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Abstract. Fluid flow turbulence is probably the last unsolved mystery
of classical physics. Research groups are active all over the World with the
double aim to accumulate ever more precise empirical knowledge (using
a synergy of experiments and numerical simulations), and to frame this
empirical knowledge into a consistent theory that may prove of predictive
value for applications. Italian Mechanics strongly participates in this
effort. Here progress is described in the comprehension of wall-bounded
turbulence and the reduction of turbulent skin-friction drag, in their
four aspects of the shape of the mean velocity profile, the statistics of
turbulent fluctuations, devices of passive drag reduction and devices of
active drag reduction. An inevitable bias will be seen for the topics to
which the present authors have contributed directly, but these are also
the results that we can more easily entice the reader with.
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1 Introduction

To sketch a history of our understanding of turbulence and turbulent flow, at
any level of detail, is a daunting task. In this chapter we take up the limited
goal of sketching part of the Italian contributions to the subject, with a focus
on our own contributions. Discussion is limited to the specific type of turbu-
lence that takes place in the vicinity of a solid wall. Since the most practically
relevant manifestation of the onset of turbulence in wall-bounded flow is its in-
creased skin-friction drag, developments in studies, concepts and technologies
for turbulent skin-friction reduction will also be given particular emphasis.

The notion that turbulence near a wall possesses a certain degree of structure
emerged half a century ago, and is slowly superseding the concept (still embedded
in some current RANS turbulence models) that a turbulent flow is just random
and unpredictable overall, and approaches the laminar state once the very near-
wall layer is reached. Lexically, this corresponds to the terminology shift where
this layer, once called laminar sublayer, is now referred to as the viscous sublayer.

Around the middle of the past century, early flow visualizations provided the
first evidence of the streaky structure of the flow in the near-wall region. The
qualitative nature of such early visualizations notwithstanding, they exposed
the organized character of the flow, and immediately raised the question of the
dynamical significance of such organized motions. Attempts to create a link be-
tween visualizations and Reynolds stresses quickly led to the notion of near-wall
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“events” (the dominant ones being called ejections and sweeps). Their contri-
bution was typically categorized via the quadrant analysis, which is still in use,
and quantifies the contribution of different events to the Reynolds shear stresses
starting from a time history of a pointwise measurement of the longitudinal and
wall-normal velocity components, typically performed with a two-component
hot-wire probe. This is where the first conceptual models of turbulence started
to appear. Conditional sampling and, more importantly, conditional averaging
techniques (the latter implying the ability to store a large measurement dataset
and process it later on, something that became available at the same time as
computers gradually evolved in power) marked one further step in the charac-
terization of wall turbulence, leading to additional means to characterize the
importance of near-wall coherent structures.

The last step connecting the pioneering era to modern times is the advent of
direct numerical simulation (DNS) of wall turbulence. It’s generally marked to
begin with the publication of results from the first DNS of a turbulent channel
flow, by Kim Moin & Moser in 1987 [28], following nearly a decade of preparation
and development of the numerical approach that predated the actual availability
of the necessary computing power. DNS revolutionized our way of looking at
wall turbulence, since its limitations are largely complementary to those of the
experimental approach, and opened up novel ways of studying its physics.

2 The structure of the mean velocity profile

The mean velocity profile is definitely the most important quantity of interest.
Nearly a century ago, Prandtl recognized by his mixing-length argument that
the mean turbulent velocity profile in a pipe or channel would have to be ap-
proximately logarithmic in shape. The theory was then refined by von Kármán,
and given its present-day form based on dimensional analysis by Millikan. Their
argument applies, in a suitable range of distance from the wall, to basically all
wall-bounded turbulent flows.

