time span.

The coupled initial conditions (23)–(24) still depend on the triple (r, θ, e). These three pa-
rameters are defined on the grid

r = {0, 2 10−3, . . . , 1.5},
θ = {0, 2π/1000, . . . , 2π},
e = {0, 0.05, . . . , 0.95},

(25)

and three nested loops are necessary to describe all their combinations. About 7.5 105 integrations
are needed to generate each Wn(e), whereas the whole Wn sets can be obtained with 1.5 107

integrations. A 7th–8th order Runge–Kutta–Fehlberg integration scheme implemented in Matlab
is used to flow system (10)–(11). When P3 enters either of the two circles r1,2 < rLC , the state is
transformed into Cartesian coordinates and then, through equation (6) (or the equivalent form
for regularizing impacts with P1) it is mapped into the regularized variables (u, v). Regularized
system (8) is used in this region until P3 reaches the boundary r1,2 = rLC . In this paper we have
taken rLC = 10−3.

In Figure 3(a) we have reported the set W1(0.0) generated through the computational grid
defined in (25) with the eccentricity held fixed to zero. The 1-stable set is made up by 2.8 104

points, out of the 7.5 105 integrated orbits. Among these orbits, a total of 3.6 103 has required
a regularization of the dynamics (black points in Figure 3(a)). If either the Cartesian or polar
equations of motions were used to flow such points, the numerical integration would have either
failed or required a long computational time. The inclusion of a regularization strategy is therefore
crucial for the derivation of the stable sets as a relative high number of initial conditions result
in either collision or close encounter with P2.

In Figure 3(b) the integration times, t∗, in equation (21) have been reported for the orbits
making up W1(0.0). The orbits with final integration times differing by less than 5 adimensional
units have been grouped in subsets for the sake of exposition. It can be observed that the vast
majority of stable orbits perform a loop about P2, or equivalently verify equation (21), in much
less than 80 time units. More specifically, 95% of the stable orbits have a final integration time
less than 10 units, and even no stable orbits with t∗ grater than 65 units have been found.

Table 1 reports a comparison of the CPU time required for the derivation of various W1(e)
sets with increasing eccentricity. The method described so far (i.e., coupled integration of systems
(10) and (11) together with stopping conditions (21) and (22)) is compared with the integration of
Cartesian equations of motion for 80 time units. The advantages of having introduced a method
based on polar coordinates over the method described in [3] are evident.

3.2 Computation of ∂Wn

Once the stable sets Wn have been computed, for fixed values of (θi, ej) on the discrete grid (25),
there are one or more boundary points on Wn, rs = r(θi, ej), such that either r(θi, ej) + ∆r or
r(θi, ej) − ∆r is an unstable point (∆r = 2 10−3 in agreement with the grid defined in (25)). In
the following we consider the case where rs is an exterior boundary of Wn(ej), i.e., ru = rs +∆r
is unstable; extending the method to interior stable points is trivial.

The stable sets Wn(ej) have been obtained on the relatively coarse grid (25). The focus now
is the fine determination of the weak stability boundaries ∂Wn(ej) on a dynamically refined grid.
We first assume that there is only one point of the type r∗ (see equation (16)) within the interval
[rs, ru]. This can be claimed as ∆r in (25) is reasonably small, and it is verified by numerical
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(a) W1(0.0): regularized orbits.
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(b) W1(0.0): Integration times.

Fig. 3 A preliminary view of the W1(0.0) set derived over the grid (25). In Figure 3(a) the black points
stand for the initial conditions that generate orbits requiring a regularization of the dynamics. The
integration times, t∗, are reported in Figure 3(b) versus the number of stable orbits.

CPU time (polar) CPU time (Cartesian) # stable orbits # regularized orbits

W1(0.0) 27.3 h 132.2 h 28212 3612

W1(0.2) 27.4 h 132.8 h 24035 4119

W1(0.4) 27.6 h 130.3 h 18816 4230

W1(0.6) 27.8 h 127.0 h 14479 4815

W1(0.8) 29.7 h 125.7 h 10719 4257

W1(0.95) 29.8 h 122.3 h 9106 3180

Table 1 Computational time required to construct the stable sets integrating the equations of motion
in polar and Cartesian coordinates. Both codes are written in Matlab language. The CPU time is relative
to a Dual Xeon 2.33 GHz platform running Linux. Integration tolerance is set to 10−14.

experiments. Nevertheless, as the stable sets may possess a Cantor-like structure, it may occur
that more than one r∗ point exists within the interval [rs, ru]; this case is not considered in the
derivation of the weak stability boundaries.

