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1. Introduction 
 

The flow around bluff bodies with sharp corners is 

interesting for both fundamental research and industrial 

applications, particularly in civil engineering. The 

rectangular cylinder is a simple yet representative prototype 

of such bodies. Despite the simple geometry, the flow 

around a rectangular cylinder contains a rich physics with 

several coexisting phenomena: a corner-induced separation, 

a detached boundary layer that may become unstable and 

reattach downstream, several recirculating regions and a 

large wake. Depending on the aspect ratio 𝐴𝑅 = 𝐿/𝐷 

(where L and D are the longitudinal and vertical sizes of the 

body), the rectangular cylinder spans the overall range of 

blunt bodies from a flat plate normal to the flow (𝐴𝑅 → 0), 

to a square cylinder (𝐴𝑅 = 1) and to a flat plate parallel to 

the flow (𝐴𝑅 → ∞). At low values of the Reynolds number 

𝑅𝑒 and for 𝐴𝑅 ≥ 3, leading-edge (LE) and trailing-edge 

(TE) vortex shedding are interlocked to a unique frequency 

as a result of the interaction between the impinging shear 

layer instability and the TE shedding (Hourigan et al. 1993, 

Hourigan et al. 2001, Mills et al. 2002, Mills et al. 2003). When  
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𝐴𝑅 is increased, the Strouhal number based on L and the 

incoming velocity faces an (almost) stepwise increase, 

depending on the number of vortices shed by the LE shear 

layer that are simultaneously present over the cylinder side; 

see Okajima (1982), Nakamura and Nakashima (1986), Ozono et 

al. (1992), Tan et al. (1998). At higher 𝑅𝑒 , the picture 

complicates even further, with large-scale vortices 

coexisting and interacting with small-scale turbulent 

fluctuations. 

The value 𝐴𝑅 = 5 defines the international benchmark 

known as BARC (Benchmark of the Aerodynamics of a 

Rectangular 5:1 Cylinder) (https://www.aniv-iawe.org/barc-

docs/). The goal of the BARC is to develop best practices 

for both experiments and simulations and to qualitatively 

and quantitatively characterise the main features of the 

flow, such as the shedding frequency and the main 

recirculating regions of the mean flow. An overview of the 

contributions to the BARC benchmark is provided in Bruno 

et al. (2014) and in the more recent works by Patruno et al. 

(2016), Mariotti et al. (2016), Mariotti et al. (2017), Mannini et al. 

(2017), Ricci et al. (2017), Moore et al. (2019). Bruno et al. (2014) 

pointed out that, despite the fixed value of 𝐴𝑅, a significant 

variability of the available data remains, that complicates 

the flow characterisation. This is due to the strong 

sensitivity of the flow to several aspects of both 

experiments and numerical simulations (mainly RANS and 

LES studies). For the experiments, critical issues are e.g., 

measurements uncertainties, geometrical imperfections of 

the model, free stream turbulence. For numerical  
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Abstract.  The BARC flow is studied via Direct Numerical Simulation at a relatively low turbulent Reynolds number, with 

focus on the geometrical representation of the leading-edge (LE) corners. The study contributes to further our understanding of 

the discrepancies between existing numerical and experimental BARC data. In a first part, rounded LE corners with small 

curvature radii are considered. Results show that a small amount of rounding does not lead to abrupt changes of the mean fields, 

but that the effects increase with the curvature radius. The shear layer separates from the rounded LE at a lower angle, which 

reduces the size of the main recirculating region over the cylinder side. In contrast, the longitudinal size of the recirculating 

region behind the trailing edge (TE) increases, as the TE shear layer is accelerated. The effect of the curvature radii on the 

turbulent kinetic energy and on its production, dissipation and transport are addressed. The present results should be contrasted 

with the recent work of Rocchio et al. (2020), who found via implicit Large-Eddy Simulations at larger Reynolds numbers that 

even a small curvature radius leads to significant changes of the mean flow. In a second part, the LE corners are fully sharp and 

the exact analytical solution of the Stokes problem in the neighbourhood of the corners is used to locally restore the solution 

accuracy degraded by the singularity. Changes in the mean flow reveal that the analytical correction leads to streamlines that 

better follow the corners. The flow separates from the LE with a lower angle, resulting in a slightly smaller recirculating region. 