The essence of the Prandtl–von Kármán–Millikan theory sits in scale separa-
tion between a “viscous” layer where the wall-normal coordinate z is of the order
of the viscous length3 ℓ ≡ ν/uτ , and a “defect” layer where z is of the order
of the macroscopic scale h of the flow (say, the half-distance between parallel
walls or the radius of a pipe, or the thickness of a boundary layer). The ratio
h/ℓ coincides with the shear-based Reynolds number Reτ ≡ uτh/ν, and thus
scale separation arises naturally in the turbulent asymptotic limit of Reτ → ∞.
Dimensional analysis dictates the functional form of the velocity profile in either
layer, and the ansatz that the velocity function be independent of both ℓ and h
where the two layers overlap, for ℓ ≪ z ≪ h, leads to the conclusion that in this
region the functional form of the velocity profile u(z) must be logarithmic with

3 with ν denoting kinematic viscosity, and uτ ≡
√

τwall/ρ the characteristic velocity
of turbulent fluctuations, based on the wall shear stress τwall and fluid density ρ.
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universal coefficients κ (named von Kármán’s constant) and B:

u

uτ
≡ u+ =

1

κ
log(z+) +B, with z+ ≡ uτz

ν
. (1)

This century-old formula is one of the mainstays of turbulence theory and is
taught in all basic textbooks about it, yet it has been the target of continued
debate, with a large fraction of scientists contending the universality of constant
B, a smaller crowd contending the universality of κ, and a few loudly proposing
outright alternative formulas which are not logarithmic. In fact the fit of (1)
to both experimental and numerical-simulation data exhibits measurable devia-
tions with geometry, and a worldwide effort is ongoing to explain such deviations
and to measure von Kármán’s constant, a measurement made difficult by the
very presence of deviations even for those scientists who believe κ (and/or B) is
indeed a universal constant of Nature. Short of denying (1) altogether, one must
evince that deviations from (1) only disappear at values of the Reynolds num-
ber that are beyond those achieved by up-to-present experiments and numerical
simulations. Trust in (1) would be much higher, and a precise measurement of
von Kármán’s constant from present data would become feasible, if the observed
deviations could be explicitly accounted for in the form of higher-order correc-
tions to the asymptotic theory underpinning the logarithmic law. Research has
thus focused on one hand upon enlarging the Reynolds-number range that ex-
periments and numerical simulations can afford, on the other upon higher-order
asymptotic theories able to explain the present data at present values of Re.

An important effort towards increasing the Reynolds-number range of velocity-
profile measurements is the CICLoPE project. Based near Predappio (Italy)
inside a long tunnel escavated during war times by the aeronautical Caproni
industries, and managed by the University of Bologna under the supervision of
A. Talamelli and G. Bellani, CICLoPE (Centre for International Cooperation in
Long Pipe Experiments) is an international cooperation that built a 115m-long
circular pipe of 0.9m±0.1mm diameter where air can flow at up to 60 m/s. The
facility was inaugurated in 2015 and has been hosting a large number of projects
since. Details can be found at https://www.euhit.org/infras/ciclope/.

A simple higher-order extension of the logarithmic law that allows a single
set of κ and B constants to fit velocity profiles in different geometries starting
at Reτ ≳ 400 was proposed by one of the present authors [36]. Already noticed
by Afzal [1] and Jimenez and Moser [25] had been that if the pressure gradient
px is assumed as a perturbation parameter in an asymptotic theory of the veloc-
ity profile, a dimensional argument leads the dimensionless pressure gradient to
contain the first power of the wall-normal coordinate z; in other words, it leads
to a velocity correction that is a linear function of z. Neither author, however,
actually determined a value for the coefficient of this linear function or pushed
the argument to its practical consequences for the experimental and numerical
validation of the logarithmic law. From an overview of experimental and numer-
ical data of a wide range of sources, Luchini [36,32] determined that the best
fitting value of its coefficient (named A1) is near unity, leading to the conjecture

https://www.euhit.org/infras/ciclope/
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that it may actually be A1 = 1, and thus to the higher-order logarithmic law

u+ =
1

κ
log(z+) +B − px

τwall
z. (2)

