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The temporal linear stability of plane Poiseuille flow modified by spanwise forcing ap-
plied at the walls is considered. The forcing consists of a stationary streamwise distribution
of spanwise velocity that generates a steady transversal Stokes layer, known to reduce
skin-friction drag in a turbulent flow with little energetic cost. A large numerical study is
carried out, where the effects of both the physical and the discretization parameters are
thoroughly explored, for three representative subcritical values of the Reynolds number
Re. Results show that the spanwise Stokes layer significantly affects the linear stability of
the system. For example, at Re = 2000 the wall forcing is found to more than double the
negative real part of the least-stable eigenvalue, and to decrease by nearly a factor of 4 the
maximum transient growth of perturbation energy. These observations are Re dependent
and further improve at higher Re. Comments on the physical implications of the obtained
results are provided, suggesting that spanwise forcing might be effective to obtain at the
same time a delayed transition to turbulence and a reduced turbulent friction.
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I. INTRODUCTION

Decreasing the aerodynamic drag is a formidable scientific and technological challenge in
configurations dominated by a relative motion between a solid body and a surrounding fluid. In
particular, the skin-friction drag—in the laminar or in the turbulent regime—often represents a major
portion of the total drag in the air transport sector, and can be of paramount importance in naval and
submarine transport. Skin friction can be reduced either by keeping the flow laminar as long as
possible, thus exploiting the intrinsically lower friction levels typical of the laminar regime, or by
accepting the transition to turbulence, and reducing the level of turbulent friction below its natural
level. A viable flow control approach that achieves both objectives would be very desirable, as it
would first take advantage of laminarity as long as possible, and then continue to reduce turbulent
friction.

Among the several active techniques for the reduction of turbulent drag, we are interested in
spanwise-forcing techniques, and the present paper, in particular, considers streamwise-traveling
waves of spanwise wall-velocity as introduced by Quadrio et al. (2009) [1]. Comprehensive reviews
on this technique for turbulent drag reduction are available [2–4]. The streamwise-traveling waves,
which include as a special case the spanwise-oscillating wall [5] but achieve far higher energetic

*dmassaro@kth.se
†peter.schmid@kaust.edu.sa
‡maurizio.quadrio@polimi.it

2469-990X/2023/8(10)/103902(23) 103902-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6712-8944
https://orcid.org/0009-0002-6581-784X
https://orcid.org/0000-0002-7662-3576
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.8.103902&domain=pdf&date_stamp=2023-10-09
https://doi.org/10.1103/PhysRevFluids.8.103902


MASSARO, MARTINELLI, SCHMID, AND QUADRIO

efficiency, abate the levels of turbulent skin-friction drag with interesting energetic effectiveness,
with one energy unit spent on the control saving up to 30 units of pumping energy. Furthermore,
recent evidence has shown that spanwise forcing can bring indirect benefits in terms of the reduction
of pressure drag [6]; in addition, it may be highly beneficial by interacting with the shock wave
over an aerofoil in transonic flow [7] and reducing significantly the aerodynamic drag of the entire
airplane with negligible energy expenditure. Within this context, the present paper is motivated
by the following simple question: Can spanwise forcing favorably affect transition to turbulence?
Since the forcing is known to weaken near-wall streaks in a turbulent flow [8], a similar effect on
laminar streaks might alter their growth, thus causing a delay of, or perhaps preventing altogether,
transition to turbulence. It must be kept in mind that, at the moment, satisfactory actuators for
implementing traveling waves in a real-world application are still lacking, even though some
interesting developments exist, including mechanical movement of the wall [9,10], electroactive
polymers [11,12], and the use of Kagome lattices [13]. However, the prospect of instrumenting,
e.g., an airplane wing with one actuator that, in the wing fore part, would delay transition while,
in the aft, would decrease turbulent skin-friction drag is certainly appealing, and motivates further
research efforts into this direction.

This paper is not the first to investigate the stability properties of a wall-bounded flow modified
by spanwise forcing, and the available body of literature provides important guidance. Most
of the current knowledge concerns spatially uniform wall oscillations. Jovanović (2008) [14]
demonstrated the capability of properly designed wall oscillations to reduce receptivity of the
linearized Navier-Stokes (NS) equations to small stochastic disturbances in laminar Poiseuille
flow. Ricco (2011) [15] showed in a linearized study that a substantial reduction in the intensity
of laminar streaks under steady spatial oscillations is possible, with reductions up to 90% of the
peak value of velocity fluctuations. Rabin et al. (2014) [16] studied plane Couette flow under
spatially uniform wall oscillations: By solving a fully nonlinear problem, they demonstrated and
quantified how the critical disturbance energy required for the onset of turbulence increases due
to spanwise forcing. Hack and Zaki (2012) [17], using a linearized analysis of temporal harmonic
wall oscillations, provided further evidence for near-wall shear filtering as an effective tool. In a
followup study [18], the influence of spanwise forcing on by-pass transition in the boundary layer
over a flat plate was examined. They found that oscillations, when properly tuned, can substan-
tially delay transition, with overall energy gains. This DNS-based study was later corroborated
by a corresponding Floquet stability analysis [19], where the changes in the linear modal and
nonmodal instability mechanisms operating in the pretransitional boundary layer induced by the
spanwise forcing were studied. This investigation confirmed important stabilization mechanisms
due to weaker nonmodal growth, but found that transition is enhanced, owing to a reinforcement
of modal instabilities, at larger forcing amplitudes. Similarly, Wang and Liu (2019) [20] found
that spanwise oscillations of the wall can act as precursors to the transition process in a boundary
layer.

For the spatially varying case, where no stability study is presently available, Duque-Daza et al.
(2012) [21] numerically solved a linearized version of the NS equations for a plane channel setting to
investigate how streamwise-traveling waves impact the growth of near-wall low-speed streaks. They
found that the computed relative change in streak amplification due to traveling waves varies with
the parameters defining the wave in a way that strictly resembles the DNS-measured drag reduction
data in the turbulent regime. Negi et al. (2015) [22] simulated via DNS a single low-speed streak
forced by a standing wave of spanwise wall forcing in the laminar regime, and found that the skin
friction can drop below the laminar reference value. They also reported a delay in the characteristic
rise of skin friction during transition. Negi et al. (2019) [23] used large-eddy simulations to
study bypass transition in a spatially evolving boundary layer. Temporal and spatial oscillations
of the wall forcing were considered, and transition delay could be observed in both cases. A
qualitative explanation was offered, attributing the transition delay to the additional filtering of the
disturbance by the Stokes layer. An optimum forcing amplitude for transition delay was identified,
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while acknowledging that at larger wavelengths the delay appears to increase monotonically with
amplitude.

