Spanwise forcing for turbulent drag reduction: the optimal oscillation period

Maurizio Quadrio, Alessandro Chiarini,
Andrea Conforti, Federica Gattere
ETC18, Valencia, Sept 5, 2023

Actuators for spanwise forcing

Marusic Nat.Comm 2021
Auteri Phys.Fluids 2010

We have answers to several questions, but ...

- Performance

Quadrio et al JFM09

We have answers to several questions, but ...

- Performance
- Reynolds number

Quadrio \& Gatti JFM16

We have answers to several questions, but ...

- Performance
- Reynolds number
- Compressibility

We have answers to several questions, but ...

- Performance
- Reynolds number
- Compressibility
- Complex geometries

Banchetti et al JFM20

We have answers to several questions, but ...

- Performance
- Reynolds number
- Compressibility
- Complex geometries
- Transonic airfoil (airplane)

Quadrio et al JFM22

We have answers to several questions, but ...

- Performance
- Reynolds number
- Compressibility
- Complex geometries
- Transonic airfoil (airplane)
- How does it work?
- Several studies and reviews
- Statistics are either unchanged or consequence of drag reduction
- No convincing explanation for the drag reduction mechanism
- The mechanism should be known before searching for an actuator

Focus on spanwise wall oscillation

$$
w(x, y=0, z, t)=A \sin \left(\frac{2 \pi}{T} t\right)
$$

- An optimal oscillation period exists
- Its value is $T_{o p t}^{+} \approx 100$

The transversal Stokes layer

It is well described by the laminar solution:

$$
W_{S L}(y, t)=A \exp \left(\frac{-y}{\delta}\right) \sin \left(\frac{2 \pi}{T} t-\frac{y}{\delta}\right)
$$

with

$$
\delta(T)=\sqrt{\frac{\nu T}{\pi}}
$$

Possible interpretations of $T_{\text {opt }}$

- a wall-normal length scale (thickness of the Stokes layer)?
- a time scale of turbulence (lifetime of wall structures)?
- a streamwise length scale (a convection distance)?
- a streamwise length (the length of low-speed streaks)?
- none of the above?

A thought experiment

In a DNS, an artificial Stokes layer can be prescribed: T and δ can be decoupled!
The profile $W_{S L}(y, t)$ is enforced, instead of computed

True $W_{S L}$:

Artificial $W_{S L}$:

Check:

Parameter study of $D R=D R(\delta, T)$

Channel flow DNS at $R e_{\tau}=200$
Domain size $4 \pi h \times 2 \pi h$
$A^{+}=12$ is fixed
≈ 100 DNS are carried out by varying T and δ independently

Parameter study of $D R=D R(\delta, T)$

Channel flow DNS at $R e_{\tau}=400$
Domain size $4 \pi h \times 2 \pi h$
$A^{+}=12$ is fixed
≈ 100 DNS are carried out by varying T and δ independently

Drag reduction map at $R e_{\tau}=400$

Conclusions

- The 'magic' value $T_{\text {opt }}^{+}=100$ carries no special meaning
- Ongoing work towards understanding of spanwise forcing

Lagrangian particles

Lagrangian statistics

DR map in * units