Equation (2) fits the velocity profile in all tested geometries (Couette and Poiseuille
plane flow, Poiseuille circular pipe flow, boundary layer) with common values

κ = 0.392, B = 4.48 (3)

of the classical coefficients (most notably with a single value of the B coeffi-
cient, which most previous analyses, even those assuming that κ is universal,
concluded to change with geometry [40]). Von Kármán’s constant κ thus comes
out in agreement with a specific one of the previous proposals, the value of 0.39
extracted by the Australian school [42] from experimental measurements of the
friction law in place of the velocity profile, and in contrast to historical estimates
of 0.40÷0.41. In addition, interpolating formulas for the wall layer and the defect
layer were also provided (see Box 1 and Eqs. 27, 29, 30 of [32]), arriving at a
uniform formulation that describes the velocity profile over the entire range of
0 ≤ z ≤ h and all geometries (Eq. 1 and Fig. 2 of [38]). Particularly satisfying
was the comparison of the present theory with the independently performed Hi-
Reff pipe-flow experiment [19], reproduced as Fig. 1 here. An application range
was also determined, that this formulation works well within available experi-
mental accuracy for all Reτ ≳ 400, and that the logarithmic portion of it prevails
in the range 200ℓ ≲ z ≲ 0.5h (whereas competing theories [44] surmise that an
asymptotic regime is only attained for Reτ greater than approximately 30000).
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Fig. 1. Fit of the classical logarithmic law (1) and of the corrected logarithmic law (2)
to the Hi-Reff pipe-flow experiments. From [38]

Further developments ensued in yet more recent times. Once taken for granted
that deviations from the turbulent logarithmic law are to be ascribed to the
pressure gradient, one can quantitatively compare them to analogous deviations
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(from the rectilinear, zero-pressure-gradient Couette profile) that take place in
laminar flow. Luchini [37] highlighted that this deviation is of opposite sign
in laminar and in turbulent flow. That is, if in laminar flow the presence of a
favourable, negative pressure gradient decreases the flow rate for a given wall
shear stress (or equivalently, increases the wall shear stress for a given flow rate),
in turbulent flow it increases the flow rate for a given wall shear stress (decreases
the wall shear stress for a given flow rate). Astounding as this behaviour is, it
is actually consistent with (one could say, it explains) some previous equally as-
tounding observations: in particular, the conclusion by Johnstone et al. [26] that
a mixing-length turbulence model based on the wall shear stress offers a better
adherence to reality than a mixing-length model based on the local shear stress
(whereas considerations based on the locality of eddy viscosity would favour the
latter, and those authors were actually surprised at their own result); and the
conclusion by Russo and Luchini [54] that the response of channel flow to a ver-
tically varying volume force with zero mean (meant, in that context, to mimic
the action of a wavy bottom) is of opposite sign in laminar and in turbulent flow.
These observations have far-reaching implications for the future of turbulence
modelling, because most current turbulence models based on eddy viscosity are
bound to predict a same-sign behaviour of laminar and turbulent flow in all of
these configurations.

3 Statistical characterization of wall turbulence

Besides the mean velocity profile there are other statistical quantities of inter-
est in wall turbulence, most prominently the second-order moments of velocity
fluctuations; these relate to turbulent energy, a quantity of practical interest.
The experiments we already mentioned endeavoured to measure these quanti-
ties at the same time as the mean velocity profile. So did direct numerical simu-
lations; the canonical wall-bounded flows (the plane channel, either pressure or
shear-driven, and the cylindrical pipe) were considered early in DNS history, and
several Italian groups took part in the international effort at progressively in-
creasing the computational scale of the simulations and the achievable Reynolds
number. Among several important contributions, one may recall the many ones
by P. Orlandi and coworkers [9], the recent, record-setting pipe flow DNS at
Reτ = 6000 by Pirozzoli et al. [46], and the open-source codes made available
to the research community for massively parallel and GPU-based computations,
for both incompressible [58] and compressible [10] flow.