We implement a bisection method on the interval [rs, ru]. The midpoint of the interval,
rk = (rs + ru)/2 is in fact taken as a new starting point, and the following initial condition is
flown

r2(t0) = rk, θ2(t0) = θi,

ṙ2(t0) = 0, θ̇2(t0) =

√

µ(1 + ej)

r3
k

− 1.
(26)

If (26) generates a stable orbit, then the new stable point is set to rs = rk, otherwise, if (26)
results in an unstable orbit, the new unstable initial condition is updated, i.e., ru = rk. In
any case the bisection method is repeated on the updated, half-size interval [rs, ru]. In our
implementation, iterations go on until the last interval has amplitude |ru − rs| ≤ 10−8. The
midpoint of this last interval is assumed to be the point on the weak stability boundary. The
whole process is repeated for all (θi, ej) defined on the grid (25). In this way we reach an elevate
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(a) W1(0.0) and ∂W1(0.0). (b) W1(0.0) and ∂W1(0.0), detail.

Fig. 4 Weak stability boundary ∂W1(0.0) (black points) and 1-stable set W1(0.0) (gray points). The
refined weak stability boundary is obtained by application of the bisection method at the boundaries of
the coarse grid where W1(0.0) is defined. In Figure 4(b) the structure of this grid can be appreciated.

accuracy in the determination of ∂Wn since the maximum error in radial distance from P2 is of
the order of 10−9.

The bisection method described above is computationally intensive and has a slow (linear)
convergence. Nevertheless, this method is effective in the chaotic regions of the phase space
where the weak stability boundary is defined. Furthermore, the high precision reached in the
determination of ∂Wn will serve, in future works, to demonstrate the relations between these
sets and the invariant manifolds of the Lyapunov orbits about both L1 and L2. The weak stability
boundary ∂W1(0.0), associated to the set W1(0.0) shown in Figure 3(a), is reported in Figure 4.

4 Visualization of Stable Sets and Weak Stability Boundaries

The computed n-stable sets, Wn, and their weak stability boundaries, ∂Wn, are illustrated in
this section for various values of stability number and eccentricity.

4.1 Visualization of Wn

A sample subset of all achieved Wn is shown for brevity sake. Figure 5 reports the 1-stable
sets W1(e), e = {0, 0.2, 0.4, 0.6, 0.8, 0.95}, in the P2-centered, co-rotating frame introduced in
Section 1.1. The picture shows 1-stable initial conditions that are highlighted according to the
associated Jacobi energy C, reported on the right sidebar. As observed in [3], the set of 1-stable
points recalls a Cantor set; i.e., for a fixed value of e, along the line l(θ) there are different
transitions from stability to instability. This is more evident for increasing eccentricities. It can
be appreciated how the region about P2 shrinks and, at the same time, becomes more irregular
for e → 1. In Figure 6 we have reported the n-stable sets Wn(e), n = {1, 2, . . . , 8}, e = 0. It is
straightforward that, for fixed eccentricity, Wn(e) ⊆ Wm(e), n ≥ m. It can be observed that the
two branches of W1(0.0) that are far from P2 suddenly disappears in the other sets Wn≥2(0.0),
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(a) W1(0.0). (b) W1(0.2). (c) W1(0.4).

(d) W1(0.6). (e) W1(0.8). (f) W1(0.95).

Fig. 5 Collection of W1(e) sets for e = {0, 0.2, 0.4, 0.6, 0.8, 0.95}. The sidebar on the right reports the
Jacobi energy C of the 1-stable initial conditions.

whereas the closer branches becomes thinner for increasing n. Nevertheless, the core of W1(0.0),
i.e., the quasi-circular region about P2 (see Figures 6(a) to 6(h)), is conserved in the subsequent
Wn≥2(0) sets. This indicates that the n-stable sets contain part of the invariant tori surrounding
P2 already observed in [7] for fixed values of C. This property can be summarized by stating
that, in principle, Wn sets are “quasi-invariant” objects for the dynamics: they are regions in the
phase space where orbits stay for a long period of time before leaving for other regions.

4.2 Visualization of ∂Wn

The weak stability boundaries, ∂Wn(e), corresponding to Wn(e) sets discussed previously are
shown. In Figure 4 the weak stability boundary ∂W1(0.0) of the 1-stable set W1(0.0) is reported.
∂W1(0.0) has been obtained with the bisection method described in Section 3.2. In Figure 7(a),
∂W1(e) sets, e = {0, 0.2, . . . , 0.8, 0.95}, associated to the W1(e) sets shown in Figure 5 are
presented with e on the z-axis. In analogy with the stable sets W1(e), their boundaries are
more and more irregular for increasing eccentricity. In Figure 7(b) the weak stability boundary
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(a) W1(0.0). (b) W2(0.0). (c) W3(0.0). (d) W4(0.0).

(e) W5(0.0). (f) W6(0.0). (g) W7(0.0). (h) W8(0.0).