The corner-correction approach is valuable in general, and is expected to help developing high-quality numerical simulations at 

the high Reynolds numbers typical of the experiments with reasonable meshing requirements.  
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simulations, instead, we mention RANS and LES 

turbulence modelling, various discretisation choices and the 

numerical method itself. In a scenario of highly scattered 

data, Cimarelli et al. (2018b) performed the first Direct 

Numerical Simulation (DNS) of the BARC flow in 

turbulent regime employing the finite-volume toolbox 

OpenFOAM (Weller et al. 1998), at relatively low Reynolds 

number 𝑅𝑒 = 3000 . Our own contribution (Chiarini and 

Quadrio 2021) consisted in replicating that work by using an 

in-house finite-difference code and a finer grid to assess the 

robustness of the available results. 

BARC data from numerical simulations tend to deviate 

significantly from those obtained with experimental 

measurements. For example, Bruno et al. (2014) report that 

the recirculation region over the cylinder side differs, with 

highly-resolved LES simulations not matching experiments 

with their prediction of a consistently shorter recirculation. 

Besides turbulence modelling, numerical discretisation and 

experimental uncertainties, such discrepancies may derive 

from differences in the setup, i.e., the boundary conditions 

at the inlet and spanwise boundaries and the inherent 

geometrical imperfections of the experimental models. In 

the numerical simulations the inlet condition is that of an 

unperturbed flow parallel to the rectangular cylinder 

without free-stream turbulence, but in experiments the 

incoming flow is less deterministic than that. This aspect 

was already found by Mannini et al. (2017) to affect the 

longitudinal extent of the main recirculating region. They 

studied experimentally the effect of free-stream turbulence 

and of the angle of attack on the main features of the BARC 

flow, finding that an increase of the free-stream turbulence 

shifts upstream the peak of the root-mean-square value of 

the pressure coefficient, implying a decrease of the length 

of the main recirculating region over the cylinder (Kiya and 

Sasaki 1983). In the spanwise direction, almost every 

numerical simulation employs periodic boundary 

conditions, which are clearly different from a wind-tunnel 

experiment where a solid wall exists. However, Bruno et al. 

(2012) have shown that this boundary condition does not  

 

 

significantly affect the size of the main recirculating bubble. 

The present work focuses on the geometrical 

representation of the corners. Perfectly sharp corners are 

obviously just an idealisation: a laboratory model will 

always have corners affected to some extent by 

manufacturing inaccuracies. The effect of rounding the 

corners has been mostly studied for a square cylinder 

(where the recirculation region on the side is missing) by 

for example Park and Yang (2016) and Cao and Tamura (2017) 

for low and high Reynolds numbers. For rectangular 

cylinders with larger 𝐴𝑅 we recall Lamballais et al. (2008) 

and Lamballais et al. (2010), that investigate both three-

dimensional and two-dimensional infinite D-shaped bodies 

changing the curvature radius 𝑅 of the upstream corners. 

Cimarelli et al. (2020) investigated the effects of different 

geometrical peculiarities such as the LE corners and the 

presence of a TE on the main flow features. Chiarini et al. 

(2021) studied how rounded LE and TE corners affect the 

occurrence of the first instability. Recently, Rocchio et al. 

(2020) used an implicit LES to carry out a sensitivity 

analysis of the BARC flow to the rounding of the LE 

corners at 𝑅𝑒 = 40000 . They identified the inadequate 

treatment of the corners as one of the reasons for the 

disagreement between numerical and experimental data. 

Indeed, they found that introducing even a tiny curvature 

radius is enough to significantly enlarge the size of the main 

recirculating region, thus reducing the discrepancy with the 

experimental data. However, the generality of this result 

with respect to both the Reynolds number and the numerical 

approach remains to be ascertained, and this is one of the 

two goals of the present contribution. 

The other goal is addressing the accuracy losses induced 

in a numerical simulation of the BARC flow by the 

presence of a perfectly sharp corner. An ideal geometry can 

be easily achieved in a numerical simulation, but the 

geometrical singularity of the corner leads to a 

mathematical singularity for the Navier–Stokes equations, 

with extremely large velocity derivatives. As a result, the 

computational grid must be extremely fine near the corner 

 

Fig. 1 Sketch of the computational domain for the BARC flow, with the reference system 
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to avoid a local accuracy drop. As an example, in Chiarini 

and Quadrio (2021) the DNS by Cimarelli et al. (2018b) was 

repeated with a finer grid and the fluctuations of the lift 

coefficient were found to be much larger, because the finer 

grid captures better the flow separation. This is also 

supported by the laminar results of Sohankar et al. (1998) 

and Anzai et al. (2017). Unfortunately, the requirement of a 

very fine grid becomes more difficult to satisfy as 𝑅𝑒 is 

increased, and renders DNS simulations at the large 

Reynolds numbers typical of the experiments extremely 

expensive if not impossible. There are however 

workarounds to cope with the corner singularity, so that the 

local solution accuracy can be maintained without resorting 

to excessively fine grids; see for example Auteri et al. 