Motivated by the above studies, this paper focuses on plane channel flow as a model problem and
studies the modal and nonmodal stability of the laminar, pressure-driven Poiseuille flow modified
by streamwise-distributed spanwise forcing in the form of a steady Stokes layer (SSL) [24]. The
SSL is created by a (spanwise-uniform) stationary spanwise velocity at the wall that is sinusoidally
distributed along the streamwise direction. The streamwise-varying base flow prohibits the direct
application of a classic Orr–Sommerfeld–Squire (OSS) linear stability analysis, since the resulting
system of differential equations contains streamwise-varying coefficients and thus requires a global
approach. Here, extending an approach introduced by Floryan and coworkers [25,26], we exploit
the particular form of the base flow to avoid a global stability analysis. The study is conceptually
close to a classical secondary instability analysis, in which finite amplitude disturbances saturate
and establish a new base flow, whose linear stability is then studied [27]; in the present case, it is
the superimposed sinusoidal spanwise flow that alters the Poiseuille streamwise base flow.

The structure of this paper is as follows. In Sec. II, the mathematical formulation is presented,
emphasizing analogies and differences with respect to a classic OSS analysis; the numerical tools
are validated against direct numerical simulations. Next, in Sec. III the physical parameters of
the problem are discussed (the discussion of the discretization-related parameters is deferred to
Appendix A), and the computational procedures employed in the execution of a large parameter
study are described. In Sec. IV, the main results of the modal and nonmodal stability analysis are
discussed, and concluding remarks are offered in Sec. V, together with a critical discussion of the
main findings.

II. MATHEMATICAL FORMULATION

This section describes the setup of the linear stability analysis, based on the well-known OSS
problem for Poiseuille flow augmented by terms that model the presence of a spanwise base flow
induced by the forcing.

The governing equations are the incompressible NS equations, which in nondimensional form
read

∇ · V = 0
∂V
∂t

+ (V · ∇)V = − ∇P + 1

Re
∇2V, (1)

where V is the nondimensional velocity field, P is the nondimensional pressure, and Re denotes
the Reynolds number, defined with the kinematic viscosity ν of the fluid, the length scale h, in
our case the channel half-height, and the velocity scale Uc, in our case the centerline velocity of
the laminar Poiseuille profile. The length and velocity scales h and Uc are used to express any
quantity in dimensionless form. The NS equations are then expressed in a Cartesian coordinate
system for the plane channel flow, with x, y, z (and U,V,W ) indicating the streamwise, wall-normal,
and spanwise directions (and corresponding velocity components). A sketch of the flow with the
employed reference system is shown in Fig. 1.

The boundary conditions for the velocity at the wall are U = 0 and V = 0, but, in contrast
to standard Poiseuille flow, the spanwise component is nonzero. Within the general class of
streamwise-traveling waves [1], the purely spatially modulated standing wave considered by Viotti
et al. (2009) [24] is considered, so the wall forcing applied at both walls is

W (x) = A cos (κx), (2)

where A denotes the maximum forcing amplitude and κ stands for the forcing wave number.
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FIG. 1. Sketch of plane channel with the chosen reference system. The two channel walls are separated by
a distance 2h; a stationary wall forcing is applied at both walls, and is characterized by its wavelength λ and
maximum velocity amplitude A.

A. The base flow

It was shown by Viotti et al. (2009) [24] (and later by Quadrio and Ricco (2011) [28] in the wider
context of traveling-wave forcing) that in the laminar regime the spanwise wall-velocity does not
affect the streamwise flow, which still follows the parabolic Poiseuille solution but creates a wall-
normal distribution of spanwise velocity. Hence, the base flow (indicated with an overbar) in the
streamwise direction U (y) = 1 − y2 is identical to the no-forcing case A = 0, whereas the spanwise
base flow W (x, y), unaffected by the streamwise flow, corresponds to Re = 0; it is computed from
the spanwise component of the momentum equation,

(1 − y2)
∂W

∂x
= 1

Re

(
∂2W

∂x2
+ ∂2W

∂y2

)
, (3)

with the nondimensional boundary condition

W (x,±1, z, t ) = A

2
(e jκx + e− jκx ), (4)

where j is the imaginary unit. Equation (3) is linear with streamwise-constant coefficients. By
enforcing periodicity and using separation of variables, the W base flow has the form

W (x, y) = Re{ f (y)e jκx} = 1
2 ( f (y)e jκx + f ∗(y)e− jκx ), (5)

where Re indicates the real part of a complex quantity and the asterisk indicates complex conju-
gation. The function f (y) is computed numerically from the following parabolic cylinder equation,
obtained by substituting Eq. (5) into Eq. (3) with f (±1) = A:

f ′′(y) − κ[κ + jRe(1 − y2)] f (y) = 0. (6)

Under the hypothesis that the thickness of the transverse Stokes layer is small compared to h, and
that streamwise diffusion is negligible with respect to the wall-normal diffusion, Viotti et al. (2009)
[24] determined the following solution:

f (y) = Ai
( − e− j 4

3 π jy/δx
)
,

in which Ai represents the Airy function [29] and δx = (ν/κuy,0)1/3 is a representative wall-normal
scale of the SSL, defined in terms of the fluid viscosity ν, the forcing wave number κ , and the
longitudinal wall shear uy,0.
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B. Linearized equations for the perturbations

Our interest lies on the dynamics of small perturbations u, v,w, p to the base flow. After
substituting the following decompositions:

U = U + u, V = v, W = W + w, P = P + p, (7)

into the NS Eq. (1), and subtracting the base flow equations from the linearized perturbation
equations, obtained by dropping the quadratic terms in the small perturbations, one obtains

ux + vy + wz = 0

ut + Uux + vU
′ + W uz = −px + 1

Re
∇2u

vt + Uvx + W vz = −py + 1

Re
∇2v

wt + Uwx + uW x + vW y + W wz = −pz + 1

Re
∇2w, (8)

where the prime indicates the wall-normal derivative.

C. The v − η formulation

The usual steps leading to the OSS equations [27] can be followed here to obtain a compact
expression of the linear dynamics, under the incompressibility constraint, in terms of two evolution
equations for the wall-normal components v and η = ∂u/∂z − ∂w/∂x of the perturbation velocity
and vorticity vectors, respectively. The former equation reads

∂

∂t
∇2v +

(
U

∂

∂x
+ W

∂

∂z

)
∇2v −

(
U

′′ ∂

∂x
+ W yy

∂

∂z

)
v

− 2W xyuz − 2W x
∂

∂z
(uy − vx ) + W xxvz = 1

Re
∇2∇2v, (9)

while the latter equation can be stated as

∂

∂t
η +

(
U

∂

∂x
+ W

∂

∂z

)
η +

(
W x

∂

∂y
+ U

′ ∂

∂z
− W xy − W y

∂

∂x

)
v − uW xx = 1

Re
∇2η, (10)

with boundary conditions of the form

v(±1) = 0; η(±1) = 0;
∂v

∂y
(±1) = 0. (11)

As in the standard case, these two equations are complemented by a differential system which
relates u and w to v and η via the continuity equation and the definition of the wall-normal vorticity.
In contrast to the no-forcing OSS case, the two equations are fully coupled via W , and several
coefficients are varying along the streamwise direction.