The present authors, while contributing their own DNS code and approach
[34] which is however not aimed towards high-Re simulations, have focused their
efforts upon less conventional descriptions of the same class of flows. For example
they were among the first to consider the full space-time structure of the turbu-
lence statistics [50], thus separating the physical correlation from the spurious
effects of the computational periodic box. They also pioneered the (admittedly
simple) idea of considering DNS output (say, the mean velocity at a particular
wall distance) as affected by measurement error, as any experimentalist would
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be naturally inclined to do, and to propose to augment DNS results with an error
bar representative of the uncertainty related to the statistical-averaging process.
In the presence of homogeneous directions, one typically uses statistical averages
over finite time and space windows to arrive at estimates of the true expected
value, and a rational criterion to properly select such windows is necessary. Al-
beit at different levels of complexity, this concept [21,45,54,55] is progressively
becoming accepted by the community.

Fig. 2. Streamwise component of the longitudinal-velocity response to a wall-normal
velocity impulse. The figure plots, at a time separation of τ+ = 30 after the impulse,
isosurfaces of the positive (red) and negative (blue) response in the three cases of
laminar flow (top), laminar flow linearized about the mean turbulent profile (center)
and full averaged turbulent response (bottom). Taken from [49].

An original statistical quantity was proposed by the authors [49] in order
to describe a turbulent channel flow in terms of its complete mean impulse
response to a perturbation applied at the wall. This tensorial quantity (that can
in principle also be measured experimentally) is a symmetric second-order tensor
where the independent variables are the time delay and the 3 spatial coordinates
expressing separation from the point at the wall where perturbation is applied. It
can be easily defined in the laminar case, while in the turbulent case this quantity
is important whenever one attempts to control the flow by using linear control
theory, for which the mean response constitutes the best model of the dynamical
system. The very definition of the impulse response for a turbulent flow involves
two non-trivial conceptual steps: first the mean response must be defined, as the
instantaneous one is unavoidably bound to diverge; and then the response must
be actually measured, by circumventing the practical difficulty that linearity of
the response requires small forcing perturbations at the wall, which may easily
be overwhelmed by the comparatively large noise of turbulent fluctuations. An
ingenious measurement strategy was devised [35], exploiting the fact that passing
a white noise through a linear system and measuring the correlation between its
input and output yields the impulse response of the system. Figure 2 displays the
difference between the correct response, accounting for turbulent diffusion, and
the one obtained by simply using linearized equations about the mean turbulent
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velocity profile. A similar impulse-response concept, extended to measure the
response to a volume forcing, was later used in the already mentioned work [54].

Fig. 3. Spatial and scale fluxes of the structure function ⟨δuδv⟩ in a turbulent Couette
flow at Reτ = 100. Flux lines are drawn together with a colormap (on the bounding
planes) of the source term, in a three-dimensional space where the coordinates are the
wall-normal distance Y + and the spanwise and wall-normal separations r+z and r+y .
Taken from [12].

