

Classification of nasal pathologies: enhancing machine learning with CFD

Maurizio Quadrio¹, Andrea Schillaci¹, Giacomo Boracchi² ¹ Dept. Aerospace Science and Technologies, Politecnico di Milano ² DEIB, Politecnico di Milano

Genova, July 12, 2023

The human nose: functions and anatomy

- At least 1/3 of the adult world population is troubled with nasal breathing difficulties¹
- In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!) was \$22bn²
- Certain nose surgeries have 50% failure rate³

Huge room for improvement!

¹Stewart *et al.* Int J Gen Med 2010

²Smith *et al.* The Laryngoscope 2015

³Sundh & Sonnergreen, Eur Arch Otholaringol 2015

The contribution from fluid mechanics: form and function

The workflow: from CT scan to...

- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)

The workflow: from CT scan to...

- $1. \ \mbox{Segment}$ the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)

CFD solution alone does not help surgeons to find the "best" surgery

- ► Reason: lack of functionally normal nose
- Shape optimization problem, but an objective function is lacking
- ▶ Strong inter-subject anatomical variations with different functional significance

Today's talk

Augment ML with CFD

▶ Hypothesis: the flow field amplifies anatomic information

Database of:

- ► CT scans
- rhinomanometry data
- ► ENT evaluation sheet

Open and labeled data: huge value!

1200000 O 🛅 🖾 +	0408/			9. •
Al files	•) Assets) Master <) 🕢			
Recent				
🛊 Favorites	Name +			Si24
< Shares	0144	<	•••	171.7 MB
Tegs	0145	<		82.4 MB
Shared to Circles	0142	<		497.9 MB
	0141	<		170.8 MB
	0140	<		69 MB
	0139	<		53.2 MB
	0138	<		139.4 MB
	0137	۲		112.4 MB
	0136	<		81.2 MB
	0136	۲		237.4 MB
	0134	<		163.7 MB
	0133	<		76.6 MB
Deleted files	0182	<		125.4 MB
51.5 GB used	0131	<		73.7 MB
O Settings				

Issues:

- 1. Univocal training data are needed
- 2. The dimensionality of the CFD output is much larger than the allowed ML input

Step 1. Define a tree of elementary defects

Step 2. Design defects as virtual anti-surgeries

- On a first healthy patient, realistic deformations are created by hand (time: weeks)
- Deformations are applied to other healthy patients via functional maps^a (time: minutes)

^aM.Ovsjanikov et al. ACM Trans. Graph. 2012

Step 3. Use functional maps to transfer defects

- On a first healthy patient, realistic deformations are created by hand (time: weeks)
- Deformations are applied to other healthy patients via functional maps^a (time: minutes)

^aM.Ovsjanikov *et al.* ACM Trans. Graph. 2012

- ▶ 277 distinct anatomies are generated from 7 healthy patients
- Defects are isolated or in combination, various severities
- Classes are relatively balanced (but for the healthy class)
- OpenFOAM is used to compute the flow field

- Steady inspiration at 280 ml/s (mild breathing)
- Well resolved (incompressible) LES
- All terms at second-order accuracy
- ► Statistics computed over 0.6 *s*
- Mesh with 15M cells, no layers, $\nu_t/\nu <$ 4.4
- ► 5000 core hours for each case

 A standard neural network is trained to classify pathologies

Three fully-connected hidden layers (30, 20, 10 neurons each)

 Hyperbolic tangent as activation function (sigmoid for output); cross-entropy as loss function; scaled conjugate gradient as backpropagation algorithm to update weights and biases

LOO (preferred to k-CV) as partition method to carry out validation and testing Our classifier (12 inputs, 4 outputs):

The number of inputs to the NN (related to the number of observations) must be small We opt for manual feature extraction

Two strategies: regional averages (of velocity, vorticity, TKE, strain, pressure, pressure gradient, etc), and integral over streamlines

Class	accuracy	precision	recall	F1
Anterior septal deviation, SD-A	0.91	0.82	0.91	0.86
Posterior septal deviation, SD-P	0.90	0.30	0.11	0.16
Middle turbinate hypertrophy, TH-M	0.67	0.47	0.51	0.49
Inferior turbinate hypertrophy, TH-I	0.71	0.51	0.51	0.51

Results: on the size of the dataset

- Data-driven techniques have a bright future in medicine and rhinology
- CFD-augmented ML techniques are promising
- A reasonably-sized dataset with CFD input features is expected to be accurate enough for clinical needs

Acknowledgment to the OpenNOSE group!

