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DR performance: importance of the sharp tip

The drag reduction performance of the
riblets depends on the sharpness of
their tip.

Consequences for DNS:
An extremely fine grid is required near
the tip.

Simulation of three dimensional riblets
particularly expensive
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Immersed boundary method

Riblets resolved in immersed boundary solver
(Luchini, Eur. J. Mech. B Fluids (2016))

• second-order finite differences
on a staggered grid
• implicit deferred correction of ∇2u
• solution behaves linearly at the wall

• solution behaves as Stokes eigensolution
at the riblet tip
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Immersed boundary method with analytical tip correction

Riblets resolved in immersed boundary solver
(Luchini, Eur. J. Mech. B Fluids (2016))

• second-order finite differences
on a staggered grid
• implicit deferred correction of ∇2u and ∇p
• solution behaves linearly at the wall
• solution behaves as Stokes eigensolution
at the riblet tip
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Analytical correction of the corner singularity

Analytical solution
of the Stokes problem
around infinite corner:

∇ · u = 0

��
���

��∂u
∂t

+ (u · ∇)u +
1
ρ
∇p = ν∇2u

• linear equations
• two (‖ and ⊥) uncoupled problems!

volume for correction
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The problem ‖ to the crest
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The problem ⊥ to the crest
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Validation: protrusion heights

• For Stokes flows, the
protrusion height
∆h = h‖ − h⊥ can be
computed exactly
• For turbulent flows, drag
reduction performance is
related to ∆h
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Validation: protrusion heights (2)

Protrusion heights without and with corner correction
with 8 ( ) and 16( ) points per riblet (n):
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Turbulent simulations: computational domain
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Turbulent simulations: simulation parameters

We performed DNS of turbulent channel flows with both walls covred by riblets:

• Constant Pressure Gradient (CPG) Reτ = 200
• s+ is changed by changing the phsical riblet size s/δ

s+ Reτ L+x L+y δx+ δy+ δz+

Grid 1 8÷ 26 200 1500 750 2.0 1.0 0.8÷ 2.4
Grid 2 2÷ 8 200 1500 750 2.0 0.5 0.8÷ 2.4

Example of riblet discretization
at s+ = 8:
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Straight riblets: Friction Coefficient

without and with corner correction with Grid 1 ( ) and Grid 2 ( ):
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4 points per riblet!
375 riblets in the domain!

different grid, consistent results!
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Straight riblets: ∆U+

Comparison with literature data
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Sinusoidal Riblets
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Sinusoidal Riblets
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Sinusoidal Riblets

,

13



Sinusoidal Riblets: Drag Reduction

Straight
Long (λx = 1500, βmax = 2◦)
Short (λx = 250, βmax = 12◦)
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Conclusions

An analytical correction for the tip singularity has been developed

• accurate: increased accuracy in computing ∆h
• efficient: accurate results with as low as 4 points per riblet

and Outlook:

• spanwise inhomogeneous grid, still some work to do...
• we are interested in 3d riblets, but the result is general
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For comparison, Endrikat et al. (2021)

• at least 32 points per riblet
• resolution for riblets at s+ = 10: δy+ = 0.057÷ 1.52, δz+ = 0.0334÷ 7.02
• domain size 2.6δ × 0.64δ × 2δ

Our computational cost (finer grid)

• 91k core hours on bwUniCluster 2.0
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Preliminary extension to 3D sinusoidal riblets
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3D riblets: issues

• Global reference frame:
decoupling into 1D Laplace and 2D
Stokes problems fails
• Local reference frame: decoupling
is possible, but velocity
components are intermixed
• discretization becomes explicit
• discretization becomes
challenging due to staggered grid
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3D riblets: provisional solution
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Assumption: local
misalignment of the riblets
section is small
(β(x)max = 2◦, λ+

x = 1500)

Solution: limitation to the
diagonal components of the
correction matrix
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3D riblets: preliminary results

Friction coefficient for
the cases
• smooth
• with riblets
• without corner
correction
• with corner
correction

with
• 8 ( )
• 16( )

points per riblet
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Analytical Corner Correction: Stokes problemwith streamfunction-vorticity
formulation

¨

∇ · u = 0
∇2u− ν−1∇p = 0

=⇒
¨

∇2ψ =ω

∇2ω = 0.