A further innovation to be mentioned here is a general description of the
second-order moments of velocity fluctuations, which naturally links together
the concept of energy cascade in the space of scales, along the lines of the
Richardson–Kolmogorov theory, and the concept of Reynolds stresses varying
with the distance from the wall, yielding fluxes in physical space. In fact, the
single-point budgets for the Reynolds stresses [39] lack information about the
scales involved in their fluxes, and miss the multi-scale nature of turbulence,
whereas a spectral decomposition does discern different scales, but fails to pro-
vide direct information on their role in production, transfer and dissipation of
turbulent kinetic energy. About 20 years ago, Hill [24] generalized the classic
Kolmogorov equation for the second-order structure function (or, equivalently,
the Kármán–Howart equation for the correlation tensor) from homogeneous and
isotropic turbulence to inhomogeneous turbulent flows. The generalized Kol-
mogorov equation was the tool of choice for studying the scale energy in several
flows, ranging from simple wall-bounded flows to shear layers; Italian contri-
butions [13,15,14] are prominent in this thread. Most recently, Gatti et al.[20]
further extended the concept to deal with anisotropy. They derived exact bud-
get equations for the second-order structure function tensor: the anisotropic
generalised Kolmogorov equations (AGKE) describe the production, transport,
redistribution and dissipation of each Reynolds stress component occurring si-
multaneously among different scales and in space, i.e. along directions of sta-
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tistical inhomogeneity. AGKE provide a natural definition of scales in inhomo-
geneous directions, and describe fluxes across such scales too. AGKE are being
used to describe the structure of turbulence, in the compound space of scales
and positions, starting from the simple turbulent Poiseuille flow, to the same
flow at higher Re, where it is found that AGKE quantities start very soon to
highlight the structure of the outer turbulent cycle. Couette flow has been in-
vestigated too [12], producing an explanation of the complex direct/inverse and
ascending/descending cascade taking place in a turbulent Couette flow, where
the near-wall cycle coexists with large streamwise vortices which fill the entire
gap between the walls. A sample result is shown in figure 3, where fluxes of the
off-diagonal component ⟨δuδv⟩ in the subspace (r+z , r

+
y , Y

+) are drawn together
with the source term that denotes net production of shear stress.

4 Passive drag reduction and riblets

The reduction of turbulent drag in wall-bounded flow is an obvious technological
goal. The most practical means of turbulent-drag reduction is passive, consisting
of static modifications of the solid wall surface or of the fluid’s composition, as
opposed to active (discussed in next section), which involves moving parts and
energy expenditure.

Most effective among the methods of passive drag reduction is the injection of
tiny amounts of soluble long-chain polymers, which can provide up to 80% skin-
friction reduction [57] by a non-Newtonian mechanism which still today cannot
be said to be totally understood. Examples of Italian research contributions
on this topic are [8,17,16]. The drawbacks of this method are, of course, that
it can only be used in liquids and that polymers are consumed continuously
and dispersed into the working fluid. It has found important applications in oil
pipelines, although these will not be reviewed here.

Wall-surface modifications provide a more modest advantage, of the order
of 10% reduction at best, but can be applied in any fluid, and are the most
promising drag-reduction devices for aeronautical, marine or terrestrial vehicle
applications. The present authors, in particular, have contributed to clarifying
the operating mechanism of the so called “riblets”, long and fine ridges (or
grooves, if seen on the negative side) directed parallel to the flow on the wall
surface. It appears at first sight counterintuitive that such a non-smooth surface
may have a lower drag than a perfectly smooth one, but similar surfaces exist in
nature: the empirical idea that riblets could reduce drag came about early, after
the observation that similar structures are present on the scales of shark skin
(M.O. Kramer patented it in 1939). Only later, proceeding from the observation
that the drag-reducing action of riblets occurs in a size range (≈ 15 spanwise
in units of the length ℓ defined near (1), also known as “wall units”) which is
relatively small compared to the near-wall structures of turbulence (≈ 100 wall
units), Bechert and Bartenwerfer [6] and Luchini et al. [33] proposed that their
action could be explained through a virtual displacement of the wall represented
by the viscous “protrusion height”.
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In the viscous layer that extends for the first few wall units above the surface,
the physics of a turbulent flow is dominated by viscous forces (both in its mean
value and in its fluctuations). Therefore the Navier–Stokes equations can be
simplified in this region to the linear Stokes equations and, owing to linearity,
longitudinal and transverse components can be studied separately and assigned,
each, a separate protrusion height, this being the intercept with u = 0 of the
straight line that the Stokes velocity profile tends to as z → ∞. (For a general
surface shape the protrusion height, also known as slip length, becomes a 2× 2
symmetric tensor and the longitudinal and transverse protrusion heights are its
principal values; see e.g. [31].)