(2003). Among them we recall those based on the concept, 

first described by Moffatt (1964), that in the vicinity of the 

corners the flow is well described by the Stokes equations, 

which can be dealt with analytically. Previous examples 

where the Stokes solution was successfully used to improve 

the Navier–Stokes solution near corners include classic 

fluid dynamics problems such as the square cavity, see for 

example Luchini (1991). 

This work consists in a DNS study of the turbulent 

BARC flow where the focus is on the LE corners. In a first 

part, the work by Rocchio et al. (2020) is reconsidered with 

DNS, and the effect of rounded LE corners is studied by 

considering two small curvature radii, i.e., 𝑅 𝐷⁄ = 1/128 

and 𝑅 ⁄ 𝐷 = 1/64. Compared to the reference work, we 

use a higher-fidelity numerical approach without modelling 

error, but at the cost of a lower Reynolds number, which is 

set to 𝑅𝑒 = 3000 as in our previous DNS (Chiarini and 

Quadrio, 2021) used here as baseline. In a second part, the 

corners are considered to be sharp, but we apply the method 

described in Luchini (1991) for corner correction to the 

BARC flow for the first time. The method is presented in a 

form tailored to the BARC geometry, and the changes on 

the main features of the flow are discussed. 

 

 

2. The computational approach 
 

Fig. 1 shows the geometry, the reference system and the 

notation. A Cartesian reference system is used with the 

origin placed at the LE of the cylinder. The cylinder has 

length 𝐿 and thickness 𝐷, curvature radius 𝑅 at its LE 

corners, and it is immersed in a uniform stream with 

velocity 𝑈∞  aligned with the 𝑥 direction. The 𝑦 and 𝑧 

axes indicate the vertical and spanwise directions, 

respectively. The Reynolds number is based on the 

incoming velocity, the cylinder thickness and the kinematic 

viscosity 𝜈 and is set to 𝑅𝑒 ≡ (𝑈∞𝐷) 𝜈⁄ = 3000 for all 

the considered cases. 

The flow is governed by the incompressible Navier–

Stokes equations: 

𝜕𝒖
𝜕𝑡

+ (𝒖 ∙ 𝛁)𝒖 = −𝛁𝑝 +
1

𝑅𝑒
∇2𝒖

𝛁 ∙ 𝒖 = 0
 (1) 

where 𝒖 = (𝑢, 𝑣, 𝑤)  is the velocity vector and 𝑝  is the 

pressure. All quantities are made dimensionless with 𝑈∞ 
and 𝐷. The mean field is indicated with capital letters, i.e., 

𝑼 = (𝑈, 𝑉, 0)  and P, while the fluctuations are indicated 

with a prime, 𝒖′ = (𝑢′, 𝑣′, 𝑤′) and 𝑝′. The computational 

domain extends for −20 ≤ 𝑥 ≤ 42.5, −21 ≤ 𝑦 ≤ 21 and 

−2.5 ≤ 𝑧 ≤ 2.5 , with the cylinder placed at 0 ≤ 𝑥 ≤ 5 , 

−0.5 ≤ 𝑦 ≤ 0.5  and −2.5 ≤ 𝑧 ≤ 2.5 . No-slip and no-

penetration conditions are imposed at the cylinder surface, 

the unperturbed velocity 𝒖 = (𝑈∞, 0,0) is assigned at the 

inlet and at the far field; periodic conditions are used at the 

spanwise boundaries to account for the spanwise 

homogeneity and a convective outlet condition 𝜕𝒖 𝜕𝑡⁄ =
𝑈∞ 𝜕𝒖 𝜕𝑥⁄  is set at the outlet boundary. 

 The Navier–Stokes equations are solved using the DNS 

code introduced by Luchini (2016) and already used for the 

BARC flow simulation in Chiarini and Quadrio (2021). It 

solves the governing equations in primitive variables and 

employs second-order finite differences on a staggered grid. 