D. Fourier transform

The standard OSS system is conveniently Fourier-transformed along the two homogeneous
wall-parallel directions. In our case, this step can be straightforwardly applied in the spanwise z
direction, giving rise to an expansion with spanwise wave number β, since Eqs. (9) and (10) consist
of z-independent coefficients. The coefficients’ streamwise dependence in Eqs. (9) and (10) prevents
a straightforward Fourier transform in that direction. However, their functional variation is not
generic, as it derives from the functional form of the base flow Eq. (5) only; hence the coefficients
must be harmonic functions of x with wave number κ . We follow an approach introduced in Ref. [25]
for the study of the stability of a parallel wall flow modified by periodic blowing and suction, and
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leverage the sinusoidal variation of the base flow. The flow variables are expanded in a (finite)
Fourier series along the streamwise direction as

v̌(x, y, t ; β ) =
+M∑

i=−M

v̂i(y, t ; β )e j(m+i)κx; η̌(x, y, t ; β ) =
+M∑

i=−M

η̂i(y, t ; β )e j(m+i)κx, (12)

with M as the degree of the spectral expansion of the flow variables, i as an integer index, and m ∈
[0, 1) as a real number defining the actual expansion wave number α = (m + i)κ . The parameter m
is referred to as the detuning parameter, since it is used to detune the perturbation against the base
flow. In this preliminary work, we set m = 0. Note that Ref. [25] considered M = 3, whereas in this
paper M is much larger and, like the other discretization parameters, is dynamically adapted to each
case after a sensitivity analysis. The procedure for setting the discretization parameters is described
in Appendix A.

Equations (9) and (10) can now be Fourier transformed along the x direction, introducing the
streamwise wave number α̃ in the process. A generic x-dependent term q(x) is Fourier transformed
as follows:

q̂(α̃) = κ

2π

∫ 2π/κ

0
q(x)e− jα̃xdx.

Since in Eqs. (9) and (10), terms with complex exponentials are of the kind e jαx and e± jκxe jαx,
Fourier-transforming in the x direction leads to integrals of the following general form:∫ 2π/κ

0
e± jκxe jαxe− jα̃xdx.

Owing to the orthogonality of the trigonometric functions, they are proportional to δα̃,±κ+α , i.e.,
they are always zero unless α = α̃ ∓ κ . By introducing the operator �̃ = ∂2/∂y2 − α̃2 − β2, the
equation governing the evolution of η̂α̃ ≡ η̂(y, t ; α̃, β ) is

∂

∂t
η̂α̃ = − jα̃U η̂α̃ − jβU

′
v̂α̃ + 1

Re
�̃η̂α̃ − jβ

2
f

(
1 − κ2

(α̃ − κ )2 + β2

)
η̂α̃−κ

+ jβ

2
f ∗

[
1 − κ2

(α̃ + κ )2 + β2

]
η̂α̃+κ − j

2

[
κ f

(
1 + κ (α̃ − κ )

(α̃ − κ )2 + β2

)
∂

∂y
− f ′α̃

]
v̂α̃−κ

+ j

2

[
κ f ∗

(
1 − κ (α̃ + κ )

(α̃ + κ )2 + β2

)
∂

∂y
+ f ∗′

α̃

]
v̂α̃+κ (13)

Analogously, the equation for v̂α̃ ≡ v̂(y, t ; α̃, β ) reads

∂

∂t
�̃v̂α̃ = − jα̃U �̃v̂α̃ + jα̃U

′′
v̂α̃ + 1

Re
�̃�̃v̂α̃

+ jβ2κ

(α̃ − κ )2 + β2

(
f ′ + f

∂

∂y

)
η̂α̃−κ − jβ2κ

(α̃ + κ )2 + β2

(
f ∗′ + f ∗ ∂

∂y

)
η̂α̃+κ

− jβ

2

[
f �̃− − f ′′ − κ f (2α̃ − κ ) + 2

κ (α̃ − κ )

(α̃ − κ )2 + β2

(
f ′ ∂

∂y
+ f

∂2

∂y2

)]
v̂α̃−κ

− jβ

2

[
f ∗�̃+ − f ∗′′ + κ f ∗(2α̃ + κ ) − 2

κ (α̃ + κ )

(α̃ + κ )2 + β2

(
f ∗′ ∂

∂y
+ f ∗ ∂2

∂y2

)]
v̂α̃+κ , (14)

where �̃± = ∂2/∂y2 − (α̃ ± κ )2 − β2.
When compared to the standard OSS problem, Eqs. (13) and (14) contain several additional

terms related to the spanwise base flow, described by the function f (y). Terms containing v̂ and η̂

evaluated at α̃ are identical to the OSS equations, whereas the remaining terms represent effects of
disturbances at wave numbers α̃ ± κ .
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FIG. 2. Graphical representation of the system q̇ = Asq. The matrix is block tridiagonal with block size
M × M. The red blocks on the diagonal correspond to the classic OSS matrices for each streamwise wave
number, whereas the adjacent green and yellow blocks describe interactions with contiguous streamwise wave
numbers.

E. Numerical discretization

From here on, a change in notation is introduced. In fact, the governing Eqs. (13) and (14) can
be equivalently derived by substituting the modal expansions Eqs. (12) into the v–η equations and
by Fourier transforming against a testing function of the form e j(p+m)κ , where p ∈ [−M, M] is an
integer such that α̃ = (p + m)κ .

Starting from this form, the y-dependent terms are discretized via Chebyshev polynomials on a
grid of Gauss-Lobatto nodes [30–32]. The unknown v̂p is thus written as

v̂p(y) =
N∑

n=0

vp,nTn(y) (15)

or, in matrix form, v̂p = D0vp, with D0 as a square (N + 1) × (N + 1) matrix. Similar matrices D1,
D2, and D4 represent the first, second, and fourth derivative.

For a given p, Eqs. (13) and (14) can be written compactly in the following block form:

∂

∂t

[
B11 0
0 B22

]
︸ ︷︷ ︸

B(p)

(
v

η

)
p

=
[

Lm11 Lm12

Lm21 Lm22

]
︸ ︷︷ ︸

L(p)
−

(
v

η

)
p−1

+
[

L11 0
L21 L22

]
︸ ︷︷ ︸

L(p)

(
v

η

)
p

+
[

Lp11 Lp12

Lp21 Lp22

]
︸ ︷︷ ︸

L(p)
+

(
v

η

)
p+1

,

(16)
where B(p) is a diagonal matrix, L(p) describes the interaction of v and η, for a given wave number α̃,
with themselves (red blocks in Fig. 2); L(p)

− and L(p)
+ (green and yellow blocks in Fig. 2) describe the

interactions with the previous and subsequent streamwise wave numbers, respectively, and contain
the effect of the spanwise base flow.

Equation (16) must be solved for all p of the truncated modal expansion [−M,+M]. Therefore,
after grouping the unknowns v and η into a single array of unknowns q, one obtains the following
block form:

∂

∂t
(Bsq) = Lsq, q̇ = B−1

s Lsq = Asq (17)

where q is a vector composed of (N + 1) pairs of v–η components, each at a different p value,
so with dimension (2M + 1)2(N + 1); Bs and Ls are block-tridiagonal square matrices, whose
dimensions are (2M + 1)2(N + 1) × (2M + 1)2(N + 1). The structure of the system matrix As is
shown in Fig. 2, which emphasizes its block-tridiagonal structure, with block size M × M.