Because of their simple definition based on Stokes flow, the longitudinal and
transverse protrusion heights are unique for a given geometry, and scale linearly
with spatial dimensions. In other words, the protrusion heights are geometrical
parameters. Several examples of their values were provided in [33]. The protru-
sion heights are often measured from the riblet tips, but this is just a convention;
the origin of the reference frame is arbitrary, and eventually only the difference
of the two protrusion heights affects the flow. As an empirical computational
observation this difference turns out to be very sensitive to sharpness of the tips,
increasing with it; in fact, sufficient sharpness is not always easy to achieve in
reality, and experiments conducted with razor blades [7] have shown that indeed
the obtainable drag reduction is very sensitive to sharpness.

The physical explanation of the drag-reducing effect of riblets emerges from
the observation that the differential action of riblets upon the longitudinal mean
flow and the, prevalently transverse, turbulent eddies effectively pushes the ed-
dies away from the wall and thus diminishes the near-wall turbulence level. This
explanation was made quantitative by introducing the following ansatz [29,30]:
the law of the wall describing the mean-flow profile of the turbulent stream is
modified by the presence of riblets only through a displacement of its origin by
an amount equal to the difference of the two protrusion heights. This ansatz de-
rives its rationale from the idea that the turbulent fluctuations, and thus the
Reynolds stresses, above riblets are the same that would persist if a plane wall
was present at the position of the transverse protrusion height, whereas the mean
flow (integral of the Reynolds stress) has its integration constant determined so
that it vanishes at the longitudinal protrusion height.

Since in wall units the viscous tract of the velocity profile is u+ = z+, with
a coefficient that becomes unity in this particular nondimensionalization, a dis-
placement of the entire profile by an amount ∆z+ = ∆h+, where ∆h+ is the
protrusion-height difference expressed in wall units, entails a velocity increase
∆u+ = ∆z+ = ∆h+. The displacement being rigid, this velocity increase re-
mains constant for all z, and once attained the region where (1) prevails, it
amounts to an increase of the B constant by ∆B = ∆h+.

The classical theory of turbulent skin friction (and just as well its most recent
variations: see e.g. §6 of [32]) dictates the following formula for the skin-friction
coefficient cf :

(cf/2)
−1/2 = κ−1 log

[
(cf/2)

−1/2Re/2
]
+B + C −D (4)
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where κ and B are the constants that appear in the logarithmic law of the wall
(1), and C and D are characteristic constants of the outer layer unaffected by
the wall’s texture. From an expansion of (4) for small ∆B there follows equation
(4) of [30]:

−∆cf
cf

=
∆B

(2cf )−1/2 + (2κ)−1
=

∆h+

(2cf )−1/2 + (2κ)−1
, (5)

which provides a general quantitative expression of the relative skin-friction re-
duction as a function of the protrusion-height difference in wall units ∆h+.
Equation (5) was verified by comparing it to an extensive number of test results
[5] and found to agree reasonably well with the initial slope of the experimental
drag curve if account is taken of the actual curvature radius of the riblet tips
used in the experiments.

With increasing riblet size (usually measured by their spanwise repetition
period s+), the assumption that the action of riblets stay bounded to the viscous
sublayer begins to fail. Drag reduction then ceases to be proportional to ∆h+.
Eventually drag reduction saturates, and drag starts to increase again when the
period s+ grows beyond a threshold which empirically is s+ ≈ 15 [7]. The curve
is not far from being parabolic, with a maximum drag reduction 1/2 of the value
given by (5) at s+ = 15. What happens, in fact, is that the riblets’ action no
longer takes place in the portion of the velocity profile where u+ = z+, and
therefore ∆B no longer equals ∆h+. Nevertheless the first half of (5) remains
valid in a much larger range of sizes, as large as a logarithmic region exists, which
is the case for the great majority of drag-reducing and drag-increasing devices.
Even the classical drag increase produced by random sand roughness is nothing
else than a negative ∆B, and the next Section will show how ∆B is a suitable
parameter to describe the drag-reducing performance of active control as well.