The cylinder is represented via an implicit, second-order 

accurate immersed-boundary method introduced in Luchini 

(2013). For further details on the numerical method see 

Chiarini and Quadrio (2021), from which also the 

discretisation choices are derived. The number of points is 

𝑁𝑥 = 1776, 𝑁𝑦 = 942  and 𝑁𝑧 = 150  in the three 

directions. An uniform distribution is employed in the 

spanwise direction, whereas a geometric progression is used 

for the streamwise and vertical directions to properly refine 

the flow region close to the LE and TE corners, where the 

spacing is Δ𝑥 = Δ𝑦 ≈ 0.0015.  

The present work describes the results of three new 

simulations carried out on purpose and compares them to 

the baseline results taken from Chiarini and Quadrio (2021). 

Two cases are for the rounded LE corners and the third case 

deals with the analytical corner correction. The rounding is 

quantitatively defined by the radius R of the inscribed 

quarter circle. Two curvature radii have been considered, 

namely 𝑅 𝐷⁄ = 1 128⁄  and 𝑅 𝐷⁄ = 1 64⁄ , and denoted in 

the paper as cases C1 and C2. The number of points 

spanning the curvature radius are 6 − 7 for case C1 and 

twice that for C2. The simulations are advanced in time 

using a varying time step to ensure that the Courant-

Frederic-Levy 𝐶𝐹𝐿  number remains at 𝐶𝐹𝐿 ≤ 1, 
corresponding to an average value of the time step of Δ𝑡 ≈
0.0013 . Before collecting statistics, every simulation is 

advanced in time long enough to reach a statistically-

stationary state. For the simulations with rounded LE 

corners, statistics are collected over 300 𝐷 𝑈∞⁄  time units 

and 300 flow fields are sampled at unitary time separation. 

For the simulation with the analytical corner correction, 

statistics are collected for a total time of 470 𝐷 𝑈∞⁄ , again 

with a unitary sampling time. To increase the statistical 

sample, symmetries of the flow in the vertical direction are 

used. Thus, mean quantities, indicated by the operator 〈∙〉, 
are computed by averaging in time and exploiting both the 

homogeneity in the spanwise direction and the statistical 

symmetry in the vertical direction.  

 

2.1 The mean and instantaneous flow 

 

To set the stage, the mean flow obtained with the 

reference sharp LE corners is briefly illustrated. For further  
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details see Chiarini and Quadrio (2021). Fig. 2 plots the 

mean streamlines superimposed on the map of 𝑈 in the top 

panel and the mean pressure 𝑃 in the bottom panel. A 

shear layer with negative vorticity starts from the sharp LE 

corner; the flow reattaches over the cylinder side before 

eventually separating again at the TE. Three areas of 

recirculation can be identified: two of them are above the 

longitudinal side of the cylinder and one is in the wake 

region. The first recirculating region is delimited by the 

shear layer separating at the LE and reattaching at 𝑥𝑟 ≈
3.955, and it is hereafter referred to as the primary vortex. 

Its centre of rotation, i.e. the elliptical stagnation point with 

𝑈 = 𝑉 = 0, is placed at (𝑥, 𝑦) ≈ (2,357,0.83). As shown 

in the bottom panel, the core of the primary vortex shows 

large negative values of pressure. Within the primary  

 

 

 

vortex, a smaller counter- rotating recirculating region is 

present, hereafter referred to as the secondary vortex. It is 

generated by the reverse boundary layer in the near-wall 

region of the primary vortex, which separates moving 

upstream owing to the adverse pressure gradient (Simpson 

1989). The secondary vortex extends for 0.63 ≤ 𝑥 ≤ 1.59 

and its centre of rotation is placed at (𝑥, 𝑦) ≈ (1.2,0.541). 

The third recirculating region in the wake, hereafter referred 

to as wake vortex, is delimited by the shear layer separating 

from the sharp TE. Its centre of rotation is placed at 

(𝑥, 𝑦) ≈ (5.415,0.25) and extends up to 𝑥 ≈ 5.947. 

Fig. 3 shows the turbulent structures populating an 

instantaneous snapshot of the BARC flow. They are 

visualised as isosurfaces of the second larger eigenvalue 𝜆2  

 

 

Fig. 2 Mean flow. Top: streamlines and color contour for the mean streamwise velocity component U . Bottom: mean 

pressure P 

  

Fig. 3 Vortical structures in an instantaneous snapshot. Left: isosurface 𝜆2 = −10 coloured with |𝑦|  the blue-to-

redcolourmap goes from |𝑦| = 0.5  to |𝑦| = 1.75. Right: isosurfaces of 𝜔𝑥 = 10  (red), 𝜔𝑥 = −10 (blue) and |𝜔𝑧| =
17 (grey). 
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of the velocity gradient tensor (Jeong and Hussain 1995). 

