"18 th European Turbulence Conference – ETC 18"

Effect of control discretization

on streamwise traveling waves of spanwise wall velocity

E. Gallorini¹, M.Quadrio¹

¹ Dept. of Aerospace Science and Technology (DAER), Politecnico di Milano, Italy

Few laboratory implementations of StTW:

- Tensioned membrane skin (Bird et al, FTAC 2018);
- Dielectric Barrier Discharge plasma actuators (Benard et al, 2021 55th 3AF ICAA);
- Moving slabs (Auteri et al, PoF 2010, Marusic et al, Nat. Comm. 2021).

Experiment of Auteri et al, PoF 2010:

- Pipe flow ($Re_b = 4900, Re_\tau = 175$);
- Sinusoidal wave discretized with s rotating slabs, Discrete Traveling Wave (DTW);

• \mathcal{R} wiggles for s = 3;

• Maximum \mathcal{R} for DNS higher than s = 3.

Simulations

Results of DNS (channel+StTW) and experiment (pipe+DTW) are different \Rightarrow DNS for a pipe with DTW.

- Primitive variables in cylindrical coordinates;
- Spectral discretization in θ and x, compact FD in y;
- Implicit-explicit temporal discretization (CN for viscous term, RK for convective term).

Constant θ discretization \Rightarrow center of the pipe over resolved. Solution: (radially) varying azimuthal modes. Different controls:

• StTW: $w(x,t) = A\sin(\omega t - k_x x)$ (SIN),

Drag reduction

- $k_x^+ = 0.0082$
- $-0.35 \le \omega^+ \le 0.35$

Fourier series expansion of DTW

Fourier series expansion of DTW

E. Gallorini, M. Quadrio- "Effect of control discretization on streamwise traveling waves of spanwise wall velocity"

Fourier series expansion of DTW

- For high DR ($\omega^+ = -0.02$) \Rightarrow Localized turbulence;
- Vortices highlighted with $\lambda_2^+ = -0.022$.
- Could explain high DR peak.

 Ref

- DNS to replicate (and expand) the experiment by Auteri et al, PoF 2010;
- Differences between DTW and SIN, confirmed by numerical data;
- Discretization \Rightarrow Wiggles of \mathcal{R} ;
- Localized turbulence \Rightarrow High \mathcal{R} peak for simulations.

The discretization of the control affects the results in terms of \mathcal{R} and \mathcal{S} . It must be accounted when experiments are performed.

Thank you for your attention!

contact: emanuele.gallorini@polimi.it

Computational details

• $Re_b = 4900$

- L = 22R
- $N_x \times N_{\theta,max} \times N_y = 384 \times 192 \times 100$

Power budget

E. Gallorini, M. Quadrio- "Effect of control discretization on streamwise traveling waves of spanwise wall velocity"

Numerical method: variable modes

Constant azimuthal discretization \Rightarrow center of the pipe over resolved. Solution: (radially) varying azimuthal modes.

 Φ^+_{uu}

Numerical method: Gibbs phenomenon

Discontinuous jump & Fourier transforms \Rightarrow Gibbs phenomenon. Solution: filtering of the control wave. Gaussian filter:

Statistics

- Two frequencies, $\omega^+=-0.08$ (DR) and $\omega^+=0.11$ (DI for SIN, DR for S3) for $_{_{\rm \#}}$ Ref, SIN and S3.
- Quantities are scaled using the actual Re_{τ}

---- SIN

-0.08

-0.2

ω+ **¥**β.11

~

- Two frequencies, $\omega^+ = -0.08$ and $\omega^+ = 0.11$ for SIN and S3.
- $\bullet\,$ Quantities are scaled using the actual Re_{τ}

Average over time and azimuthal direction (θ) :

2. /2 -

E. Gallorini, M. Quadrio- "Effect of control discretization on streamwise traveling waves of spanwise wall velocity"

Fourier series expansion of DTW

$$W(x,t;3) = \frac{3\sqrt{3}}{2\pi} A \left[\sin(\omega t - \kappa_x x) + \frac{1}{2} \sin(\omega t + 2\kappa_x x) - \frac{1}{4} \sin(\omega t - 4\kappa_x x) - \frac{1}{5} \sin(\omega t + 5\kappa_x x) \right]$$

1

$$=\frac{3}{\pi}A\Big[\sin(\omega t-\kappa_x x)+\frac{1}{5}\sin(\omega t+5\kappa_x x)-\frac{1}{7}\sin(\omega t-7\kappa_x x)-\frac{1}{11}\sin(\omega t+11\kappa_x x)\Big].$$

1

Case	S3	m0f	m0	m0+m1	S6	m0f	m0	m0+m1
$\omega^+ = 0.11$	4.1%	-9.4%	-2.2%	2.9%	-6.0%	-9.4%	-8.1%	-6.6%
$\omega^{+} = -0.08$	38.1%	30.5%	36.4%	37.5%	31.1%	31.2%	31.2%	31.8%
$\omega^+ = -0.2$	14.3%	20.3%	7.5%	11.5%	25.4%	22.1%	25.3%	26.3%

-

Fourier series expansion of DTW: Power budget

Case	SIN	S3	m0f	m0	m0+m1	S6	m0f	m0	m0+m1
$\omega^{+} = 0.11$	1.42	1.46	0.97	1.29	1.38	1.42	1.29	1.37	1.42
$\omega^+ = -0.08$	1.42	1.28	1.00	1.12	1.21	1.42	1.33	1.36	1.41
$\omega^+ = -0.2$	2.21	2.08	1.51	1.86	1.99	2.14	2.01	2.07	2.13