5 Active techniques of drag reduction

In comparison to passive control, active control for skin-friction drag reduction
carries the obvious drawbacks of extra complexity and extra energy expenditure.
However, especially for relatively simple open-loop strategies, these drawbacks
may be compensated by the larger savings. One family of active and open-loop
techniques, referred to as spanwise forcing as it forces the boundary layer by
injection of spanwise momentum in the near-wall region, has seen a major part
of its development propelled by the Italian community [47].

With active control, the non-zero energy costs need to be accurately weighed
against energy benefits before declaring a strategy effective. It is not uncommon
to see massive “drag reduction” figures reported in the literature, with flow con-
trol strategies that cost way more than they save! The increasing importance
of active control led to the formalization of the flow-control problem for skin-
friction drag reduction [18,23], where a theoretical framework is developed for
assessing drag reduction performance while properly accounting for the energy
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cost of the control. It is now clearly stated that laminar flow becomes the theo-
retical best, once control energy is accounted for, and that driving a successful
flow-control strategy towards either maximized savings or maximized perfor-
mance is something left to the specific application. Awareness of the importance
of energy considerations, related to spanwise forcing, is steadily increasing [41].

In its early days, spanwise forcing was not particularly attractive in terms
of global energy savings. The spanwise-oscillating wall (SOW), i.e. the simplest
form of spanwise forcing, consists of an alternating movement of the wall in the
spanwise direction, as

v(x, y, 0, t) = A sin (ωt)

where v is the spanwise component of the velocity at the wall, i.e. at z = 0, A is
the maximum velocity along the cycle, and ω is the oscillating frequency. Known
has been since long time [11] that in a turbulent wall-bounded flow the sudden
application of a spanwise pressure gradient causes a drop in the streamwise fric-
tion, and that a sinusoidally varying spanwise pressure gradient (or, equivalently,
a sinusoidal spanwise movement of the wall) makes this effect sustained in time.
However, the impressive values of skin-friction reduction reported in the early
SOW studies (up to 40-50%, see [27]) were not balanced against the energy cost
of the actuation. Baron & Quadrio [4] were first to measure the energy expen-
diture of SOW, and found that – in an idealized scenario where actuation has
unitary efficiency – a tiny amount of net savings is achievable, provided that
the forcing amplitude remains moderate. Although the practical appeal of SOW
remained scarce, this result was in principle extremely interesting, insofar as it
attested the possibility to interact with the complex turbulence dynamics using
a simplistic control, and to achieve an overall positive gain, thus motivating the
continuation of the research effort. The SOW technique was later comprehen-
sively assessed by Quadrio and Ricco in [51].

More than one decade later, and still leading the way of the international
efforts, the present authors established [56] that a purely spatial oscillation is
equivalent (in fact, slightly superior) to the temporal one, thus opening the way
to exploitation of the spanwise-forcing concept with passive mechanisms. The
following forcing type was studied:

v(x, y, 0, t) = A sin (kx)

where the temporal oscillation at frequency ω is replaced by a spatial oscillation
along the streamwise direction with wavelength 2π/k.

The breakthrough came in 2009, with the discovery by Quadrio, Ricco and
Viotti [53] that a combined spatio-temporal oscillation brings superior drag re-
duction properties and a vastly improved energy balance. They introduced the
following forcing:

v(x, y, 0, t) = A sin (kx− ωt) (6)

and found that the combined forcing, which takes the form of a streamwise-
traveling wave of spanwise wall velocity, exhibits several interesting properties,
most prominently a relatively small energy required for the forcing, and leads
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Fig. 4. Map of the drag reduction(red)/increase(blue) as a function of wavenumber
and frequency of the forcing, for A+ = 12 in a turbulent channel flow at Reτ = 200.
Figure taken from [53].

to a maximum net drag reduction of more than 20%. A map of measured drag
reduction as a function of wavenumber and frequency is plotted in Fig. 4. Drag
reduction was found to be well predicted by properties of the spanwise boundary
layer created by the forcing, named the “Generalized Stokes Layer” [52] as it
contains as a special case the classic Stokes layer that develops when an indefinite
wall oscillates beneath a still fluid.

