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The human nose: functions and anatomy
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Is the nose flow important?

» At least 1/3 of the adult world population is troubled with nasal breathing
difficulties?

» In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!)
was $22bn?

» Certain nose surgeries have 50% failure rate3

Huge room for improvement!

1Stewart et al. Int J Gen Med 2010
2Smi‘ch et al. The Laryngoscope 2015
3Sundh & Sonnergreen, Eur Arch Otholaringol 2015



The contribution from fluid mechanics: form and function

[
40

0.0




The workflow: from CT scan to...
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1. Segment the CT scan
2. Build a volume mesh

3. Compute a CFD solution
(DNS, LES, RANS, ...)
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The lack of the functionally normal nose

CFD solution alone does not help surgeons to find the "best” surgery

» Reason: lack of functionally normal nose
» Shape optimization problem, but an objective function is lacking

» Strong inter-subject anatomical variations with different functional significance



Today’s talk

» Augment ML with CFD

» Hypothesis: the flow field amplifies anatomic information
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Big Data and Machine Learning

Database of:
» CT scans
» rhinomanometry data
» ENT evaluation sheet

Open and labeled data: huge value!
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CFD-augmented ML is new

Issues:

1. Univocal training data are needed

2. The dimensionality of the CFD output is much larger than the allowed ML input



Step 1. Define a tree of elementary defects
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Step 2. Design defects as virtual anti-surgeries
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Step 3. Use functional maps to transfer defects

» On a first healthy patient, realistic
deformations are created by hand
(time: weeks)

» Deformations are applied to other
healthy patients via functional
maps? (time: minutes)

aM.Ovsjanikov et al. ACM Trans. Graph. 2012
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Step 3. Use functional maps to transfer defects

Healthy Endoscopic Septal Deviation,
medial posterior

Virtual Surgery
(Handcrafted)
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» On a first healthy patient, realistic
deformations are created by hand

(time: weeks)
» Deformations are applied to other Pat. 0058 —
healthy patients via functional

minutes
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Virtual Surgery
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aM.Ovsjanikov et al. ACM Trans. Graph. 2012
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Step 4. Run CFD to create the database

P> 277 distinct anatomies are generated from 7 healthy patients
» Defects are isolated or in combination, various severities
» Classes are relatively balanced (but for the healthy class)

» OpenFOAM is used to compute the flow field
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The OF setup

vV vyvyy

Steady inspiration at 280 m//s (mild /
breathing) L
Well resolved (incompressible) LES
All terms at second-order accuracy
Statistics computed over 0.6 s

Mesh with 15M cells, no layers,
vefv < 4.4

5000 core hours for each case
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A neural network to classify pathologies

Our classifier (12 inputs, 4

. : : outputs):
» A standard neural network is trained to classify

pathologies

P Three fully-connected hidden layers (30, 20, 10 neurons each)

> Hyperbolic tangent as activation function (sigmoid for output); cross-entropy as loss

esscsee

function; scaled conjugate gradient as backpropagation algorithm to update weights and

biases

[ A AR E RN NN )
(XXX ]

» LOO (preferred to k-CV) as partition method to
carry out validation and testing

essssocsces
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Converting CFD to a small feature set

The number of inputs to the NN (related to the number of observations) must be small
We opt for manual feature extraction

Two strategies: regional averages (of velocity, vorticity, TKE, strain, pressure, pressure

gradient, etc), and integral over streamlines
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Results: classification experiment (four classes, LOO)

Class accuracy precision recall F1

Anterior septal deviation, SD-A 0.91 0.82 0.91 0.86
Posterior septal deviation, SD-P 0.90 0.30 0.11 0.16
Middle turbinate hypertrophy, TH-M 0.67 0.47 0.51 0.49
Inferior turbinate hypertrophy, TH-I 0.71 0.51 0.51 0.51
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Results: on the size of the dataset
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Concluding remarks

» Data-driven techniques have a bright future in medicine and rhinology
» CFD-augmented ML techniques are promising

P> A reasonably-sized dataset with CFD input features is expected to be accurate

enough for clinical needs
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