The steady ψ − ω Stokes system in polar coordinates is

∂2ψ

∂r2
+
1
r
∂ψ

∂r
+
1
r2
∂2ψ

∂θ2
= ω

∂2ω

∂r2
+
1
r
∂ω

∂r
+
1
r2
∂2ω

∂θ2
= 0.
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Analytical Corner Correction: polar coordinates

By imposing a variable separation for ψ(r, θ) = P(r)F(θ) and ω(r, θ) = R(r)G(θ),
calling χ = G′′/G and k = −pχ < 0:

r2R′′ + rR′ − χR = 0
G′′ + χG = 0

=⇒ R = ar−
p
χ + br

p
χ = ark

since r� 1, we obtain:

ω(r, θ) = rk [C1 cos (kθ) + C2 sin (kθ)] .

ψ(r, θ) = rk+2 [D1 cos ((k+ 2)θ) + D2 sin ((k+ 2)θ) + D3 cos (kθ) + D4 sin (kθ)] .
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Analytical Corner Correction: boundary conditions

The coefficients Di are given after the following boundary and symmetry
conditions are provided:

ur (r,±φw) = 0 no penetration
uθ (r,±φw) = 0 no-slip
ur (r, θ) = −ur (r,−θ) ur odd in θ
uθ (r, θ) = uθ (r,−θ) uθ even in θ.

̄
z̄

ȳ
θ

r

r (r, θ)

θ (r, θ)

φ
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Analytical Corner Correction: boundary conditions

The symmetry conditions lead to D2 = D4 = 0, and the definition of the
stream-function gives ur and uθ depending on γ = k+ 1 as

ur (r, θ) =
1
r
∂ψ

∂θ
= −rγ [D1 (γ+ 1) sin ((γ+ 1)θ) + D3 (γ − 1) sin ((γ − 1)θ)]

uθ(r, θ) = −
∂ψ

∂r
= −(γ+ 1)rγ [D1cos((γ+ 1)θ) + D3cos((γ − 1)θ)] .

The boundary conditions are used to find the ratio between the coefficients D3
and D1, that is

D3
D1

=
cos ((γ+ 1)φw)

cos ((γ − 1)φw)
. (1)

We set D1 = 1.
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Analytical Corner Correction: boundary conditions

The last constant to find is γ, whose value is given solving numerically
det(Q (γ)) = 0.
�

(γ+ 1) sin ((γ+ 1)φw) (γ − 1) sin ((γ − 1)φw)
cos ((γ+ 1)φw) cos ((γ − 1)φw)

�

︸ ︷︷ ︸

Q(γ)

�

D1
D3

�

=

�

0
0

�

The solution depends on the geometry considered: for the problem at hand, with
φw = π/6, the result is γ ≈ 0.51222.
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Analytical Corner Correction: pressure

The last unknown for the Stokes problem is the pressure:

ν

�

∂2ur
∂r2

+
1
r
∂ur
∂r

+
1
r2

�

∂2ur
∂θ2
− 2

∂uθ
∂θ
− ur

��

−
1
ρ

∂p
∂r

= 0

ν

�

∂2uθ
∂r2

+
1
r
∂uθ
∂r

+
1
r2

�

∂2uθ
∂θ2

+ 2
∂ur
∂θ
− uθ

��

−
1
ρ

1
r
∂p
∂θ

= 0

1
ν
p (r, θ) = −4γD3rγ−1 sin ((γ − 1)θ) .
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Analytical Corner Correction: pressure

The expression for p can not be used itself, because it is not guaranteed that p is
symmetric and continuous inside the body. A correction can be implemented to
choose a continuous branch for the solution, considering θ̃ = θf (θ) where
f (θ) 6= 1 only if |θ| > φw , so that p is given by

1
ν
p (r, θ) = −4γD3rγ−1 sin ((γ − 1)θf (θ))

f (θ) =











1+
|θ| − π

π − φw

� 1
γ − 1

− 1
�

if |θ| > φw

1 otherwise.
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Analitical correction: Laplace Problem

The Laplace problem reads:

∇2u = 0 =⇒
1
r
∂

∂r

�

r
∂u
∂r

�

+
1
r2
∂2u
∂θ2

= 0,

and a variable separation leads to the general solution

u(r, θ) = rm
�

C cos (mθ) + D sin (mθ)
�

.

