# Drag reduction on a transonic airfoil

How does reducing friction drag reduce drag?



EDRFCM 2022, Paris, Sept. 7

<sup>1</sup>Politecnico di Milano, <sup>2</sup>Karlsruhe Institute of Technology, <sup>3</sup>CINECA Interuniversity Consortium, <sup>4</sup>La Sapienza Università di Roma



- Skin-friction drag reduction (DR) is often studied for low-*Re* flows in simple geometries
- For a complex body, skin-friction DR should be extrapolated to total DR
- The standard answer is: in proportion!

We answer differently, with a story told through EDRFCMs 2017-2022

## Chap.1: EDRFCM 2017, Rome

Asking the question

- Preliminary study (coarse RANS, wall functions, DR model)
- Suggests that pressure distribution is affected
- Resemblance with similar studies for riblets



Δτ 40\_

EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli & M.Quadrio



# Chap.2: EDRFCM 2019, Bad Herrenhalb

First answer, simple physics

- Reliable modelling (DNS, DR accounted for directly)
- Still simple physics
- Confirmation that skin-friction DR may led to pressure DR too

EDRFCM 2019: Turbulent drag reduction for a wall with a bump, J.Banchetti & M.Quadrio Paper: J.Banchetti *et al*: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, **896** A10.



# Chap.3: EDRFCM 2022, Paris

Final answer, richer physics

- Reliable modelling (DNS, DR accounted for directly)
- Richer physics (compressible flow over a transonic wing with shock wave)
- Extrapolation to the entire airplane

EDRFCM 2022: This talk Paper: M.Quadrio *et al*: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, **942** R2.

5





# Turbulent flow over a transonic airfoil

- Direct Numerical Simulation (up to 1.8 billions cells)
- Supercritical V2C airfoil
- $\cdot$   $\mathit{Re}_{\infty}=3 imes10^{5}$ ,  $\mathit{M}_{\infty}=$  0.7,  $lpha=4^{\circ}$
- Control by spanwise forcing (steady StTW)
- Only a portion of the suction side is controlled



#### Two control layouts

For C1:

- $A_1 = 0.5, \omega = 11.3, \kappa_x = 161$
- $x_{s,1} = 0.3c$ ,  $x_{e,1} = 0.78c$

For C2:

- $A_2 = 0.68$ ,  $\omega = 11.3$ ,  $\kappa_x = 161$
- $x_{s,2} = 0.2c$ ,  $x_{e,2} = 0.78c$



## The mean flow



M = 1 (Ref)M = 1 (C1)M = 1 (C2)

## Instantaneous flow: near-wall fluctuations



Friction coefficient



10

#### Pressure coefficient

$$c_p = \frac{2(p_w - p_\infty)}{\rho_\infty U_\infty^2}$$



11

At the same incidence angle  $\alpha = 4^{\circ}$ 

|                  | Reference | C2     | $\Delta_2$ | C2 ( $\alpha = 3.45^{\circ}$ ) | $\Delta_2$ |
|------------------|-----------|--------|------------|--------------------------------|------------|
| $C_\ell$         | 0.740     | 0.825  | +11.3%     | 0.730                          | -1.3%      |
| $C_d$            | 0.0247    | 0.0245 | -0.8%      | 0.0210                         | -15.0%     |
| $C_{d,f}$        | 0.0082    | 0.0071 | -13.4%     | 0.0074                         | -9.7%      |
| $C_{d,p}$        | 0.0165    | 0.0174 | +5.5%      | 0.0136                         | -17.6%     |
| $C_{\ell}/C_{d}$ | 29.7      | 33.7   | +13.5%     | 34.8                           | +17.2%     |

Approximately at the same  $C_\ell$ 

|                  | Reference | С2     | $\Delta_2$ | C2 ( $\alpha$ = 3.45°) | $\Delta_2$ |
|------------------|-----------|--------|------------|------------------------|------------|
| $C_\ell$         | 0.740     | 0.825  | +11.3%     | 0.730                  | -1.3%      |
| $C_d$            | 0.0247    | 0.0245 | -0.8%      | 0.0210                 | -15.0%     |
| $C_{d,f}$        | 0.0082    | 0.0071 | -13.4%     | 0.0074                 | -9.7%      |
| $C_{d,p}$        | 0.0165    | 0.0174 | +5.5%      | 0.0136                 | -17.6%     |
| $C_{\ell}/C_{c}$ | 29.7      | 33.7   | +13.5%     | 34.8                   | +17.2%     |

Assumptions:

- $\cdot$  The wing is responsible for the entire lift and 1/3 of the non-lift-induced drag
- $\Delta C_{\ell}$  and  $\Delta C_d$  induced by control do not change along the wing span
- $\Delta C_{\ell}$  and  $\Delta C_{d}$  induced by control do not change with  $\alpha$ ,  $Re_{\infty}$  and  $M_{\infty}$

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions:  $M_{\infty} = 0.75$ ,  $Re_{\infty} = 3 \times 10^{6}$



- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions:  $M_{\infty} = 0.75$ ,  $Re_{\infty} = 3 \times 10^6$

|          | Uncontrolled | Controlled |
|----------|--------------|------------|
| $C_L$    | 0.5          | 0.5        |
| $\alpha$ | 0.52°        | 0.0125°    |
| $C_D$    | 0.0295       | 0.0272     |



- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions:  $M_{\infty} = 0.75$ ,  $Re_{\infty} = 3 \times 10^6$

|          | Uncontrolled | Controlled |
|----------|--------------|------------|
| $C_L$    | 0.5          | 0.5        |
| $\alpha$ | 0.52°        | 0.0125°    |
| $C_D$    | 0.0295       | 0.0272     |

 $\Delta C_D \approx 9.0\%$ 

actuation power  $\approx$  1% of the overall power expenditure



- The global aerodynamic performance of the wing is improved by locally reducing skin friction over a portion of the suction side
- We measure  $\Delta C_d \approx 15\%$  and  $\Delta C_D \approx 9\%$  (but more is possible!)
- Skin-friction drag reduction should be considered as a tool and not only as a goal

## Mean flow: downstream shift of the shock



At the same incidence angle  $\alpha=4^\circ$ 

|                  | Reference | C1     | $\Delta_1$ | C2     | $\Delta_2$ | C2 ( $\alpha = 3.45^{\circ}$ ) | $\Delta_2$ |
|------------------|-----------|--------|------------|--------|------------|--------------------------------|------------|
| $C_{\ell}$       | 0.740     | 0.751  | +1.5%      | 0.825  | +11.3%     | 0.730                          | -1.3%      |
| $C_d$            | 0.0247    | 0.0236 | -4.5%      | 0.0245 | -0.8%      | 0.0210                         | -15.0%     |
| $C_{d,f}$        | 0.0082    | 0.0076 | -7.3%      | 0.0071 | -13.4%     | 0.0074                         | -9.7%      |
| $C_{d,p}$        | 0.0165    | 0.0161 | -2.4%      | 0.0174 | +5.5%      | 0.0136                         | -17.6%     |
| $C_{\ell}/C_{d}$ | 29.7      | 31.7   | +6.8%      | 33.7   | +13.5%     | 34.8                           | +17.2%     |

At the same incidence angle  $\alpha=4^\circ$ 

|                  | Reference | C1     | $\Delta_1$ | C2     | $\Delta_2$ | C2 ( $\alpha = 3.45^{\circ}$ ) | $\Delta_2$ |
|------------------|-----------|--------|------------|--------|------------|--------------------------------|------------|
| $C_{\ell}$       | 0.740     | 0.751  | +1.5%      | 0.825  | +11.3%     | 0.730                          | -1.3%      |
| $C_d$            | 0.0247    | 0.0236 | -4.5%      | 0.0245 | -0.8%      | 0.0210                         | -15.0%     |
| $C_{d,f}$        | 0.0082    | 0.0076 | -7.3%      | 0.0071 | -13.4%     | 0.0074                         | -9.7%      |
| $C_{d,p}$        | 0.0165    | 0.0161 | -2.4%      | 0.0174 | +5.5%      | 0.0136                         | -17.6%     |
| $C_{\ell}/C_{d}$ | 29.7      | 31.7   | +6.8%      | 33.7   | +13.5%     | 34.8                           | +17.2%     |

## Approximately at the same $C_\ell$

|                | Reference | C1     | $\Delta_1$ | С2     | $\Delta_2$ | C2 ( $lpha=$ 3.45°) | $\Delta_2$ |
|----------------|-----------|--------|------------|--------|------------|---------------------|------------|
| $C_\ell$       | 0.740     | 0.751  | +1.5%      | 0.825  | +11.3%     | 0.730               | -1.3%      |
| $C_d$          | 0.0247    | 0.0236 | -4.5%      | 0.0245 | -0.8%      | 0.0210              | -15.0%     |
| $C_{d,f}$      | 0.0082    | 0.0076 | -7.3%      | 0.0071 | -13.4%     | 0.0074              | -9.7%      |
| $C_{d,p}$      | 0.0165    | 0.0161 | -2.4%      | 0.0174 | +5.5%      | 0.0136              | -17.6%     |
| $C_{\ell}/C_d$ | 29.7      | 31.7   | +6.8%      | 33.7   | +13.5%     | 34.8                | +17.2%     |

- compressible NS solver for a calorically perfect gas: second-order FV method, with locally 3rd-order WENO numerical flux with Ducros sensor
- domain with spanwise width 0.1c, mesh radius 25c
- incoming laminar flow, periodic spanwise boundary conditions
- + baseline mesh 4096  $\times$  512  $\times$  256
- resolution after Zauner, De Tullio & Sandham (2019) (but at lower *Re*), then checked a posteriori to obey requirements set forth by Hosseini et al. 2016
- + statistics accumulated for  $40 c/U_\infty$