The boundary conditions Eqs. (11) at the two walls are rewritten as

v̂p(±1) = 0; η̂p(±1) = 0;
∂ v̂p

∂y
(±1) = 0. (18)

103902-7



MASSARO, MARTINELLI, SCHMID, AND QUADRIO

They are readily enforced via appropriate modifications of the matrices B(p), L(p), L(p)
− , and L(p)

+ .
Following Ref. [27], the boundary values for v̂p and η̂p are set not to exact zero, but to a very small
value, i.e., 10−6; the extremely fast dynamics associated to this nonzero value does not interfere with
the flow dynamics, but the accuracy in computing eigenvalues is improved as the spurious modes
associated to the discrete boundary condition are mapped far away in the complex plane.

F. Modal and nonmodal stability characteristics

In what follows, the modal stability of the system will be assessed by computing the eigenvalues
of the system matrix As which describes the linearized dynamics of the system. Due to the size and
sparsity of the matrix, its eigenvalues are most efficiently computed with the Arnoldi method [33].
The number of eigenvalues totals Ntot = 2(N + 1) × (2M + 1), but only a modest fraction of them
is of interest here, hence only a subset neig � Ntot is computed. This is achieved by a truncation
operator T, a matrix with dimensions neig × Ntot. The relation q = Tx transforms Eqs. (17) as

ẋ = T−1AsTx = �x, (19)

where � is a diagonal matrix containing the neig computed eigenvalues and T contains the corre-
sponding eigenvectors.

While computing the largest eigenvalue would, in principle, suffice for deciding on modal
stability or instability, choosing the right size of the truncation operator is essential in studying
the nonmodal stability of the flow (see, e.g., Refs. [27,34,35]). The kinetic energy density e of an
infinitesimal perturbation for a given p is written as

e(p, β, t ) = 1

2

(
1

2k2

∫ 1

−1
q̂H

p

[
k2 + D2

1 0
0 1

]
q̂pdy

)
, (20)

with k2 = α̃2 + β2; the superscript H stands for Hermitian, i.e., the complex conjugate transpose.
After a Chebyshev expansion of qp and after computing the integral weights using the Clenshaw-

Curtis quadrature formula [36–39], one obtains

e(p, β, t ) =
(

v̂p

η̂p

)H
(

1

4k2

[
k2DH

0 WD0 + D1WD1 0
0 DH

0 WD0

]
︸ ︷︷ ︸

Q(p)

)(
v̂p

η̂p

)
, (21)

where W is a diagonal matrix containing the integral weights, and Q(p) represents the energy weight
matrix.

Once the full modal expansion p ∈ [−M, M] is considered, the square of the energy norm of q
becomes

‖q(t )‖2
E = qH Qsq,

where Qs is the block-diagonal positive definite energy weight matrix for all indices p in the modal
expansion. The energy norm can be rewritten using the truncation operator T,

‖q(t )‖2
E = xH TH QsTx = xH Q̄x,

where Q̄ = TH QsT can be further decomposed via a Cholesky decomposition Q̄ = C̄H C̄ to result
in

‖q(t )‖2
E = ‖C̄x(t )‖2

2.

The transient energy growth eventually becomes

G(t ) = max
q0 
=0

‖q(t )‖2
E

‖q0‖2
E

= max
x0 
=0

‖C̄e�t x0‖2
2

‖C̄x0‖2
2

= ‖C̄e�t C̄−1‖2
2. (22)
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FIG. 3. Comparison between the transient energy growth function G(t ) computed by the linear code (black
continuous line) and the DNS-computed temporal evolution of the perturbation energy E (t ) (red dashed line).
Reference conditions are Re = 1000, κ = 1, and β = 2. The higher pair of curves corresponds to A = 0 (no
control) and the lower one to A = 0.1.

Lastly, the spatial shape of the optimal perturbation q̂in, and the corresponding spatial shape at
the time of the largest energy growth q̂out, are given by

q̂in = D0TC̄−1v1, q̂out = D0TC̄−1u1, (23)

where v1 and u1 are the first right and left singular vectors of the matrix C̄e�t C̄−1, respectively.

G. Validation

The MATLAB numerical toolkit developed for the stability analysis is first validated against the
results of a nonlinear DNS solver. The code, introduced in Ref. [40], where full details are available,
solves the incompressible NS equations with mixed spatial discretization, with Fourier expansions in
the homogeneous directions (where the pseudospectral approach is used) and compact, fourth-order
explicit finite-difference schemes in the wall-normal direction.

The transient energy growth function G(t ) computed by the stability code is compared with the
DNS-computed temporal evolution of the energy E (t ) of the optimal initial condition. The test is
carried out for Re = 1000, κ = 1, β = 2. According to the discretization criteria described later
in Sec. III and Appendix A, the discretization parameters are set to N = 80, M = 10, and A =
0 or A = 0.1. The DNS is carried out with 101 points in the wall-normal direction, 32 Fourier
modes in the streamwise direction, and 16 modes in the spanwise direction; the size of the temporal
step is computed via the Courant-Friedrich-Lewy (CFL) condition by enforcing CFLmax = 0.1; it
is verified that the outcome of the DNS is insensitive to further refinements in the temporal and/or
spatial discretizations. The initial field for the DNS is made by the base flow, to which the optimal
initial condition obtained by the nonmodal stability code is added, after rescaling the amplitude
to remain within the limits of linearity. Figure 3 compares the temporal history E (t ) of the DNS-
computed energy with the transient growth function G(t ) for the uncontrolled and controlled cases.
It can be observed that, as required by their definition, G(t ) � E (t ) at all times; the two functions
coincide at time t = tGmax. The controlled case with this particular choice of parameters exhibits a
reduced maximum transient growth.
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III. PARAMETERS AND COMPUTATIONAL PROCEDURES

The present multiparameter study considers the effects of the following nine parameters, either
physical or related to the discretization of the problem:

(1) Re, the Reynolds number of the flow
(2) A, the maximum amplitude of the wall forcing in Eq. (2)
(3) κ , the streamwise wave number of the wall forcing in Eq. (2)
(4) β, the spanwise wave number of the perturbation
(5) N , the number of Chebyshev polynomials in Eq. (15)
(6) M, the truncation factor in the modal expansion Eqs. (12)
(7) neig, the number of eigenvalues retained in the Arnoldi algorithm after truncation
(8) �t , the temporal step for the discrete evaluation of G(t )
(9) Tend, the time at which the computation of G(t ) is stopped
The first four parameters listed above are of a physical nature, and their range defines the breadth

of the paper. The remaining parameters are discretization parameters which impact the reliability of
the results and the computational cost of the study. The vast range of explored physical parameters,
together with the anticipated variable behavior of the system within it, requires efficiency and
sensitivity considerations with regard to the chosen discretization.

