# Turbulent drag reduction using spanwise forcing in compressible regime

F. Gattere<sup>1</sup>, <u>A. Chiarini<sup>1</sup></u>, M. Zanolini<sup>1</sup>, D. Gatti<sup>2</sup>, M. Bernardini<sup>3</sup> & M. Quadrio<sup>1</sup>

September 2022, European Drag Reduction and Flow Control Meeting 2022

<sup>1</sup>Politecnico di Milano, <sup>2</sup>Karlsruhe Institute of Technology, <sup>3</sup>La Sapienza Università di Roma



# Skin friction drag reduction by spanwise forcing

#### Travelling waves of spanwise oscillation

(Quadrio et al., JFM 2009)

 $W(x,t) = A\sin(\kappa_x x - \omega t)$ 

- At  $Re_{\tau} = 200$  and  $A^+ = 12$  Drag reduction up to  $\approx 48\%$
- Steady waves and oscillating wall are obtained for  $\omega = 0$  and  $\kappa_x = 0$



#### Towards real-world applications

• Reynolds number dependence



#### Towards real-world applications

Reynolds number dependence

• Effect on the other drag sources in complex bodies



#### Towards real-world applications

Reynolds number dependence

• Effect on the other drag sources in complex bodies



• Effect of the Mach number

#### In this work

We extend the work by Yao & Hussain (JFM, 2019) and study streamwise travelling waves for drag reduction in the compressible regime at different Mach numbers



- Direct Numerical Simulations of a perfect heat-conducting gas
- STREAmS solver (Bernardini et al, CPC 2021)
- $M_b = U_b/c_w = 0.3, 0.8$  and 1.5
- Constant flow rate (CFR)
- For the uncontrolled case:  $Re_{ au} = 400$
- For each M<sub>b</sub>: 1 uncontrolled and 42 controlled simulations
- $A^+ = 12$  for the controlled simulations
- $(L_x, L_y, L_z) = (6\pi h, 2h, 2\pi h)$  with  $L_x$  that is adjusted depending on  $\lambda_x$
- $(N_x, N_y, N_z) = (1024, 258, 512)$

#### The bulk temperature T<sub>b</sub>

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho uT \rangle \mathrm{d}y$$

• *T<sub>b</sub>* freely evolves in time

•  $T_b/T_w$  is kept constant

# The bulk temperature $T_b$

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho uT \rangle \mathrm{d}y$$

•  $T_b$  freely evolves in time

- $T_b/T_w$  is kept constant
- The asymptotic value is reached when the heat produced within the flow is balanced by the heat flux at the isothermal walls
- As in Yao & Hussain (JFM 2019)

# The bulk temperature $T_b$

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho uT \rangle \mathrm{d}y$$

- $T_b$  freely evolves in time
- The asymptotic value is reached when the heat produced within the flow is balanced by the heat flux at the isothermal walls
- As in Yao & Hussain (JFM 2019)

- $T_b/T_w$  is kept constant
- $\frac{T_b}{T_w} = \frac{1}{1+s\frac{\gamma-1}{2}rM_b^2}$  to set the ratio of bulk flow kinetic energy converted into wall heat flux s
- s = 0.75, meaning that 75% of the kinetic energy is transformed into thermal energy



- Line 1: Oscillating wall
- Line 2: Steady wave
- Line 3: Travelling wave with  $\kappa_x^+ = 0.005$
- Line 4: Travelling wave with  $\omega^+ = -0.21$
- Line 5: Optimum ridge for drag reduction

#### Performance indicator

• Drag reduction rate DR

$$DR = \frac{P_0 - P}{P_0}$$

where

$$P = \frac{U_b}{T_{ave}L_xL_z} \int_{t_i}^{t_f} \int_0^{L_x} \int_0^{L_z} \tau_x dz dx dt$$

• Power required to create the wall forcing P<sub>in</sub>

$$P_{in} = \frac{1}{T_{ave}L_xL_z} \int_{t_i}^{t_f} \int_0^{L_x} \int_0^{L_z} W \tau_z dz dz dz$$

• Net energy saving rate Pnet

$$P_{net} = DR - \frac{P_{in}}{P_0}$$

#### Line 1: Oscillating wall

 $- \bullet - M_b = 0.3 - \bullet - M_b = 0.8$  $- \bullet - M_b = 1.5 - \bullet - GQ-2016$ 



- For  $M_b = 0.3$ :  $T^+_{max} \approx 100$ , like in the incompressible regime
- When  $M_b \uparrow$ , the DR T trend qualitatively does not change
- When  $M_b \uparrow$ 
  - $DR \downarrow$  for small T
  - $DR \uparrow \text{for large } T$

#### Line 2: steady wave

 $- \bullet - M_b = 0.3 - \bullet - M_b = 0.8$  $- \bullet - M_b = 1.5 - \bullet - GQ-2016$ 