Only one year after writing [53], the same group at Politecnico di Milano
demonstrated the streamwise-travelling-wave concept experimentally, with a test
that so far has yielded one of the largest measured drag reductions ever (neary
40%), and probably the largest net saving. The experiment was designed in a
pipe flow configuration, and the wall forcing was realized through an alternate
azimuthal movement of thin ring-like slices of the pipe, independently actuated
via a shaft-and-belt system (see fig.5). Use of water as the working fluid, and the
relatively low value of Re, allowed design and implementation of a mechanical
actuator that cannot scale up to realistic applications, but was definitely effective
in a proof-of-principle experiment.

The combination of large benefits and relative ease of implementation make
the spanwise forcing in the form of streamwise-travelling waves one of the best
candidates for applications. The most relevant issue that remains still open is the
lack of a suitable actuator with the required high efficiency, low cost, low weight,
and high control authority (large velocities, actuation frequencies, etc): good
candidates indeed exist, but none is ready for industrial applications. Several
other concerns, though, have been successfully addressed in the meantime. An
important one was that, until recently, all the available information on spanwise
forcing, collected via DNS or experiments, was related to low-Re flows. Extrap-
olating available information to application-level Re indicated a rapid decrease
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Fig. 5. Conceptualization of the actuation strategy to implement forcing (6), and
sketch of the experimental setup for the drag-reduction experiment of the PoliMI pipe.
Figures taken from [2].

of the performance of drag reduction. This was until a large-scale campaign of
numerical experiments carried out by Gatti and Quadrio [22] demonstrated that
spanwise forcing is equivalent to a drag-decreasing roughness, discussed above
in § 4, and shares with it its Reynolds-number dependence embodied in (5),
which was extended to account for larger values of ∆B. They carried out more
than 4,000 DNS at two well-separated values of Re, and made it possible to
extrapolate drag reduction at any Re: according to their data, the reduction of
turbulent friction attainable on an airplane in cruise flight via spanwise forcing
remains remarkable, in the order of 30%.

Finally, it is emerging that to reduce the skin friction (by spanwise forcing,
or by other means) has the potential to bring in additional benefits when the
application involves a body with complex shape (an airplane, for example) where
turbulent friction is only one of the sources for aerodynamic drag. The original
suggestion originated once again in Italy, thanks to RANS simulations of riblets
on an airplane carried out by Mele and Tognaccini [43], and was later investigated
with DNS. Banchetti et al. [3] applied spanwise forcing to the incompressible
flow over a bump, and found benefits for pressure drag too; ongoing work is
demonstrating the same concept on a wing section in transonic flight, where
spanwise forcing is successful in altering the position of the shock wave.

6 Concluding remarks

In this chapter four aspects of turbulent flow in proximity of a wall have been
reviewed, all four being the subject of very active and ongoing research: the shape
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of the mean velocity profile and the applicability limits and precise values of the
coefficients of the classical logarithmic law, the statistics of turbulent fluctuations
and their multi-dimensional characterization in space-time, the passive (static)
surface modifications that may offer some reduction in skin-friction drag, and
the active (moving-wall) modifications that may offer a larger reduction at the
expense of greater complication. These are just examples of the open research
problems that the mystery of turbulence exposes, and we hope that the progress
made up to now may be an incentive for the Italian Mechanics community to
keep on devoting energies towards their solution.
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