Contours of streamwise and spanwise vorticity 𝜔𝑥 and 𝜔𝑧 

are also used to visualise the orientation of the structures. 

After the LE separation, the flow remains initially 

laminar, until at 𝑥 ≈ 0.5 a Kelvin– Helmholtz instability 

of the shear layer occurs, which breaks it into large-scale 

spanwise tubes. Moving downstream the tubes are stretched 

by the mean gradient and roll up, originating hairpin-like 

structures. Further downstream a complete transition to 

turbulence is observed. The hairpin vortices break down 

into elongated streamwise vortices that are easily visualised 

by the positive and negative contours of 𝜔𝑥. In this region 

of the flow the large-scale motions derived from the 

Kelvin–Helmholtz instability coexist with the small-scales 

structures associated with the turbulent motions. Finally, at 

the TE the flow separates again and the turbulent structures 

are convected in the turbulent wake. 

 

 

3. Rounding the LE corners 
 

This section discusses the effects of rounding the LE 

corners. Two rather small curvature radii characterize cases 

C1 and C2, since the aim of the present work is to 

investigate the effect of manufacturing imperfections on the  

 

 

 

BARC flow. 

 

3.1 The mean flow 
 

The mean flow with rounded corners closely resembles 

the one of the reference configuration with sharp corners 

(Chiarini and Quadrio 2021), with only small changes in the 

size of the three recirculating regions and in the position of 

their centre of rotation. These changes are summarised in 

table 1, where the extent of the three recirculating regions 

and the position of their centre of rotation are reported. 

How rounding affects the primary and wake vortices is 

shown by the streamline passing near the sharp LE, shown 

in Fig. 4. The starting point of the streamline is placed just 

above the LE corner at (𝑥, 𝑦) = (0,0.5001) for both the 

sharp and rounded configurations, although in the latter 

cases the actual separating point is sl ightly shifted 

downstream; see table 1. The differences shown in figure 4 

have been verified to be robust to small shifts of the seeding 

point. This streamline delimits first the primary vortex and 

then, after passing over the trailing edge, the wake vortex. 

Close to the separation point the line has a lower slope in 

the rounded cases, indicating a lower inclination of the 

shear layer. At 𝑥 ≈ 2 the streamline shows that the vertical 

extent of the primary vortex decreases for increasing values  

Table 1 Comparison of size and positions of the three recirculating regions, for the cases with rounded corners and the 

reference one with sharp corners from Chiarini and Quadrio (2021). 𝑥𝑠,𝑖 and 𝑥𝑒,𝑖 are the start and end coordinates, 

and 𝐿𝑖 indicates the length of each region, whereas 𝑥𝑐 and 𝑦𝑐 are the coordinates of their centre of rotation 

 Sharp C1 C2 

Primary vortex 

𝑥𝑠,1 0 0.005 0.01 

𝑥𝑒,1 3.955 3.895 3.89 

𝐿1 3.955 3.89 3.88 

(𝑥𝑐 , 𝑦𝑐) (2.357,0.83) (2.361,0.81) (2.43,0.81) 

Secondary vortex 

𝑥𝑠,2 0.63 0.75 0.97 

𝑥𝑒,2 1.59 1.585 1.75 

𝐿2 0.96 0.835 0.78 

(𝑥𝑐 , 𝑦𝑐) (1.2,0.541) (1.17,0.531) (1.315,0.533) 

Wake vortex 

𝑥𝑠,3 5 5 5 

𝑥𝑒,3 5.975 6.01 6.02 

𝐿3 0.975 1.01 1.02 

(𝑥𝑐 , 𝑦𝑐) (5.415,0.25) (5.425,0.25) (5.43,0.25) 

 

Fig. 4 Mean streamline passing through the point (𝑥, 𝑦) = (0,0.5001), for the sharp and rounded configurations. The 

zoomed insets highlight three regions close to the LE, close to the top of the primary recirculation, and in the near wake 
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of R. Finally, when the streamline crosses the TE a milder 

slope develops, consistently with the smaller extension of 

the wake vortex reported in Table 1. 