- For  $M_b = 0.3$ :  $\kappa^+_{\rm x,max} \approx 0.005$ , like in the incompressible regime
- When  $M_b \uparrow$ 
  - *DR*  $\uparrow$  for small  $\kappa_x$
  - $DR \downarrow$  for large  $\kappa_x$

# Line 3: Travelling waves with $\kappa_{\chi}^+ = 0.005$

 $- \bullet - M_b = 0.3 - \bullet - M_b = 0.8$  $- \bullet - M_b = 1.5 - \bullet - GQ-2016$ 



- For  $M_b = 0.3$ : results agree with the incompressible regime
- When  $M_b \uparrow$ :
  - + DR  $\downarrow$  for  $\omega^+ <$  0 and  $\omega^+ > 0.06$
  - $\cdot$  DR  $\uparrow$  for 0 <  $\omega^+$  < 0.06
- When  $M_b \uparrow$ 
  - the global DR peak moves towards larger  $\omega$
  - the second local DR peak moves towards smaller  $\omega$
- When  $M_b \uparrow$  the DI region shrinks

#### Power budgets: Line 3



•  $|P_{in}|$ %  $\downarrow$  when  $M_b \downarrow$ 

#### Power budgets: Line 3



•  $|P_{in}|$ %  $\downarrow$  when  $M_b \downarrow$ 

- $P_{net}$ %  $\uparrow$  when  $M_b$   $\uparrow$ .
- $P_{net} = 10\%, 20\%$  and 30% for  $M_b = 0.3, 0.8$  and 1.5.

# The bulk temperature $T_b$ : Line 3 ( $\kappa_x^+ = 0.005$ )



 $M_{\rm b} = 0.8$ 

 $M_{\rm b} = 1.5$ 

- $T_b \uparrow$  when  $M_b \uparrow$
- $T_b \uparrow$  when the control is active and  $\Delta T_b = T_b T_{b,0} \uparrow$  with  $M_b$

Is the increase of  $\Delta T_b$  the dominant effect?

#### The bulk temperature T<sub>b</sub>

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho uT \rangle \mathrm{d}y$$

• *T<sub>b</sub>* freely evolves in time

•  $T_b/T_w$  is kept constant

# The bulk temperature $T_b$

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho uT \rangle \mathrm{d}y$$

•  $T_b$  freely evolves in time

•  $T_b/T_w$  is kept constant

- The asymptotic value is reached when the heat produced within the flow is balanced by the heat flux at the isothermal walls
- As in Yao & Hussain (JFM 2019)

#### The bulk temperature $T_b$

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho uT \rangle \mathrm{d}y$$

.

•  $T_b$  freely evolves in time

•  $T_b/T_w$  is kept constant

$$\frac{T_b}{T_w} = \frac{1}{1 + s\frac{\gamma - 1}{2}rM_b^2}$$
 to set the ratio of bulk flow

kinetic energy converted into wall heat flux s

- $\cdot$  75% of the kinetic energy is transformed into thermal energy (s = 0.75)
- Same  $T_b/T_w$  for the reference and controlled cases

# Line 3 ( $\kappa_{\rm x}^+ = 0.005$ ): Effect of $T_b$



# Line 3 ( $\kappa_{\chi}^{+} = 0.005$ ): Effect of $T_{b}$



• When  $T_b/T_w$  is fixed the DR curves almost collapse

- Influence of the compressibility on the performance of spanwise forcing
- +  $M_b=0.3, 0.8$  and 1.5 at  $Re_{ au}=400$
- The effect of the control depends on how  $T_b$  is set
- If  $T_b$  is left free to evolve the maximum *DR* increases by 27%, when the Mach number increases from  $M_b = 0.3$  to  $M_b = 1.5$
- If  $T_b/T_w$  is kept constant the DR curves almost collapse

# Thanks for your attention!











# **Governing Equations**

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_j} + f\delta_{i1}$$
(2)

$$\frac{\partial \rho e}{\partial t} + \frac{\partial \rho (e + p/\rho) u_j}{\partial x_j} = \frac{\partial \sigma_{ij} u_i - \partial q_j}{\partial x_j} + f u_1 + \Phi$$
(3)

where: 
$$e = c_v T + u_i u_i/2$$
,  $\sigma_{ij} = \mu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right)$ 

 $q_j$  is the heat flux vector, modelled as  $q_j = -k \frac{\partial T}{\partial x_i}$ , and  $k = c_p \mu / Pr$  where Pr = 0.72.

 $\Phi$  is a uniformly distributed cooling term (heat sink) to control the value of  $T_b$  and to absorb, when needed, the heat produced by viscous dissipation. It is zero when  $T_b$  is left freely to evolve in time. When  $T_b/T_w$  is constant  $\Phi$  is evaluated at each time step.