Description of the choice of discretization parameters is deferred to Appendix A. As far as
the physical parameters are concerned, only three subcritical values of the Reynolds number are
considered in this paper, namely Re = 500, Re = 1000, and Re = 2000. The wall forcing is defined
by two parameters: its dimensionless amplitude A is varied between 0 and 1 in increments of
0.1 (resulting in 11 values) and its dimensionless wave number κ is varied between 0.5 and 5 in
increments of 0.25 (yielding 19 values). The spanwise wave number β is varied between 0 and 5,
with 18 nonequispaced values specifically selected to focus on the most interesting regions. Note
that β = 0 corresponds to the most unstable two-dimensional waves predicted by the modal theory.
A = 1 implies a maximum spanwise velocity equal to the centerline Poiseuille velocity, and κ = 1
implies a forcing wavelength that is π times the channel height. Overall, 11 286 cases are computed.
The total computational cost is thus considerable, and exceeds 10 000 core hours; a workstation
equipped with an Intel i7 CPU with 6 cores has been used.

IV. RESULTS

A. Modal stability

The modal stability characteristics of the flow are evaluated in terms of the real part of the
least stable eigenvalue λ1 of the system matrix As. The effect of wall forcing, represented through
the physical parameters Re, κ , A, and β, on the modal stability properties is quantified via the
attenuation-rate increase, expressed via the ratio Rmod, defined as

Rmod = Re(λ1)

Re
(
λref

1

) ,

where λref
1 is the least-stable eigenvalue of the unforced Poiseuille flow. Since the considered

Re numbers are subcritical, Re(λref
1 ) < 0, and a positive effect of the forcing in the direction

of increased stability margin implies Rmod > 1, in analogy with the drag reduction rate used in
the turbulent case to assess the effectiveness of the forcing. The discretization parameters are set
according to the criteria described in Appendix A.

For the various values of Re, Table I reports the values of A, β, and κ which have been found
to yield the largest increase of Rmod. The results are Re dependent, with Rmod going from 1.9380 at
Re = 500 (λ1 decreases from −0.00591 to −0.01146) to 2.3636 at Re = 2000 (λ1 decreases from
-0.00135 to −0.00321). The stabilizing effect of spanwise forcing is significant, since at Re = 2000
the negative real part of the least-stable eigenvalue increases (in absolute value) by more than 2.3
times. It should come as no surprise that the effectiveness of the forcing depends on its amplitude A:
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TABLE I. Largest relative increase Rmod of the modal stability margin, and the corresponding forcing
parameters at which it is observed.

Re κ β A Rmod

500 2.25 0.7 1 1.9380
1000 2.00 0.5 1 2.1725
2000 3.00 0.5 1 2.3636

indeed, in Table I the largest Rmod are consistently obtained for the largest forcing amplitude tested,
i.e., A = 1. Once the optimal values of κ and β are determined, Fig. 4 depicts how Rmod changes
as a function of A. For all Reynolds numbers studied, Rmod is quite similar to the turbulent drag
reduction rate, and exhibits a monotonic growth from the uncontrolled case with Rmod = 1, then
saturating at large amplitudes. Especially at higher Re, the effect of forcing is already noticeable at
rather small forcing intensity: for example, at Re = 2000 a forcing with A = 0.5 provides more than
85% of the benefit achievable at A = 1. This observation is important in view of the rapid increase
of the energetic cost of the forcing.

To examine how the results depend on κ , we first observe that, in Table I, the optimal κ does
not vary much with Re. Indeed, the optimum with respect to κ is rather flat. As an example, at
Re = 2000, Fig. 5 plots Rmod in A-β-planes taken at three selected values of κ , namely, κ = 0.75,
κ = 2.75, and κ = 5. The plot demonstrates the weak dependence of Rmod on the forcing wave
number, especially in the vicinity of the optimum value κ = 3.

B. Nonmodal stability

To shed light on the forcing-induced modifications to the short-term stability properties of the
flow, we now proceed to consider the transient growth function G(t ) and its maximum Gmax. Gmax

is the maximum possible relative amplification of the initial perturbation energy, occurring at time
tmax for a specific initial condition referred to as the optimal input. We quantify the effect of the

FIG. 4. Dependence of Rmod on the forcing amplitude A at optimal κ and β reported in Table I for Re = 500
(blue), Re = 1000 (red), and Re = 2000 (green).
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FIG. 5. Variation of Rmod at Re = 2000 in three selected planes at κ = 0.75, 2.75, 5.

forcing on the nonmodal stability by computing the ratio Rnmod defined as

Rnmod = Gref
max

Gmax
,

where Gref
max is the maximum transient growth for the reference Poiseuille flow. As in the modal

analysis, the discretization parameters are set according to the criteria discussed in Appendix A.
Table II presents the optimal parameters A, κ , and β, which have been found to provide the largest
Rnmod. As for modal stability, changes in Rnmod are Reynolds-number dependent, and the maximum
reduction of the transient energy growth ranges from 65% at Re = 500 (with Gmax decreasing from
43.39 to 15.03) to 72% at Re = 2000 (with Gmax decreasing from 689.52 to 190.80).

At the optimal values (κ, β, A) reported in Table II, the transient energy growth with and without
forcing is compared in Fig. 6 (left). The transient growth is clearly inhibited by the spanwise forcing,
and indeed the maximum energy amplification decreases from about 700 times the initial energy to
less than 200 times; moreover, the maximum amplification occurs at an earlier time. At least for this
specific case, G(t ) for the forced case is above the reference curve for very short times.

The role of the two parameters A and κ, defining the wall forcing, is similar to the one discussed
previously for modal stability. The forcing amplitude directly affects the amount of transient growth
reduction, as clearly shown in Fig. 6 (right), while the forcing wave number κ has a lesser effect: as
the wave number exceeds the optimal values identified in Table II (which are close to the minimum
value of κ = 0.5 considered in the present paper), the effectiveness of the forcing does not exhibit a
significant or rapid decrease.

Nonmodal stability theory readily provides access to the shape of the perturbation that triggers
the maximum transient energy growth. The optimal input (and the corresponding optimal output),
discussed in Sec. II and obtained by means of a singular values decomposition, are examined in
physical space in Figs. 7 and 8.

In particular, Fig. 7 describes how the optimal initial condition is affected by the forcing. The
top row refers to the reference case with A = 0 and confirms that, for plane Poiseuille flow, the

TABLE II. Largest decrease of the transient growth Rnmod and corresponding forcing parameters.

