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The human nose: functions and anatomy
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Is the nose flow important?

▶ At least 1/3 of the adult world population is troubled with nasal breathing

difficulties1

▶ In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!)

was $22bn2

▶ Certain nose surgeries have 50% failure rate3

Huge room for improvement!

1
Stewart et al. Int J Gen Med 2010

2
Smith et al. The Laryngoscope 2015

3
Sundh & Sonnergreen, Eur Arch Otholaringol 2015
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The contribution from fluid mechanics: form and function
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The workflow: from CT scan to...

1. Segment the CT scan

2. Build a volume mesh

3. Compute a CFD solution

(DNS, LES, RANS, ...)
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The lack of the functionally normal nose

CFD solution alone does not help surgeons to find the ”best” surgery

▶ Reason: lack of functionally normal nose

▶ Shape optimization problem, but an objective function is lacking

▶ Strong inter-subject anatomical variations with different functional significance
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Today’s talk

▶ Augment ML with CFD

▶ Hypothesis: the flow field amplifies anatomic information
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Big Data and Machine Learning

Database of:

▶ CT scans

▶ rhinomanometry data

▶ ENT evaluation sheet

Open and labeled data: huge value!
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CFD-augmented ML is new

Issues:

1. Univocal training data are needed

2. The dimensionality of the CFD output is much larger than the allowed ML input
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Step 1. Define a tree of elementary defects
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Step 2. Design defects as virtual anti-surgeries
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Step 3. Use functional maps to transfer defects

▶ On a first healthy patient, realistic

deformations are created by hand

(time: weeks)

▶ Deformations are applied to other

healthy patients via functional

mapsa (time: minutes)

a
M.Ovsjanikov et al. ACM Trans. Graph. 2012
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Step 4. Run CFD to create the database

▶ 277 distinct anatomies are generated from 7 healthy patients

▶ Defects are isolated or in combination, various severities

▶ Classes are relatively balanced (but for the healthy class)

▶ OpenFOAM is used to compute the flow field
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The OF setup

▶ Steady inspiration at 280 ml/s (mild

breathing)

▶ Well resolved (incompressible) LES

▶ All terms at second-order accuracy

▶ Statistics computed over 0.6 s

▶ Mesh with 15M cells, no layers,

νt/ν < 4.4

▶ 5000 core hours for each case
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A neural network to classify pathologies

▶ A standard neural network is trained to classify

pathologies

▶ Three fully-connected hidden layers (30, 20, 10 neurons each)

▶ Hyperbolic tangent as activation function (sigmoid for output); cross-entropy as loss

function; scaled conjugate gradient as backpropagation algorithm to update weights and

biases

▶ LOO (preferred to k-CV) as partition method to

carry out validation and testing

Our classifier (12 inputs, 4

outputs):
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Converting CFD to a small feature set

The number of inputs to the NN (related to the number of observations) must be small

We opt for manual feature extraction

Two strategies: regional averages (of velocity, vorticity, TKE, strain, pressure, pressure

gradient, etc), and integral over streamlines
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Results: classification experiment (four classes, LOO)

Class accuracy precision recall F1

Anterior septal deviation, SD-A 0.91 0.82 0.91 0.86

Posterior septal deviation, SD-P 0.90 0.30 0.11 0.16

Middle turbinate hypertrophy, TH-M 0.67 0.47 0.51 0.49

Inferior turbinate hypertrophy, TH-I 0.71 0.51 0.51 0.51
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Results: on the size of the dataset
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Concluding remarks

▶ Data-driven techniques have a bright future in medicine and rhinology

▶ CFD-augmented ML techniques are promising

▶ A reasonably-sized dataset with CFD input features is expected to be accurate

enough for clinical needs
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