No-slip boundary conditions, namely u (r,±φw) = 0, lead to cos (mφw) = 0 and
so mφw = π/2. The symmetry condition, u (r, θ) = u (r,−θ), gives D = 0 and the
final expression for u, namely

u = Crm cos (mθ) .

C here is a free constant that can be set to 1 to have a unique solution.
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Analytical Corner Correction: implementation

u(t+∆t) = u(t) + (lapl+NL+ ∇p)∆t − u(t+∆t)imbc∆t =⇒ u(t+∆t) =
u(t) + RHS∆t
1+ imbc∆t

Being uloc and ploc the analytical solutions for the velocity and the pressure
respectively, considering the problem for the x-direction one gets

du =
� lapl (uloc (x, ·))

Re
−
ploc (x+∆x, ·)− ploc (x, ·)

∆x

� 1
uloc (x, ·)

︸ ︷︷ ︸

corrstokes

u (x, ·) ,

where lapl() is the laplacian corrected with the true distance from the body. The
Navier-Stokes problem here is not so different: the terms to add inside imbc are
a contribution from the Laplace problem in u, corrlapl, and from the Stokes
problem in v and w, corrstokes.

30



Analytical Corner Correction: rotation

Considering (u′, v′) in the local reference frame and (u, v) in the global one, the
following additional rotation should be performed:

u′ = cos (β)u+ sin (β) v, v′ = cos (β) v − sin (β)u.

The imbc coefficients in the local reference frame were already found for the
straight riblets as

du′ = corrlapl u′, dv′ = corrstokes v′,

but to define the corrections in the cartesian global reference frame the two
components get mixed into the 2× 2 non-diagonal system.
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Analytical Corner Correction: rotation

�

du
dv

�

=

�

cos2 (β) corrlapl + sin2 (β) corrstokes
�

corrlapl − corrstokes
�

sin (2β) /2
�

corrstokes − corrlapl
�

sin (2β) /2 cos2 (β) corrstokes + sin2 (β) corrlapl

��

u
v

�

.

¨

du =
�

cos2 (β) corrlapl + sin2 (β) corrstokes
�

u
dv =
�

cos2 (β) corrstokes + sin2 (β) corrlapl
�

v.
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Protrusion Heights

nppr h‖ (err%) h⊥ (err%) ∆h (err%)

Standard 8 0.1537 (-10.4) 0.1254 (+54.8) 0.02831 (-68.7)
+ Correction 8 0.1683 (-1.9) 0.0811 (+0.2) 0.0872 (-3.7)

Standard 16 0.1639 (-4.4) 0.1028 (+26.9) 0.06111 (-32.5)
+ Correction 16 0.1702 (-0.7) 0.0812 (+0.3) 0.0890 (-1.7)

Table 1: Results of the validation for straight riblets with the immersed boundary
correction only (Standard) and with the addition of the corner correction (+ Correction).
Errors are estimated as

�

h− h̄
�

/ h̄.
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Protrusion Heights

h̄‖ h̄⊥ ∆h̄
0.17150 0.08099 0.09051

Table 2: Protrusion heights reference values for h/s =
p
3/2.
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Skin Friction Coefficient and Ub - Straight

n Ub (∆U+
b%) Cf × 103 (∆Cf /Cf ,0%)

Standard 8 15.62 (-2.7) 8.20 (+5.7)
+ Correction 8 16.58 (+3.3) 7.27 (-6.3)

Standard 16 16.14 (+0.1) 7.67 (-0.1)
+ Correction 16 16.54 (+2.6) 7.31 (-4.8)

Table 3: U+b and Cf for the straight case. ∆U+b and ∆Cf are evaluated considering the
smooth channel simulation with the same δy+ of the case considered.
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Skin Friction Coefficient and Ub - Sinusoidal

n Ub (∆U+
b%) Cf × 103 (∆Cf /Cf ,0%)

L Standard 8 16.28 (+1.4) 7.55 (-2.7)
L + Correction 8 16.75 (+4.4) 7.13 (-8.1)
L Standard 16 16.43 (+1.9) 7.41 (-3.5)
L + Correction 16 16.67 (+3.4) 7.19 (-6.4)

Table 4: U+b and Cf for the sinusoidal cases. ∆U+b and ∆Cf are evaluated considering the
smooth channel simulation with the same δy+ of the case considered.
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