Accurate and Efficient Direct Numerical Simulation of drag reduction via riblets

D. Gatti¹, S. Cipelli^{1,2}, F. Gattere², A. Chiarini³, P. Luchini⁴ & M. Quadrio²

18th European Turbulence Conference

¹ Institute for Fluid Mechanics, Karlsruhe Institute of Technology

- ² Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano
- ³ Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology
- ⁴ Dipartimento di Ingegneria Industriale, Università di Salerno

The drag reduction performance of the riblets depends on the sharpness of their tip.

Consequences for DNS: An extremely fine grid is required near the tip.

Adapted from Garcia-Mayoral & Jimenez, Phil. Trans. R. Soc. A (2011)

The drag reduction performance of the riblets depends on the sharpness of their tip.

Consequences for DNS: An extremely fine grid is required near the tip.

Simulation of three dimensional riblets particularly expensive

Riblets resolved in immersed boundary solver

(Luchini, Eur. J. Mech. B Fluids (2016))

- second-order finite differences on a staggered grid
- implicit deferred correction of $\nabla^2 \mathbf{u}$
 - solution behaves linearly at the wall

Riblets resolved in immersed boundary solver

(Luchini, Eur. J. Mech. B Fluids (2016))

- second-order finite differences on a staggered grid
- implicit deferred correction of $\nabla^2 \mathbf{u}$ and ∇p
 - solution behaves linearly at the wall
 - solution behaves as Stokes eigensolution at the riblet tip

Analytical solution of the Stokes problem around infinite corner:

> $\nabla \cdot \mathbf{u} = 0$ $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \frac{1}{\rho}\nabla p = \nu \nabla^2 \mathbf{u}$

- linear equations
- two (|| and \perp) uncoupled problems!

THE PROBLEM || TO THE CREST

1D Laplace problem

$$0 = \nu \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

The problem \perp to the crest

2D Stokes problem

$$\frac{\partial P}{\partial y} = \nu \left(\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
$$\frac{\partial P}{\partial z} = \nu \left(\frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

- For Stokes flows, the protrusion height $\Delta h = h_{\parallel} h_{\perp}$ can be computed exactly
- For turbulent flows, drag reduction performance is related to Δh

Protrusion heights without and with corner correction with 8 (\bullet) and 16(\diamond) points per riblet (n):

TURBULENT SIMULATIONS: COMPUTATIONAL DOMAIN

We performed DNS of turbulent channel flows with both walls covred by riblets:

- Constant Pressure Gradient (CPG) $Re_{ au}=200$
- s^+ is changed by changing the phsical riblet size s/δ

STRAIGHT RIBLETS: FRICTION COEFFICIENT

without and with corner correction with Grid 1 (\bullet) and Grid 2 (\blacklozenge):

STRAIGHT RIBLETS: FRICTION COEFFICIENT

without and with corner correction with Grid 1 (\bullet) and Grid 2 (\blacklozenge):

STRAIGHT RIBLETS: FRICTION COEFFICIENT

without and with corner correction with Grid 1 (\bigcirc) and Grid 2 (\diamondsuit):

STRAIGHT RIBLETS: ΔU^+

Comparison with literature data

SINUSOIDAL RIBLETS

SINUSOIDAL RIBLETS

SINUSOIDAL RIBLETS

SINUSOIDAL RIBLETS: DRAG REDUCTION

Straight Long ($\lambda_x = 1500, \beta_{max} = 2^\circ$) Short ($\lambda_x = 250, \beta_{max} = 12^\circ$)

An analytical correction for the tip singularity has been developed

- accurate: increased accuracy in computing Δh
- efficient: accurate results with as low as 4 points per riblet

An analytical correction for the tip singularity has been developed

- accurate: increased accuracy in computing Δh
- efficient: accurate results with as low as 4 points per riblet

and Outlook:

- spanwise inhomogeneous grid, still some work to do...
- we are interested in 3d riblets, but the result is general

Thank you for your kind attention!

complaints, comments, suggestions: davide.gatti@kit.edu For comparison, Endrikat et al. (2021)