Fig. 5 presents the vertical profile of the 𝑈 velocity 

component at different streamwise locations over the 

cylinder side, i.e., 𝑥 = 0.3, 1.1, 2, 4.5. The first three panels 

describe the changes within the primary vortex. As shown 

in Fig. 4, the rounded corners lead to a slightly reduced 

vertical extent of the primary vortex, as the shear layer 

separates from the LE with a lower angle. This is also 

conveniently visualised by the coordinate 𝑦𝑈=0 where the 

mean streamwise velocity component becomes zero. In the 

first portion of the primary vortex 𝑦𝑈=0 is shifted towards 

the wall in the rounded configurations; see the two left 

panels of Fig. 5. Moving downstream for 𝑥 ≥ 1.5, instead, 

the difference is less evident indicating that the main 

changes are localised close to the LE; see the third panel 

where 𝑦𝑈=0 is almost the same for the sharp and rounded 

configurations. A decrease of the shear-layer separation 

angle is consistent with a lower longitudinal size of the 

primary vortex, which is seen in table 1 to decrease from 

𝐿1 = 3.95 to 𝐿1 = 3.89 for case C1 and 𝐿1 = 3.88 for 

C2, i.e. approximately 2%. A further effect of the rounding 

is the decrease of the backflow in the core of the primary 

vortex shown at 𝑥 = 2, where 𝑈 is less negative in the 

rounded configurations. This is consistent with the results 

of Lamballais et al. (2010) who analysed the effect of 

(large) LE roundings on infinite D-shaped bodies. 

Interestingly, the rounded corners also affect the mean field 

after the reattachment, as seen in the last panel of figure 5 at 

𝑥 = 4.5, where the mean flow is accelerated. This is  

 

 

 

explained by the slightly lower extension of the primary 

vortex that enables a larger development of the successive 

boundary layer before its separation, and is associated to an 

enhancement of the turbulent activity as shown in the 

following section. 

Table 1 quantifies the modifications of the three main 

vortices. When the LE corners are rounded, the upstream 

separation point slightly moves downstream and is found 

close to the end of the curvature, where a second-derivative 

discontinuity takes place. we found the primary vortex to 

start at 𝑥𝑠,1 = 0.005 for C1 and at 𝑥𝑠,1 = 0.01 for C2. As 

already mentioned, this small downstream shift together 

with the decrease of the shear layer separating angle leads 

to a decrease of the longitudinal and vertical extensions of 

the primary vortex. The same effect has been found in 

preliminary two- and three-dimensional simulations (not 

shown here) in the laminar regime at 𝑅𝑒 = 500, with 

1 128 ≤ 𝑅 𝐷⁄⁄ ≤ 1 2⁄ . The centre of rotation of the primary 

vortex slightly moves towards the reattachment point as 𝑅 

increases, consistently with the results of Lamballais et al. 

(2010). Rounding the corners also affects the smaller 

secondary vortex. Indeed, for both C1 and C2 we have 

found that its longitudinal size consistently decreases up to 

𝐿2 ≈ 0.835 (≈ −12%)  f o r  C 1  a n d  𝐿2 ≈ 0.78 (≈
−18%) for C2. However, in the two rounded cases there 

are some differences. For C1 the position of the centre of 

rotat ion is  almost  unchanged,  since 𝑥𝑠,2  moves 

downstream and 𝑥𝑒,2 moves upstream. For C2, instead, the 

decreased size of the recirculating vortex is 
accompanied by an overall downstream shift, as 

 

Fig. 5 Vertical profiles of the streamwise component of the mean velocity U at four different stations over the cylinder side 

 

Fig. 6 Map of the turbulent kinetic energy for the sharp configuration 
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indicated by the positions of 𝑥𝑒,2, 𝑥𝑠,2 and of the centre of 

rotation. Interestingly, the LE rounding also affects the size 

of the wake vortex. Indeed, by increasing the curvature 

radius its length slightly increases up to 𝐿3 ≈ 1.01 for C1 

(≈ +3.5%)  and up to 𝐿3 ≈ 1.02  for C2 (≈ +4.5%) . 

Such modifications are consistent with the acceleration of 

the flow in the last part of the cylinder side, resulting in a 

shear layer that separates from the sharp TE with larger 

velocity. 

 

3.2 Turbulent kinetic energy 
 

Rounding the corners also affects the fluctuating 

velocity field. Fig. 6 plots the turbulent kinetic energy 𝑘 =
〈𝑢𝑖

′𝑢𝑖
′〉/2 (repeated index implies summation) for the sharp 

configuration; Fig. 7 plots vertical profiles of k at different 

streamwise locations, i.e., 𝑥 = 0.3, 0.7, 1.5, 3, for the sharp 

and rounded cases. Close to the LE, i.e. for 𝑥 < 1, 𝑘 is 

very small, confirming the almost laminar flow state. 