Fig. 6 Collection of Wn(e), n = {1, 2, . . . , 8}, e = 0. It can be seen that the central structure of W1(0.0)
is preserved in the subsequent Wn≥2(0.0) sets. This indicates that the region of Wn(e) about P2 is made
up by invariant tori at different values of C.

(a) ∂W1(e), e = {0, 0.2, . . . , 0.8, 0.95}. (b) ∂Wn(0.0), n = {1, 2, . . . , 8}.

Fig. 7 Figure 7(a): ∂W1(e), e = {0, 0.2, . . . , 0.8, 0.95}, as boundaries of the 1-stable sets W1(e), shown
in Figure 5. Figure 7(b): ∂Wn(0.0), n = {1, 2, . . . , 8}, as boundaries of the n-stable sets Wn(0.0), shown
in Figure 6.

∂Wn(0.0), n = {1, 2, . . . , 8}, associated to the n-stable sets of Figure 6 are shown with the
stability number n on the z-axis. As in Figure 6, the central structure is preserved in ∂Wn(0.0)
as well. This indicates that, as observed for the n-stable sets, the weak stability boundaries are
quasi-invariant objects for the motion of P3.
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(a) W1(0.2), Sun–Jupiter. (b) W1(0.2), Earth–Moon.

Fig. 8 The set W1(0.2) in Sun–Jupiter (left) and Earth–Moon (right) systems.

4.3 Comparison with the Earth–Moon System

The stable sets and their weak stability boundaries achieved in the Sun–Jupiter system (µ =
9.538754 10−4) can be compared to those defined in the Earth–Moon system (µ = 1.21506683 10−2).
It is indeed clear that these sets depend on the mass ratio of the three-body system, as this is
the only parameter characterizing differential equations (1). Plots reported in Figures 4–6 can
be compared to the visualizations in [3], where the Earth–Moon system has been investigated.
As a sample comparison, we have reported in Figure 8 the set W1(0.2) defined in both systems.

Not surprisingly, the scale changes, and the relative size of the two sets is different as the
Earth–Moon mass ratio is about 12 times greater than the Sun–Jupiter one. Nevertheless, the
dependence of the stable sets geometry on the mass ratio is not straightforward. By comparing
Figures 8(a) and 8(b), it can be seen that the island on the upper right in the Earth–Moon system
disappears, and branches occur in the Sun–Jupiter system (right part) that are not present in the
Earth–Moon. Moreover, there are substantially new arcs in the upper left part of the Sun–Jupiter
W1(0.2) set. Overall, besides these changes, the two regions are qualitatively similar, although
there is evidence that the smaller mass ratio is, the richer the stable sets are — which is not
trivial.

5 Conclusions

In this paper we have presented a methodology to compute and visualize weak stability bound-
aries that is a refinement of [3], and also for a new fundamental case, the Sun–Jupiter problem.
To make the existing methodology more efficient, a set of differential equations is written in
polar coordinates, together with the formulation of a stop condition that allows us to signifi-
cantly reduce the effort required to derive the stable sets. In addition, a bisection algorithm has
been formulated for the fine definition of the weak stability boundaries. We have also found that
the mass ratio variability produces important changes in the geometry of the stable sets, as the
Sun–Jupiter case is different from the Earth–Moon one.
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Fig. 9 A portion of ∂W1(e), e = 0, and a set of sample orbits produced by taking random points with
θ ∈ [−π/4, π/4] as initial conditions. There is evidence that these orbits shadow the stable manifolds of
the Lyapunov orbits about both L1 and L2 (shown with ‘+’ markers).

It is well known that the weak stability boundary plays a key role in the design of low energy
transfers as first demonstrated in [1,2] and more recently shown in [4]. More significantly, however,
this object seems to play a key role in the dynamics of motion of P3 about P2. It is seen that
∂Wn is not an invariant object, which makes its study more difficult. It also allows the dynamics
of motion of P3 about P2 to be studied without directly analyzing the dynamics associated with
the invariant manifolds associated with the Lyapunov orbits. The weak stability boundary is
described by a relatively simple algorithmic definition. Nevertheless, there is evidence that it is
a dynamically rich set that deserves more attention.

As a final example, we show in Figure 9 a portion of ∂W1(e), e = 0, in the Earth–Moon
system. We have taken random initial conditions for θ ∈ [−π/4, π/4], and we have numerically
integrated these initial points under the RTBP dynamics (1). There is evidence that the orbits
produced by these points shadow that stable manifolds of the Lyapunov orbits about both L1 and
L2. Ongoing work by the same authors is indeed aimed at demonstrating that, for a significant
range of energies such that the Lyapunov orbits exist, a portion of the weak stability boundaries
locally overlap with the invariant manifolds of the Lyapunov orbits about both L1 and L2.
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