Spanwise forcing for turbulent drag reduction: the optimal oscillation period

<u>Maurizio</u> Quadrio, Alessandro Chiarini, Andrea Conforti, Federica Gattere ETC18, Valencia, Sept 5, 2023

Actuators for spanwise forcing

2

We have answers to several questions, but ...

► Performance

Quadrio et al JFM09

We have answers to several questions, but ...

- Performance
- Reynolds number

Quadrio & Gatti JFM16

- Performance
- Reynolds number
- Compressibility

Talk by F.Gattere, session "Control", room S04 today at 15:30

- Performance
- Reynolds number
- Compressibility
- Complex geometries

Banchetti et al JFM20

Performance

- Reynolds number
- Compressibility
- Complex geometries
- ► Transonic airfoil (airplane)

Quadrio et al JFM22

Performance

- Reynolds number
- Compressibility
- Complex geometries
- ► Transonic airfoil (airplane)
- ► How does it work?

- Several studies and reviews
- Statistics are either unchanged or consequence of drag reduction
- No convincing explanation for the drag reduction mechanism
- The mechanism should be known before searching for an actuator

Focus on spanwise wall oscillation

$$w(x, y = 0, z, t) = A \sin\left(\frac{2\pi}{T}t\right)$$

- An optimal oscillation period exists
- ▶ Its value is $T^+_{opt} \approx 100$

The transversal Stokes layer

It is well described by the laminar solution:

$$W_{SL}(y,t) = A \exp\left(rac{-y}{\delta}
ight) \sin\left(rac{2\pi}{T}t - rac{y}{\delta}
ight)$$

with

$$\delta(T) = \sqrt{\frac{\nu T}{\pi}}$$

- ► a wall-normal length scale (thickness of the Stokes layer)?
- ▶ a time scale of turbulence (lifetime of wall structures)?
- ► a streamwise length scale (a convection distance)?
- ▶ a streamwise length (the length of low-speed streaks)?
- none of the above?

In a DNS, an artificial Stokes layer can be prescribed: T and δ can be decoupled!

The profile $W_{SL}(y, t)$ is enforced, instead of computed True W_{SI} : Artificial W_{SI} : Check: 4540 $T^{+} = 25$ $T^{+} = 25$ 40 35 30 30 30 (%) 25 20 20 +_ 20 $\delta^+ = 18$ +____20 10 10 Stokes laver $\delta^+ = 4$ Oscillating wall Gatti & Ouadrio (2016) 2550 75 100 125 150 175 200 225 0 -0.5 0.50 -0.50.5 T^+ W/AW/A

- Channel flow DNS at $Re_{ au}=200$
- Domain size $4\pi h \times 2\pi h$
- $A^+ = 12$ is fixed
- \approx 100 DNS are carried out by varying T and δ independently

- Channel flow DNS at $Re_{\tau} = 400$
- Domain size $4\pi h \times 2\pi h$
- $A^+ = 12$ is fixed

 \approx 100 DNS are carried out by varying T and δ independently

Drag reduction map at $Re_{\tau} = 400$

- ▶ The 'magic' value $T_{opt}^+ = 100$ carries no special meaning
- Ongoing work towards understanding of spanwise forcing

Lagrangian particles

Lagrangian statistics

DR map in * units

13