Re κ β A Rnmod

500 1.25 1.5 1 2.8877
1000 0.75 2.5 1 3.3670
2000 0.75 1.5 1 3.6140
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FIG. 6. Left: Transient energy growth G(t ) for Re = 2000 (black) for the optimal values of β = 1.5 and
κ = 0.75, compared to the unforced case (red). Right: Dependence of Rnmod on the forcing amplitude A for
Re = 500 (blue), Re = 1000 (red), and Re = 2000 (green).

optimal initial condition is a streamwise-constant pair of large-scale space-filling rolls. Indeed, in
Fourier space such a perturbation is fully represented by the mode p = 0, leading to an effective
streamwise wave number α = 0. When the spanwise forcing is active with A = 1 (bottom row), the
optimal initial condition is characterized by different streamwise wave numbers. In particular, the
morphology of the streamwise component of the optimal initial condition reveals the fundamental
mode of the forcing, with superimposed higher harmonics. A striking difference to the unforced
case is that the u component, although not entirely two-dimensional, is predominantly structured
along the spanwise direction, i.e., orthogonal to the unforced case. Another significant difference is
the fact that the perturbation becomes highly localized near the wall, and remains confined within
the high-shear region produced by the spanwise Stokes layer described by the base flow. Though
barely visible at this Re, a streamwise modulation can be observed in the spanwise component

Y

0

1

2

Z

-2

0

2

2 1 0
21

1

0

2

X

Y

0

1

2

Z

-2

0

2

2 1 0
21

1

0

2

X

Y

0

1

2

Z

-2

0

2

2 1 0
21

1

0

2

X

Y

0

1

2

Z

-2

0

2

2 1 0
21

1

0

2

X

Y

0

1

2

Z

-2

0

2

2 1 0
21

1

0

2

X

Y

0

1

2

Z

-2

0

2

2 1 0
21

1

0

2

X

FIG. 7. Optimal initial condition computed for Re = 2000, κ = 1, and β = 1.5: Unforced flow at A = 0
(top) and forced flow at A = 1 (bottom). For each velocity component (u, v, w from left to right), isosurfaces
at ±60% of their respective maxima are visualized. After normalizing the perturbation to unit maximum
amplitude, the u, v, w components of the maximum are 0.11, 2.68, 3.79 for A = 0, and 0.74, 2.63, 3.79 for
the A = 1 case.
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FIG. 8. Evolution of the optimal initial condition at the time of maximum energy growth, computed for
Re = 2000, κ = 1, and β = 1.5: Unforced flow at A = 0 (top) and forced flow at A = 1 (bottom). For each
velocity component (u, v, w from left to right) isosurfaces at ±60% of their respective maxima are visualized.
The u, v,w components change by a factor of 481,0.47,0.40 for A = 0, and by a factor of 44,0.51,0.46 for
A = 1 with respect to the initial condition.

as well, whose overall shape, however, still resembles very much that of the unforced flow. The
vertical component appears to be essentially unaffected by the forcing. In terms of relative intensity,
the three velocity components are comparable with/without control; while the amplitudes of the
wall-normal and spanwise components are unchanged, that of the longitudinal component, which is
the smallest, grows by about six times in the controlled case.

If attention is drawn to the temporal evolution of the optimal initial condition, shown in Fig. 8 at
the time of maximum energy amplification, similar effects are evident regarding its spatial shape; the
spanwise forcing at the wall introduces a streamwise modulation with higher harmonic components.
The modulation is, however, more reduced in comparison to the initial condition, and—at least
for the case under consideration—it appears that at t = tmax the perturbation has developed the
same qualitative shape in both cases. The reorientation of the u component from the spanwise
to the streamwise direction is attributed to an Orr-type mechanism [41]: the initial disturbance is
characterized by a flow pattern opposed to the mean shear which, as time evolves, is tilted into the
shear direction.

To explain how the transient growth is altered, one has to consider the energy levels of the
perturbation. Within the present linear setting, the absolute value of the perturbation amplitude is
inconsequential and perturbations are normalized to unit maximum absolute value. However, the
relative values of the various components and their growth rates can be informative. In the reference
flow, the three velocity components of the initial condition at Re = 2000 are relatively balanced, but
the transient growth affects them very differently. In fact, the relative increment of the amplitude
of the streamwise component is 481 times the initial value (this figure is obviously Re-number
dependent), whereas the v and w components decrease by factors of 0.47 and 0.46, respectively.
With spanwise forcing, however, the picture is drastically changed. The evolution of the v and w

components is similar to the unforced case, as they reduce to 0.51 and 0.46 of their initial values for
v and w, respectively. However, the growth of the streamwise component is severely inhibited,
and at t = tmax the increase of the streamwise velocity component is only 44 times instead of
481 times.
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FIG. 9. Modal and nonmodal stability characteristics computed by taking β as a free parameter to select the
worst case. Left: Neutral stability curves for the unforced flow (contour plot and black lines) and the forced flow
(red lines) for A = 1 and κ = 3. Right: Dependence of Rnmod on κ at A = 1 and Re = 500 (blue), Re = 1000
(red), and Re = 2000 (green).

C. Discussion

The largest Rmod and Rnmod identified in this paper correspond to the best performance observed
in the parameter space (A, κ , β) for a given Re. However, it is important to realize that the amplitude
and wave number are indeed specifiable parameters of the forcing, but the spanwise wave number β

of the perturbation, describing a generic small disturbance, is not a control parameter. Furthermore,
background disturbances are realistically assumed to contain all frequencies. Hence, to appreciate
the true potential of spanwise forcing, one should compare the neutral curve of the unmanipulated
Poiseuille flow with a neutral curve for the controlled Poiseuille flow, where all values of β are
considered and the worst-case scenario is selected. This is shown in Fig. 9 (left), where a forcing
defined by κ = 3 and A = 1 is selected from the optimal parameters identified above. For the neutral
curve, we scan through Re from 5750 to 5850 by increments of 5, and through the wave number α

from 0.8 to 1.2 by increments of 0.05. Every point in the Re-α plane for the forced flow results from
a scan over all available spanwise wave numbers β. For the unforced flow, the critical value Rec of
the Reynolds number is the well-known Rec = 5772; for A = 1, this threshold is increased, but only
marginally so, to Rec = 5816. The increment is not particularly relevant, in contrast to the optimal
situation discussed above in Sec. IV A. In line with the minimal change of Rec, the shape of the
most unstable eigenmode, i.e., the linearly unstable Tollmien– Schlichting wave, is also not altered
significantly by the forcing. This means that the spanwise forcing is indeed capable of hindering the
growth of certain spanwise perturbations, but not of all of them. Once the global effect of the forcing
is considered in a scenario where perturbations of any wave number β are present, the improvement
is significantly smaller.

However, in the context of highly subcritical flows, the significance of this result is limited,
since the nonmodal stability characteristics are way more important. With nonmodal stability, the
overall picture improves substantially. The maximum transient growth is significantly inhibited by
spanwise forcing, regardless of the considered perturbation. As shown in Table II, the ratio Rnmod =
Gref

max/Gmax increases from 2.89 at Re = 500 to 3.61 at Re = 2000. Following the discussion above,
it is interesting to assess how the forcing improves the stability characteristics by finding the value
of β which yields the minimum Rnmod. Figure 9 (right) plots how Rnmod depends on κ , at A =
1 and for the three Reynolds numbers, after selecting the β that yields the worst performance.
Unlike the modal case, the beneficial effects of the spanwise forcing on the nonmodal stability
characteristics are significant. Figure 9 (right) confirms again that, once κ remains at or above the
optimal values, the forcing remains rather effective and consistently guarantees at least halving
the transient energy growth, regardless of Re and the wave number of the spanwise perturbation.
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FIG. 10. Dependence of the maximum transient growth Gmax on the Reynolds number.