Moving downstream, 𝑘  quickly increases indicating a 

sharp transition to the turbulent state, as can be seen by 

inspecting an instantaneous velocity field in Fig. 3. The 

turbulent activity is most intense in the core of the primary 

vortex as indicated by the maximum of k found at (𝑥, 𝑦) ≈
(2.7,0.96); however large values of 𝑘 are observed also in 

the near-wake region close to the TE as shown by the 

presence of an additional local peak at (𝑥, 𝑦) ≈
(6.15,0.36). 

For C1 the vertical profiles of k are very close to those 

of the sharp configuration. This further confirms that – at 

least at this Reynolds number – a small rounding of the LE 

corners does not lead to an abrupt change of the flow 

topology. In the rounded configuration the intensity of the 

velocity fluctuations decreases only near the LE: it seems 

that the rounded corners lead to a spatial delay of the 

development of the velocity fluctuations, in agreement with 

the results of Rocchio et al. (2020), Lamballais et al. (2008, 

2010), Cimarelli et al. (2020). Close to the LE, the profiles 

of k show a well-defined peak in correspondence of the 

shear layer (see the first three panels of Fig. 7). This agrees 

with the notion that, close to the LE, the fluctuations are 

mainly generated by the Kelvin-Helmholtz instability of the 

shear layer. Moving downstream, k becomes distributed 

over a wider range of 𝑦, until a completely turbulent state 

is reached and large values of k are observed in the overall  

 

 

extension of the primary vortex, revealing the presence of 

other production mechanisms. Interestingly, for 𝑥 ≥ 2.5 

the intensity of k for 𝑦 ≤ 1  is larger in the rounded 

configurations, consistently with the picture of a delayed 

development of the turbulent fluctuations; see the right 

panel of Fig. 7. This accompanies the increased 𝑈 

observed in this region of the flow. Moreover, in the 

rounded cases, owing to the reduced vertical extent of the 

primary vortex, k drops to almost zero at lower  𝑦 

compared to the sharp configuration. 

The delay in the development of the turbulent kinetic 

energy in the rounded configurations and the larger k 

observed after the reattachment point, may be explained by 

the differences in the production 𝑃𝑘 and dissipation 휀𝑘 in 

its budget. These terms read 

𝑃𝑘 = −〈𝑢′𝑢′〉
𝜕𝑈

𝜕𝑥
− 〈𝑣′𝑣′〉

𝜕𝑉

𝜕𝑦
− 〈𝑢′𝑣′〉 (

𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
) (3.1) 

휀𝑘 = 𝜈 〈
𝜕𝑢′

𝜕𝑥𝑗

𝜕𝑢′

𝜕𝑥𝑗

〉 + 𝜈 〈
𝜕𝑣′

𝜕𝑥𝑗

𝜕𝑣′

𝜕𝑥𝑗

〉 + 𝜈 〈
𝜕𝑤′

𝜕𝑥𝑗

𝜕𝑤′

𝜕𝑥𝑗

〉 (3.2) 

where repeated indices imply summation. 

Fig. 8 plots the map of the production for the reference 

sharp configuration; figure 9, instead, plots vertical profiles 

of 𝑃𝑘  at different streamwise positions over the cylinder 

side, i.e. 𝑥 = 0.3, 0.7, 1.5, 3, for the sharp and rounded 

configurations.  For  𝑥 ≤ 0.5  low values of 𝑃𝑘  are 

observed, which is consistent with the low values of k in 

Fig. 6. Along the shear layer 𝑃𝑘 is positive, but it becomes 

negative just below. However, as already discussed in 

Chiarini and Quadrio (2021), this negative 𝑃𝑘  does not 

correspond to the negative production rate of k localised in 

the shear layer seen by Cimarelli et al. (2019). Moving 

downstream at 𝑥 ≈ 1.3, 𝑃𝑘 peaks in correspondence of the 

shear layer. This implies that, when the Kelvin–Helmholtz 

instability takes place, energy is being drained from the 

mean flow to  feed the fluctuating field.  Further 

downstream, large values are observed also at lower 𝑦 in 

the core of the primary vortex indicating that a further 

production mechanism different from the Kelvin–

Helmholtz instability of the shear layer is occurring. 