- at least 32 points per riblet
- resolution for riblets at $s^+ =$ 10: $\delta y^+ = 0.057 \div 1.52$, $\delta z^+ = 0.0334 \div 7.02$
- domain size $2.6\delta \times 0.64\delta \times 2\delta$

Our computational cost (finer grid)

• 91k core hours on bwUniCluster 2.0

PRELIMINARY EXTENSION TO 3D SINUSOIDAL RIBLETS

- Global reference frame: decoupling into 1D Laplace and 2D Stokes problems fails
- Local reference frame: decoupling is possible, but velocity components are intermixed
 - discretization becomes explicit
 - discretization becomes challenging due to staggered grid

Assumption: local misalignment of the riblets section is small $(\beta(x)_{max} = 2^\circ, \lambda_x^+ = 1500)$

$$\begin{cases} u_G \\ v_G \end{cases} = \begin{bmatrix} f(\beta, c_{lap}, c_{st}) & \underline{g}(\beta, c_{tap}, c_{st}) \\ \underline{p}(\beta, c_{tap}, c_{st}) & q(\beta, c_{lap}, c_{st}) \end{bmatrix} \begin{cases} u_L \\ v_L \end{cases}$$

Solution: limitation to the diagonal components of the correction matrix

3D RIBLETS: PRELIMINARY RESULTS

Friction coefficient for the cases

- smooth
- with riblets
 - without corner correction
 - with corner correction

with

8 (●)
16(♦)

points per riblet

ANALYTICAL CORNER CORRECTION: STOKES PROBLEM WITH STREAMFUNCTION-VORTICITY FORMULATION

$$\begin{cases} \nabla \cdot \mathbf{u} = 0 \\ \nabla^2 \mathbf{u} - \nu^{-1} \nabla p = 0 \end{cases} \implies \begin{cases} \nabla^2 \boldsymbol{\psi} = \boldsymbol{\omega} \\ \nabla^2 \boldsymbol{\omega} = 0. \end{cases}$$

The steady $\psi - \omega$ Stokes system in polar coordinates is

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = \omega$$
$$\frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} = 0.$$

By imposing a variable separation for $\psi(r, \theta) = P(r)F(\theta)$ and $\omega(r, \theta) = R(r)G(\theta)$, calling $\chi = G''/G$ and $k = -\sqrt{\chi} < 0$:

$$r^{2}R'' + rR' - \chi R = 0$$

$$G'' + \chi G = 0$$

$$\implies R = ar^{-\sqrt{\chi}} + br^{\sqrt{\chi}} = ar^{k}$$

since $r \ll 1$, we obtain:

$$\omega(r,\theta) = r^k \left[C_1 \cos(k\theta) + C_2 \sin(k\theta) \right].$$

 $\psi(r,\theta) = r^{k+2} \left[D_1 \cos\left((k+2) \theta \right) + D_2 \sin\left((k+2) \theta \right) + D_3 \cos\left(k \theta \right) + D_4 \sin\left(k \theta \right) \right].$

The coefficients *D_i* are given after the following boundary and symmetry conditions are provided:

$u_r(r, \pm oldsymbol{arphi}_w) = 0$	no penetration
$u_{ heta}\left(r, \pm oldsymbol{arphi}_{w} ight) = 0$	no-slip
$u_r(r, \theta) = -u_r(r, -\theta)$	u_r odd in θ
$u_{\theta}\left(r,\theta ight)=u_{\theta}\left(r,- heta ight)$	$u_{ heta}$ even in $m{ heta}$.

The symmetry conditions lead to $D_2 = D_4 = 0$, and the definition of the stream-function gives u_r and u_θ depending on $\gamma = k + 1$ as

$$u_{r}(r,\theta) = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = -r^{\gamma} \left[D_{1}(\gamma+1)\sin\left((\gamma+1)\theta\right) + D_{3}(\gamma-1)\sin\left((\gamma-1)\theta\right) \right]$$
$$u_{\theta}(r,\theta) = -\frac{\partial \psi}{\partial r} = -(\gamma+1)r^{\gamma} \left[D_{1}\cos((\gamma+1)\theta) + D_{3}\cos((\gamma-1)\theta) \right].$$

The boundary conditions are used to find the ratio between the coefficients D_3 and D_1 , that is

$$\frac{D_3}{D_1} = \frac{\cos\left((\gamma+1)\,\varphi_w\right)}{\cos\left((\gamma-1)\,\varphi_w\right)}.\tag{1}$$

We set $D_1 = 1$.