The case β = 0 is the worst scenario only in the uncontrolled case; for each data point presented
in Fig. 9, a comprehensive parametric study is conducted to determine the value of β that yields
the worst modal/nonmodal improvement. Overall, the spanwise forcing appears to have little or no
effect on the linearly unstable Tollmien– Schlichting waves detected by modal stability, but interacts
favorably with the lift-up effect.

It is also interesting to explore in more detail how results depend on the Reynolds number. It is
known [42] that the transient growth is a phenomenon whose dynamical importance increases with
Re; in particular, the maximum transient growth Gmax increases as Re2 for a canonical Poiseuille
flow. When the flow is controlled by spanwise forcing, the Re dependence is similar but not identical,
as shown in Fig. 10, which neatly confirms the Re2 increase for the case with A = 0, and shows for
the controlled case a slightly slower increase, fitted well by the power law Re1.9.

We conclude by mentioning the outcome of the same study repeated with the spanwise forcing
applied to one wall only. It is confirmed that the control remains effective, but significantly less so
compared to the case with forcing applied on both walls. For example, at Re = 2000 and A = 1, i.e.,
the case depicted in Fig. 6, applying the control on both walls yields Rmod = 1.55 and Rnmod = 3.61,
which reduce to Rmod = 1.14 and Rnmod = 1.37 when a sole wall is activated. This is somewhat
expected, since the flow dynamics over the two walls are decoupled, while the quantities Rmod and
Rnmod refer to the entire volume; in other words, when control is applied to one wall only, instability
is nearly unaffected on the other. This observation should not be overemphasized, though, as the
fact that spanwise forcing remains fully effective in a boundary for both delaying transition and
decreasing the friction drag is fully assessed [23,43].

V. CONCLUDING DISCUSSION

The present paper explores the potential of a flow control technique, originally conceived for the
reduction of skin-friction drag in the turbulent regime, to alter the linear stability characteristics of
a wall-bounded shear flow. In the simplest geometry of a plane parallel channel, we have studied
the modal and nonmodal temporal stability of laminar, pressure-driven Poiseuille flow modified by
spanwise wall forcing. Specifically, the spanwise velocity enforced at the wall is steady, spanwise
uniform, and sinusoidally modulated along the streamwise direction. A spanwise Stokes layer
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develops, the SSL described by Viotti et al. (2009) [24]: Owing to the convective nature of Poiseuille
flow, the steady forcing is effectively unsteady as seen by the convecting near-wall turbulence
structures, and is known to provide large skin-friction drag reduction as well as interesting net
energy savings in the turbulent regime.

The mathematical formulation of the stability problem is not straightforward, owing to the
streamwise-varying base flow. The sinusoidal streamwise variations of the base flow is used to
arrive at a formulation with a block-coupled system matrix. A numerical study has investigated a
large number of parameters, both physical (Re, A, κ , β) and related to the numerical discretization
(N , M, neig, �t , Tend). Overall, a total of 11 286 cases has been computed and processed. Special
care has been taken to properly select the discretization parameters for discretization-independent
solutions, while keeping the computational cost under control.

The main results fully support the finding that a turbulent skin-friction drag reduction technique
can be employed to improve the stability characteristics of a laminar flow. In this respect, this
conclusion reinforces similar results recently obtained numerically (see, e.g., Ref. [23]) in terms of
transition delay. Looking at the asymptotic behavior of the perturbation (modal stability), the least
stable eigenvalue λ1 has been found in our study to increase its stability margin in comparison to
its Orr-Sommerfeld counterpart (Fig. 4), in a way that is directly related to the forcing intensity.
Similarly, the potential for short-time growth of energy of small perturbations is significantly
hampered in comparison to the unforced case. The relative stability improvements are Re dependent:
When A = 1, across the tested values of the Reynolds number the real part of the least stable
eigenvalue more than doubles, as shown in Table I: the ratio Re(λ1)/Re(λref

1 ) increases from 1.94 at
Re = 500 to 2.36 at Re = 2000. The maximum energy growth decreases by 65% at Re = 500 and
by 72% at Re = 2000.

Further work is needed to improve our understanding of the whole picture and to approach
applications, especially in terms of suitable actuators. Moreover, as generally observed for spanwise
forcing, the obtained benefits are proportional to the forcing intensity, and at A = 1 (maximum
control velocity equal to the centerline velocity) the intensity is rather large. In the turbulent regime,
this would lead to significant skin-friction drag reductions accompanied by negative net savings.
The energetic convenience of the present forcing should be properly reassessed here, in view of the
savings made possible by delayed transition. Nonetheless, the present results convincingly support
the claim that spanwise forcing (at least in the stationary and spatially nonuniform case considered
here) is an effective way to improve the linear stability characteristics of plane Poiseuille flow.
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APPENDIX: DISCRETIZATION PARAMETERS

For each set of physical parameters, the discretization parameters must be chosen. Some are
simply set beforehand after a preliminary study, while others are dynamically adapted during the
calculation on a case-by-case basis to consistently satisfy certain criteria across the whole study. In
the following, we describe how the discretization parameters have been chosen to ensure consistent,
high-fidelity solutions.

1. Number of Chebyshev polynomials

The number N of Chebyshev polynomials used to discretize the wall-normal direction must be
sufficiently large to provide accurate values of the most unstable eigenvalues and of the maximum
Gmax of the function G(t ). For standard Poiseuille flow, ample literature is available (see, e.g.,
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TABLE III. Modal and nonmodal stability results as a function of the number N of Chebyshev polynomials
and of the forcing wave number κ for Re = 1000, β = 1.5, and A = 1. Left: Real part of the least stable
eigenvalue λ1 multiplied by 102. Right: Maximum value Gmax of the transient energy growth function.

κ N = 40 N = 80 N = 100 N = 120 N = 40 N = 80 N = 100 N = 120

0.5 –0.71597 –0.71589 –0.71589 –0.71589 89.2768 221.0830 236.2375 240.5213
0.75 –0.69655 –0.69662 –0.69662 –0.69662 56.6170 78.4394 80.0837 80.2476
1 –0.68968 –0.68974 –0.68974 –0.68974 53.1008 53.2548 53.2840 53.2953
1.5 –0.68762 –0.68745 –0.68745 –0.68745 63.3796 63.4602 63.4707 63.4793
2.5 –0.75017 –0.75032 –0.75032 –0.75032 67.9628 67.9501 67.9571 67.9720
3.5 –0.80562 –0.80556 –0.80556 –0.80556 66.5897 66.6047 66.6061 66.6080
5 –0.83934 –0.83936 –0.83936 –0.83936 65.7172 65.6933 65.6931 65.6934

Refs. [27,45–47]) to inform the choice of a suitable N ; here, however, the presence of an additional
spanwise base flow calls for a further systematic analysis.

