
# The OpenNOSE project: reasons of interest for the lung modelling community

Maurizio Quadrio Lung Modelling Congress, Parma, Nov 22–23, 2023

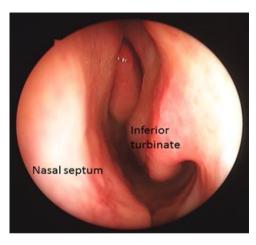


#### The human nose: functions and anatomy





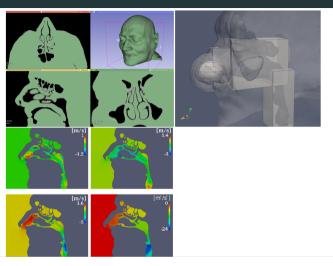
- At least 1/3 of the adult world population is troubled with nasal breathing difficulties<sup>1</sup>
- In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!) was \$22bn<sup>2</sup>
- ▶ Certain nose surgeries have 50% failure rate<sup>3</sup>


#### Huge room for improvement!

<sup>&</sup>lt;sup>1</sup>Stewart *et al.* Int J Gen Med 2010

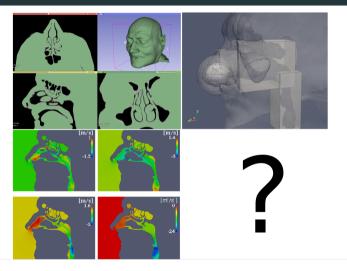
<sup>&</sup>lt;sup>2</sup>Smith *et al*. The Laryngoscope 2015

<sup>&</sup>lt;sup>3</sup>Sundh & Sonnergreen, Eur Arch Otholaringol 2015


# Form and function



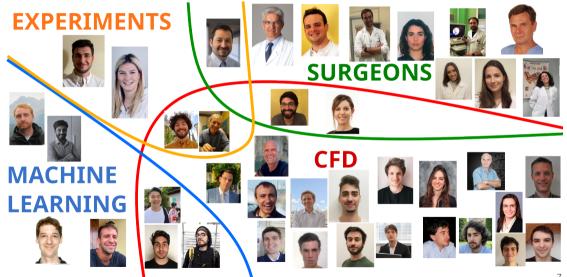



#### The workflow: from CT scan to...

- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)



#### The workflow: from CT scan to...


- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)



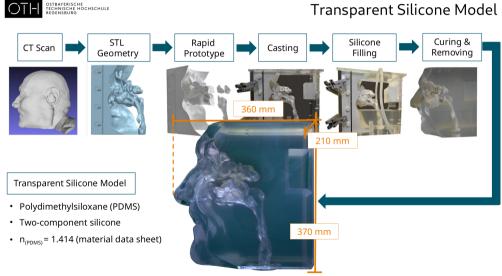
CFD solution alone does not help surgeons to find the "best" surgery

- Reason: lack of functionally normal nose
- Strong inter-subject anatomical variations with different functional significance
- ► Shape optimization problem, with unknown objective function

OpenNOSE



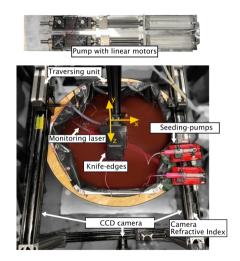
Bringing CFD into the clinical setting requires:


- 1. Assessing reliability through a solid benchmark
- 2. Distilling CFD into something useful

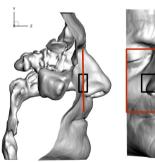
Establishing a benchmark

- ► An unique Reynolds number does not exist
- ▶ Most authors use RANS, but the flow is not turbulent
- ▶ Most authors use steady RANS, but the flow is low-*Re* and unsteady
- Accuracy of discretization is critical

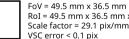
The major limiting factor is lack of reproducibility: anatomies are sensible information!

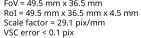

# Creating a benchmark: a tomo-PIV experiment

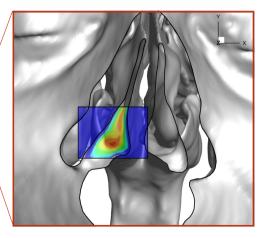



10

# The experimental setup


- ▶ 800L fish tank with 3 portholes
- ► 3-axis traversing unit
- CCD cameras (1600 × 1200 px) and Nd:Yag laser, 15Hz
- ▶ 2 pumps driven by linear motors
- fluorescent particles with two seeding pumps
- ▶ laser and camera for RI monitoring