The last constant to find is γ , whose value is given solving numerically $det(\mathbf{Q}(\gamma)) = 0$.

$$\underbrace{\begin{bmatrix} (\gamma+1)\sin((\gamma+1)\varphi_{W}) & (\gamma-1)\sin((\gamma-1)\varphi_{W}) \\ \cos((\gamma+1)\varphi_{W}) & \cos((\gamma-1)\varphi_{W}) \end{bmatrix}}_{\mathbf{Q}(\gamma)} \begin{bmatrix} D_{1} \\ D_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The solution depends on the geometry considered: for the problem at hand, with $\varphi_w = \pi/6$, the result is $\gamma \approx 0.51222$.

The last unknown for the Stokes problem is the pressure:

$$\nu \left[\frac{\partial^2 u_r}{\partial r^2} + \frac{1}{r} \frac{\partial u_r}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2 u_r}{\partial \theta^2} - 2 \frac{\partial u_\theta}{\partial \theta} - u_r \right) \right] - \frac{1}{\rho} \frac{\partial p}{\partial r} = 0$$

$$\nu \left[\frac{\partial^2 u_\theta}{\partial r^2} + \frac{1}{r} \frac{\partial u_\theta}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2 u_\theta}{\partial \theta^2} + 2 \frac{\partial u_r}{\partial \theta} - u_\theta \right) \right] - \frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta} = 0$$

$$\frac{1}{\nu} p(r, \theta) = -4\gamma D_3 r^{\gamma-1} \sin\left((\gamma - 1)\theta\right).$$

The expression for p can not be used itself, because it is not guaranteed that p is symmetric and continuous inside the body. A correction can be implemented to choose a continuous branch for the solution, considering $\tilde{\theta} = \theta f(\theta)$ where $f(\theta) \neq 1$ only if $|\theta| > \varphi_w$, so that p is given by

$$\frac{1}{\nu}p(r,\theta) = -4\gamma D_3 r^{\gamma-1} \sin\left((\gamma-1)\theta f(\theta)\right)$$
$$f(\theta) = \begin{cases} 1 + \frac{|\theta| - \pi}{\pi - \varphi_w} \left(\frac{1}{\gamma-1} - 1\right) & \text{if } |\theta| > \varphi_w \\ 1 & \text{otherwise.} \end{cases}$$

The Laplace problem reads:

$$\nabla^2 u = 0 \Longrightarrow \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0,$$

and a variable separation leads to the general solution

$$u(r, \theta) = r^m [C \cos(m\theta) + D \sin(m\theta)].$$

No-slip boundary conditions, namely $u(r, \pm \varphi_w) = 0$, lead to $\cos(m\varphi_w) = 0$ and so $m\varphi_w = \pi/2$. The symmetry condition, $u(r, \theta) = u(r, -\theta)$, gives D = 0 and the final expression for u, namely

$$u = Cr^m \cos(m\theta)$$
.

C here is a free constant that can be set to 1 to have a unique solution.

$$u^{(t+\Delta t)} = u^{(t)} + (lapl + NL + \nabla p) \Delta t - u^{(t+\Delta t)} imbc\Delta t \Longrightarrow u^{(t+\Delta t)} = \frac{u^{(t)} + RHS\Delta t}{1 + imbc\Delta t}$$

Being u_{loc} and p_{loc} the analytical solutions for the velocity and the pressure respectively, considering the problem for the x-direction one gets

$$d_{u} = \underbrace{\left(\frac{lapl\left(u_{loc}\left(x,\cdot\right)\right)}{Re} - \frac{p_{loc}\left(x + \Delta x,\cdot\right) - p_{loc}\left(x,\cdot\right)}{\Delta x}\right) \frac{1}{u_{loc}\left(x,\cdot\right)}}_{corr_{stokes}} u\left(x,\cdot\right),$$

where lapl() is the laplacian corrected with the true distance from the body. The Navier-Stokes problem here is not so different: the terms to add inside *imbc* are a contribution from the Laplace problem in u, corr_{lapl}, and from the Stokes problem in v and w, corr_{stokes}.