A preliminary resolution study is thus carried out for a typical case, with Re = 1000, β = 1.5,
and A = 1, where the wave number is varied from κ = 0.5 to κ = 5. The effect of changing N is
observed on the main modal and nonmodal stability characteristics: Table III reports on the left
the real part of the least stable eigenvalue λ1, and on the right the maximum value Gmax of the
transient growth function. N is varied from N = 40 to N = 120. The modal stability characteristics
are weakly sensitive to the value of N , with N = 80 already providing the first eigenvalue accurate
up five digits regardless of the value of κ . The nonmodal results, however, show a strong dependence
on N , especially for the lowest values of κ: When κ � 1 the effects are minor, and N = 80 provides
G values that are stable to the fourth digit or higher. At lower κ , the accuracy degrades and the largest
value of N = 120 still does not provide resolution-independent results for κ = 0.5. Fortunately,
as will be shown below, this case at the lowest κ shows changes in Gmax of less than 2% when
moving from N = 100 to N = 120 and is of no practical interest. Moreover, the subsequent case
with κ = 0.75 displays far lower sensitivity to N , reduced by one order of magnitude.

The above considerations lead to our operational choice of using N = 80 Chebyshev polynomials
when κ � 1, but increasing this number to N = 100 when κ < 1. The selected resolution is further
checked on the most demanding situation, i.e., nonmodal stability calculations at the highest Re
considered in the present paper (Re = 2000). For N = 100 polynomials, we compute a maximum
transient growth at κ = 0.75 of 190.8346, which is to be compared with a value of 190.8451
obtained with N = 120 polynomials.

2. Truncation factor

The truncation factor M in Eqs. (12) defines the spectral expansion of the flow variables in the
streamwise direction. The computed values of both λ1 and Gmax should be robust to the chosen
value of M—a parameter which also strongly affects the computational cost.

Since in nonmodal stability analyses the optimal perturbation is not constrained to a single
streamwise wave number, M should be sufficiently large to guarantee a compact support for the
optimal initial condition, while also accurately capturing its evolution up to the time of maximum
energy growth. We have empirically established that the optimal initial conditions obtained by
varying the problem parameters can be grouped into two broad classes with qualitatively different
characteristics in terms of spectral content. Figure 11 shows, for the two classes of optimal initial
conditions, how their amplitude depends on the wall-normal coordinate y and on the modal expan-
sion index p. In the first class (top row of Fig. 11), the v component is largest at α = 0, i.e., p = 0,
whereas the η component is largest near the walls at α ∼ A/κ . In the second class (bottom row),
both v and η show maxima at a wave number inversely proportional to κ . The temporal evolutions
of perturbations from either class are qualitatively similar.
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FIG. 11. Optimal initial condition at Re = 1000 for v (left) and η (right) as a function of the y coordinate
and the pth wave number of the modal expansions, −M � p � M. Contours describe the absolute value of the
optimal initial condition. Top: Example of optimal input centered around p = 0, with κ = 1.5, A = 0.3, and
β = 0.5. Bottom: Example of optimal input peaking at α ∼ ±κ−1 with κ = 1, A = 0.6, and β = 0.3.

Owing to the procedural complexity of properly selecting the parameter M, our operational
choice is to enforce a dynamical and automated adjustment of M. Each simulation is started with
a reasonable first guess M0, and then M is incremented by unitary steps until a most unstable
eigenvalue λM

1 is computed that satisfies the criterion∣∣∣∣∣λ
M
1 − λM−1

1

λM
1

∣∣∣∣∣ < 1 × 10−6. (A1)

The initial guess M0 is selected by empirically accounting for the two distributions discussed
above, according to the following heuristics that depends on the forcing parameters:

M0 = 3
A

κ
+ 1

κ
. (A2)

Once M0 is set, an iterative increase of M is started until the termination criterion Eq. (A1) is
satisfied (or a maximum value of Mmax = 50 is reached). Across the entire study, this iteration
always terminated before the limit M = Mmax is reached, and the largest value used within our
study was M = 18.

Provided that M is not too low, the values of Gmax are not particularly sensitive to M, as shown in
Table IV. For this case, our procedure leads to M = 11, and the relative change of Gmax for values
of M between M = 11 and M = 18 is bounded by 10−3.
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TABLE IV. Nonmodal stability results as a function of the modal truncation factor M for Re = 2000,
κ = 0.75, β = 2 and A = 1.

M 8 10 11 14 18

Gmax 231.1303 231.1788 231.2086 231.2300 231.2390

3. Number of eigenvalues

The fraction of the entire set of Ntot = 2(N + 1)(2M + 1) eigenvalues of the system matrix
retained in the iterative Arnoldi procedure must ensure that the dynamics of the optimal initial
condition is well represented. The number neig of retained eigenvalues defines the truncation
operator T, which reduces the size of the matrix Qs and with it the cost of computing the transient
growth rate Eq. (22).

The worst-case scenario corresponds to optimal initial conditions of the type illustrated in the
bottom row of Fig. 11. For one such case (namely, Re = 1000, A = 0.6, and β = 0.3), Table V
reports the computed value of Gmax as neig is changed, for selected values of κ . The sensitivity
is certainly nonnegligible, especially at the lower κ . By examining this case as well as other
representative cases, we arrive at the operational choice of setting neig = Ntot/6 when κ � 1, and
neig = Ntot/3 otherwise.

4. Temporal discretization

A temporal integration step �t must be chosen to evaluate Eq. (22) and to identify the maximum
Gmax and the time tmax at which it occurs. In classic, unforced Poiseuille flow, the transient growth
function G(t ) monotonically increases from a unit value at t = 0 (as long as Re is above the critical
value for monotonic stability) up to Gmax, and then steadily decreases. However, when the flow is
modified by the SSL, the ensuing G(t ) presents two local maxima: one is similar to the unforced
maximum, the other is directly linked to the SSL. The latter is centered on a considerably narrow
peak of the G(t ) function, and typically occurs at shorter times. The absolute maximum Gmax can
pertain to either peak, depending on the specific case.

The location of the two peaks varies significantly with the physical parameters of the problem.
Figure 12 shows, for a typical case with dominating first peak (Re = 1000 and κ = 1), the temporal
position of the peak as a function of A and β. It is seen that, especially at small β, Gmax occurs at
very short times, whereas for small A the timescale of the maximum increases, and the unforced
peak is recovered. It is also noted that the first peak of G(t ) is always located at t < 100. Hence our
operational choice is to employ a variable time discretization by setting �t = 1 for 0 < t < 100
and increasing it to �t = 10 for t > 100.

TABLE V. Nonmodal stability results as a function of the number neig of eigenvalues retained in the Arnoldi
procedure and of the forcing wave number. The table reports the maximum value of the transient energy growth
function G(t ).

κ\neig Ntot/7 Ntot/6 Ntot/5 Ntot/4 Ntot/3 Ntot/2

0.5 20.2629 20.7811 20.8603 20.8655 20.8657 20.8657
0.75 15.0971 15.1162 15.1261 15.1266 15.1266 15.1266
1 13.1278 13.1681 13.1957 13.2004 13.2013 13.2015
1.5 12.4396 12.4427 12.4431 12.4432 12.4433 12.4437
2.5 10.0582 10.0583 10.0584 10.0585 10.0588 10.0590
3.5 10.4932 10.4934 10.4937 10.4938 10.4941 10.4943
5 10.9079 10.9081 10.9084 10.9084 10.9087 10.9089
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FIG. 12. Time tmax for the occurrence of the maximum Gmax of transient growth for the case of Re = 1000
and κ = 1.
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