Drag reduction on a transonic airfoil

How does reducing friction drag reduce drag?

M. Quadrio ${ }^{1}$, A. Chiarini ${ }^{1}$, J. Banchetti ${ }^{1}$, D. Gatti ${ }^{2}$, A. Memmolo ${ }^{3}$ \& S. Pirozzoli ${ }^{4}$

EDRFCM 2022, Paris, Sept. 7
${ }^{1}$ Politecnico di Milano, ${ }^{2}$ Karlsruhe Institute of Technology, ${ }^{3}$ CINECA Interuniversity Consortium, ${ }^{4}$ La Sapienza Università di Roma

A simple question for the drag reduction community

- Skin-friction drag reduction (DR) is often studied for low-Re flows in simple geometries
- For a complex body, skin-friction DR should be extrapolated to total DR
- The standard answer is: in proportion!

We answer differently, with a story told through EDRFCMs 2017-2022

Chap.1: EDRFCM 2017, Rome

- Preliminary study (coarse RANS, wall functions, DR model)
- Suggests that pressure distribution is affected
- Resemblance with similar studies for riblets

[^0]
Chap.2: EDRFCM 2019, Bad Herrenhalb

First answer, simple physics

- Reliable modelling (DNS, DR accounted for directly)
- Still simple physics
- Confirmation that skin-friction DR
 may led to pressure DR too

EDRFCM 2019: Turbulent drag reduction for a wall with a bump, J.Banchetti \& M.Quadrio
Paper: J.Banchetti et al: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, 896 A10.

Chap.3: EDRFCM 2022, Paris

- Reliable modelling (DNS, DR accounted for directly)
- Richer physics (compressible flow over a transonic wing with shock wave)
- Extrapolation to the entire airplane

EDRFCM 2022: This talk
Paper: M.Quadrio et al: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, 942 R2.

Turbulent flow over a transonic airfoil

- Direct Numerical Simulation (up to 1.8 billions cells)
- Supercritical V2C airfoil
- $R e_{\infty}=3 \times 10^{5}, M_{\infty}=0.7, \alpha=4^{\circ}$
- Control by spanwise forcing (steady StTW)
- Only a portion of the suction side is controlled

Two control layouts

For C1:

- $A_{1}=0.5, \omega=11.3, \kappa_{X}=161$
- $x_{s, 1}=0.3 c, x_{e, 1}=0.78 c$

For C2:

- $A_{2}=0.68, \omega=11.3, \kappa_{X}=161$
- $x_{s, 2}=0.2 c, x_{e, 2}=0.78 c$

The mean flow

$$
\begin{aligned}
-M & =1(\text { Ref }) \\
-M & =1(C 1) \\
-M & =1(C 2)
\end{aligned}
$$

Instantaneous flow: near-wall fluctuations

— shock position

- x_{s} and x_{e}

Friction coefficient

$$
c_{f}=\frac{2 \tau_{w}}{\rho_{\infty} U_{\infty}^{2}}
$$

Pressure coefficient

$$
c_{p}=\frac{2\left(p_{w}-p_{\infty}\right)}{\rho_{\infty} U_{\infty}^{2}}
$$

Aerodynamic forces

At the same incidence angle $\alpha=4^{\circ}$

	Reference	C 2	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Aerodynamics forces

Approximately at the same C_{ℓ}

	Reference	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	33.7	$+13.5 \%$	34.8	$+17.2 \%$

How does it scale to a full aircraft?

How does it scale to a full aircraft?

Assumptions:

- The wing is responsible for the entire lift and $1 / 3$ of the non-lift-induced drag
- ΔC_{ℓ} and ΔC_{d} induced by control do not change along the wing span
- ΔC_{ℓ} and ΔC_{d} induced by control do not change with $\alpha, \operatorname{Re} e_{\infty}$ and M_{∞}

How does it scale to a full aircraft?

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$, $R e_{\infty}=3 \times 10^{6}$

$\left.\alpha{ }^{[}\right]$

How does it scale to a full aircraft?

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$, $R e_{\infty}=3 \times 10^{6}$

	Uncontrolled	Controlled
C_{L}	0.5	0.5
α	0.52°	0.0125°
C_{D}	0.0295	0.0272

How does it scale to a full aircraft?

- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$,

$$
R e_{\infty}=3 \times 10^{6}
$$

	Uncontrolled	Controlled
C_{L}	0.5	0.5
α	0.52°	0.0125°
C_{D}	0.0295	0.0272

$\Delta C_{D} \approx 9.0 \%$

actuation power $\approx 1 \%$ of the overall power expenditure

Conclusions

- The global aerodynamic performance of the wing is improved by locally reducing skin friction over a portion of the suction side
- We measure $\Delta C_{d} \approx 15 \%$ and $\Delta C_{D} \approx 9 \%$ (but more is possible!)
- Skin-friction drag reduction should be considered as a tool and not only as a goal

Mean flow: downstream shift of the shock

Aerodynamic forces

At the same incidence angle $\alpha=4^{\circ}$

	Reference	$C 1$	Δ_{1}	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.751	$+1.5 \%$	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0161	-2.4%	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	31.7	$+6.8 \%$	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Aerodynamic forces

At the same incidence angle $\alpha=4^{\circ}$

	Reference	$C 1$	Δ_{1}	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.751	$+1.5 \%$	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0161	-2.4%	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	31.7	$+6.8 \%$	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Aerodynamic forces

Approximately at the same C_{ℓ}

	Reference	$C 1$	\triangle_{1}	$C 2$	Δ_{2}	$C 2\left(\alpha=3.45^{\circ}\right)$	Δ_{2}
C_{ℓ}	0.740	0.751	$+1.5 \%$	0.825	$+11.3 \%$	0.730	-1.3%
C_{d}	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d, f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d, p}$	0.0165	0.0161	-2.4%	0.0174	$+5.5 \%$	0.0136	-17.6%
C_{ℓ} / C_{d}	29.7	31.7	$+6.8 \%$	33.7	$+13.5 \%$	34.8	$+17.2 \%$

Computational details

- compressible NS solver for a calorically perfect gas: second-order FV method, with locally 3rd-order WENO numerical flux with Ducros sensor
- domain with spanwise width 0.1 c, mesh radius 25 c
- incoming laminar flow, periodic spanwise boundary conditions
- baseline mesh $4096 \times 512 \times 256$
- resolution after Zauner, De Tullio \& Sandham (2019) (but at lower Re), then checked a posteriori to obey requirements set forth by Hosseini et al. 2016
- statistics accumulated for $40 \mathrm{c} / \mathrm{U}_{\infty}$

[^0]: EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli \& M.Quadrio