# Preliminary results







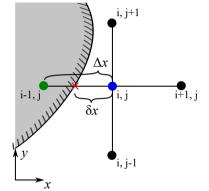




#### Domain opennose.org registered since 2015

 Simultaneous availability of i) DNS data; ii) experimental data; iii) anatomy information (industrial CT scan of the phantom) Using CFD in clinics (3 attempts)

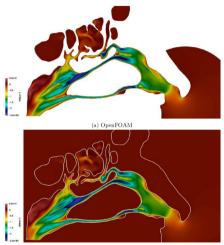
#### Currently, classic CFD (90% RANS, 9% LES) is too expensive for surgery planning:







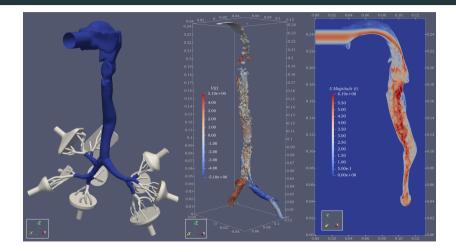

# 1. An ad-hoc DNS solver (in CPL)


- II-order in space, staggered grid, linear extrapolation
- II-order in time but implicit (stable when grid point approaches boundary)
- Computing and storing solution at ghost nodes is not required
- Simple and efficient: it modifies the central weight of the Laplacian only
- Extrapolations in the 3 directions are independent and additive



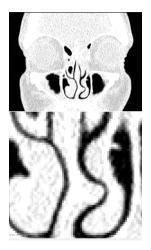
CPL: Compiler and Programming Language, https://cplcode.net

# Testing against OpenFOAM


- ► STL of the nose as input
- ► Verified II-order convergence
- ▶ 10-100x faster than OpenFOAM
- Speed compatible with a clinical setting
- ► (General interest?)



(b) STLIMB


# Towards DNS of the lung flow: the SimInhale model

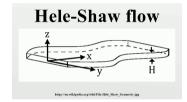
Ongoing work with Chiesi



Geometric information is the major limiting factor

- Thickness of the nasal fossae is often 1-2 voxels (even less for pathologies)
- No less than the CT grid must be used (typically 512<sup>3</sup>)




# Nasal resistance is not telling the whole story

- Restoring a good Nasal Resistance is not enough
- ► Cfr. the "Empty Nose Syndrome"
- Heat transfer characteristics must be also considered!

#### Scan of an Empty Nose



- Less than Navier–Stokes suffices to compute nasal resistance
- A quasi-1d approximation in the "narrow" direction: Hele–Shaw extended to a non-planar channel (with temperature)
- Local porosity computed for each voxel as a function of the wall distance
- Reconstruction, segmentation, meshing are all avoided

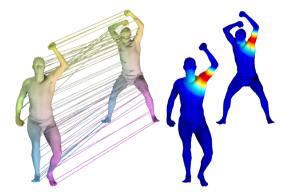


Hypothesis: The functionally normal nose provides balanced heat transfer and hydraulic characteristics

- ► Analogy with heat exchangers
- An optimization problem is formulated and solved with adjoint techniques
- ► Lighting-fast code: 1 second on 1 core, all inclusive

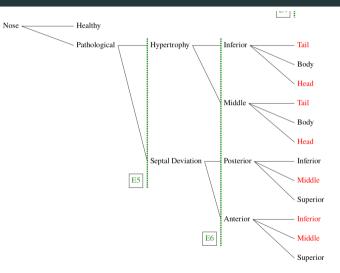
- ► Issue: anatomic variability is too large, we won't have enough labelled data
- Proposed solution: augment ML with CFD
- ► Hypothesis: the flow field amplifies anatomic information

#### Database of:

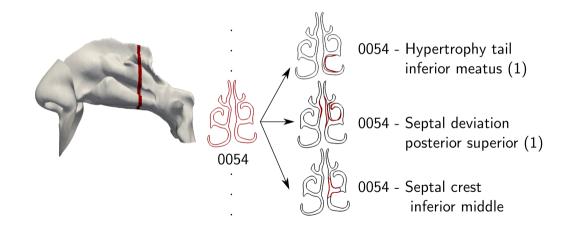

- ► CT scans
- rhinomanometry data
- ► ENT evaluation sheet

Open and labeled data: huge value!