Considering (u', v') in the local reference frame and (u, v) in the global one, the following additional rotation should be performed:

$$u' = \cos(\beta) u + \sin(\beta) v, \qquad v' = \cos(\beta) v - \sin(\beta) u.$$

The *imbc* coefficients in the local reference frame were already found for the straight riblets as

$$d_{u'} = \operatorname{corr}_{lapl} u', \qquad d_{v'} = \operatorname{corr}_{stokes} v',$$

but to define the corrections in the cartesian global reference frame the two components get mixed into the 2×2 non-diagonal system.

$$\begin{bmatrix} d_u \\ d_v \end{bmatrix} = \begin{bmatrix} \cos^2(\beta) \operatorname{corr}_{lapl} + \sin^2(\beta) \operatorname{corr}_{stokes} & (\operatorname{corr}_{lapl} - \operatorname{corr}_{stokes}) \sin(2\beta)/2 \\ (\operatorname{corr}_{stokes} - \operatorname{corr}_{lapl}) \sin(2\beta)/2 & \cos^2(\beta) \operatorname{corr}_{stokes} + \sin^2(\beta) \operatorname{corr}_{lapl} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}.$$

$$\begin{cases} d_{u} = \left(\cos^{2}\left(\beta\right) \operatorname{corr}_{lapl} + \sin^{2}\left(\beta\right) \operatorname{corr}_{stokes}\right) u \\ d_{v} = \left(\cos^{2}\left(\beta\right) \operatorname{corr}_{stokes} + \sin^{2}\left(\beta\right) \operatorname{corr}_{lapl}\right) v. \end{cases}$$

	nppr	h_{\parallel}	(err%)	h_{\perp}	(err%)	Δh	(err%)
Standard	8	0.1537	(-10.4)	0.1254	(+54.8)	0.02831	(-68.7)
+ Correction	8	0.1683	(-1.9)	0.0811	(+0.2)	0.0872	(-3.7)
Standard	16	0.1639	(-4.4)	0.1028	(+26.9)	0.06111	(-32.5)
+ Correction	16	0.1702	(-0.7)	0.0812	(+0.3)	0.0890	(-1.7)

Table 1: Results of the validation for straight riblets with the immersed boundary correction only (Standard) and with the addition of the corner correction (+ Correction). Errors are estimated as $(h - \bar{h})/\bar{h}$.

$ar{h}_{\parallel} ar{h}_{\perp} \Delta ar{h}$ 0.17150 0.08099 0.09051

Table 2: Protrusion heights reference values for $h/s = \sqrt{3}/2$.

	n	U_b	(ΔU_b^+ %)	$C_{f} \times 10^{3}$	$(\Delta C_f/C_{f,0}\%)$
Standard	8	15.62	(-2.7)	8.20	(+5.7)
+ Correction	8	16.58	(+3.3)	7.27	(-6.3)
Standard	16	16.14	(+0.1)	7.67	(-0.1)
+ Correction	16	16.54	(+2.6)	7.31	(-4.8)

Table 3: U_b^+ and C_f for the straight case. ΔU_b^+ and ΔC_f are evaluated considering the smooth channel simulation with the same δy^+ of the case considered.

	n	U_b	(ΔU_b^+ %)	$C_f \times 10^3$	$(\Delta C_f/C_{f,0}\%)$
L Standard	8	16.28	(+1.4)	7.55	(-2.7)
L + Correction	8	16.75	(+4.4)	7.13	(-8.1)
L Standard	16	16.43	(+1.9)	7.41	(-3.5)
L + Correction	16	16.67	(+3.4)	7.19	(-6.4)

Table 4: U_b^+ and C_f for the sinusoidal cases. ΔU_b^+ and ΔC_f are evaluated considering the smooth channel simulation with the same δy^+ of the case considered.