| ummen O 🖿 🖬 4                         | • • • • • • • • • • • • • • • • • • • |   |     | - 9, - <b>•</b> |
|---------------------------------------|---------------------------------------|---|-----|-----------------|
| <ul> <li>All files</li> </ul>         | • Assets Master <>                    |   |     |                 |
| Recent                                | Name +                                |   |     |                 |
| ★ Favorites                           |                                       |   |     | Si24            |
| < Shares                              | 0144                                  | < | ••• | 171.7 MB        |
| <ul> <li>Tegs</li> </ul>              | 0145                                  | 4 |     | 82.4 MB         |
| <ul> <li>Shared to Circles</li> </ul> | 0142                                  | < |     | 497.9 MB        |
|                                       | 0141                                  | 4 |     | 170.8 MB        |
|                                       | 0140                                  | 4 |     | 69 MB           |
|                                       | 0139                                  | 4 |     | 53.2 MB         |
|                                       | 0128                                  | 4 |     | 139.4 MB        |
|                                       | 0137                                  | < |     | 112.6 MB        |
|                                       | 0126                                  | 4 |     | 81.2 MB         |
|                                       | 0135                                  | 4 |     | 237.4 MB        |
|                                       | 0134                                  | 4 |     | 163.7 MB        |
|                                       | 0 133                                 | 4 |     | 76.6 MB         |
| Deleted files                         | 0132                                  | 4 |     | 125.4 MB        |
| 51.5 Gill used                        | O 101                                 | 4 |     | 78.7 MB         |
| O Settings                            |                                       |   |     |                 |

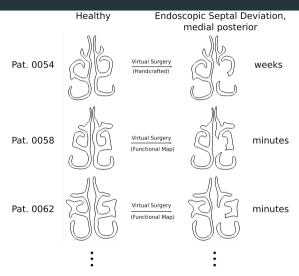

Features are computed with functional mapping<sup>a</sup> (FM)

- ► tool from computational geometry
- expresses bidirectional mapping between two shapes (and functions defined over them)




<sup>&</sup>lt;sup>a</sup>M.Ovsjanikov *et al.* ACM Trans. Graph. 2012

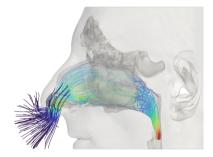
#### Step 1. Define a tree of elementary defects




#### Step 2. Create atomic defects via virtual anti-surgeries



# Step 3. Transfer defects with functional maps


- On a first healthy patient, realistic deformations are created by hand (time: weeks)
- Deformations are applied to other healthy patients via functional maps

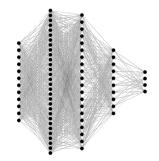


- ▶ 277 distinct anatomies are generated from 7 healthy patients
- Defects are isolated or in combination, various severities
- Classes are relatively balanced (but for the healthy class)
- ► CFD (LES/DNS) is used to compute the flow field

# The OpenFOAM setup

- Steady inspiration at 280 ml/s (mild breathing)
- ▶ Well resolved (incompressible) LES
- Mesh with 15M cells, no layers,  $\nu_t/\nu < 4.4$
- All terms at second-order accuracy
- ► Statistics computed over 0.6 s
- ► 7000 core hours for each case

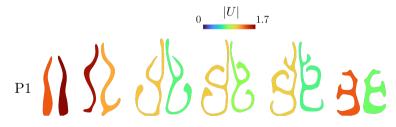



# A neural network to classify pathologies

 A standard neural network is trained to classify pathologies

Three fully-connected hidden layers (30, 20, 10 neurons each)

Hyperbolic tangent as activation function (sigmoid for output); cross-entropy as loss function; scaled conjugate gradient as backpropagation algorithm to update weights and biases


 LOO-CV (preferred to k-fold CV) as partition method to carry out validation and testing Our classifier (12 inputs, 4 outputs):



The number of inputs to the NN must be small (as such is the number of observations)

Manual feature extraction

Two strategies: regional averages (of velocity, vorticity, TKE, strain, pressure, pressure gradient, etc), and line integral over streamlines



# Results: classification experiment (four classes, LOO)

| Class                          | accuracy | precision | recall | F1   |
|--------------------------------|----------|-----------|--------|------|
| Anterior septal deviation      | 0.91     | 0.82      | 0.91   | 0.86 |
| Posterior septal deviation     | 0.90     | 0.30      | 0.11   | 0.16 |
| Middle turbinate hypertrophy   | 0.67     | 0.47      | 0.51   | 0.49 |
| Inferior turbinate hypertrophy | 0.71     | 0.51      | 0.51   | 0.51 |

- ▶ With *k*-fold CV, accuracy approaches 100%
- ► Adding simple features improves accuracy further
- ► Lots of ongoing work...

- ► The nose flow is an interesting, high-potential interdisciplinary topic
- ► CFD-augmented ML techniques are promising
- ► CFD has a bright future in medicine
- ► OPEN is a key word

#### Acknowledgment to the OpenNOSE group!