Arguably, this is associated to the interaction between the 

streamwise-aligned vortices observed in Fig. 3 to populate 

this region of the flow and the large mean velocity  

 

Fig. 7 Vertical profiles of the turbulent kinetic energy k at four different station over the cylinder side, i.e., 𝑥 = 0.3, 0.7, 1.5, 3 
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gradients. For 𝑥 ≥ 2.5 a region with slightly negative 𝑃𝑘 

is observed in the vicinity of the cylinder side, indicating 

that energy feeds back from the fluctuations to the mean 

field. Thus, despite the presence of the wall, the mechanism 

sustaining the turbulent fluctuations close to the 

longitudinal side of the cylinder differs from what observed 

in the canonical wall-bounded flows, where 𝑃𝑘  is always 

positive. Finally large positive values of 𝑃𝑘  are found in 

correspondence of the shear layer separating from the TE, 

again due to the larger mean velocity gradients. 

Fig. 9 shows that, close to the LE, the production 

decreases when the corners are rounded. More downstream, 

as already observed for k, the differences between the three 

cases shrink, indicating that the production of fluctuating 

energy in the rounded cases becomes close to what 

observed in the sharp configuration. Rounding the LE 

corners thus leads to a downstream shift of the Kelvin–

Helmholtz shear layer instability and to a delayed 

streamwise development of the velocity fluctuations. As 

also observed in Lamballais et al. (2010), this may explain 

the downstream shift of the centre of rotation of the primary 

vortex. Indeed, the shift of the instability source turns into 

an extended low-velocity region in the upstream part of the 

primary vortex that is arguably responsible of the 

downstream shift of the stagnation point. We note again 

how for increasing curvature radius the wall distance at 

which 𝑃𝑘  drops to zero becomes smaller, owing to the 

decreasing vertical extent of the primary vortex. 

Interestingly, for 𝑥 ≥ 2.5  the production term of the 

rounded cases overcomes that of the sharp configuration for  

 

 

𝑦 ≤ 1, indicating that in the second part of the longitudinal 

cylinder side the production of the fluctuating energy is 

enhanced by the rounded corners. This agrees with the 

slight increase of k in the same region and with the picture 

of a stronger shear layer separating from the TE. 

Figs. 10 and 11 describe the dissipation 휀𝑘. Fig. 10 plots 

the map of 휀𝑘  for the sharp configuration, while Fig. 11 

plots vertical profiles of 휀𝑘 for the three considered cases at 

four different streamwise locations, i.e., 𝑥 = 0.3, 0.7, 1.5, 3. 

Large values of 휀𝑘 occur in the shear layer for 𝑥 ≥ 1, in 

the core of the primary vortex and close to the cylinder side 

for 𝑥 ≥ 2.5 , where viscous effects dominate. For 𝑥 < 1, 

instead, the values of 휀𝑘 are much lower as the turbulence 

activity is locally scarce compared to the rest of the domain. 

As for production, the main differences between the 

rounded and sharp configurations are observed for 𝑥 < 2.5  

where rounding leads to a decrease of 휀𝑘  in the overall 

extent of the primary vortex, in agreement with a picture of 

lower turbulent activity. Moving downstream, instead, the 

differences among the three profiles strongly decrease until 

for 𝑥 ≥ 2.5   휀𝑘  becomes slightly larger in the rounded 

configurations for  𝑦 < 1 . Note, however, that here the 

increase of 𝑃𝑘  in the rounded cases is larger than the 

increase of 휀𝑘. Therefore, this results in a net increase of 

the source term 𝜉𝑘 = 𝑃𝑘 − 휀𝑘  that determines an 

intensification of the spatial transports of k. Although there 

is no direct link, this may explain at least partially the larger 

values of k observed in Fig. 7 for the rounded cases. The 

spatial transport of k is visualised by the two-dimensional 

flux vector 𝝍 defined as (Pope 2000): 

 

Fig. 8 Map of the production term 𝑃𝑘 of the turbulent kinetic energy for the sharp configuration. Map of the turbulent 

kinetic energy for the sharp configuration 

 

Fig. 9 Vertical profiles of 𝑃𝑘 at four different station over the cylinder side as in Fig. 7 
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𝑃𝑘 = −〈𝑢′𝑢′〉
𝜕𝑈

𝜕𝑥
− 〈𝑣′𝑣′〉

𝜕𝑉

𝜕𝑦
− 〈𝑢′𝑣′〉 (

𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
), (3.1) 

휀𝑘 = 𝜈 〈
𝜕𝑢′

𝜕𝑥𝑗

𝜕𝑢′

𝜕𝑥𝑗

〉 + 𝜈 〈
𝜕𝑣′

𝜕𝑥𝑗

𝜕𝑣′

𝜕𝑥𝑗

〉 + 𝜈 〈
𝜕𝑤′

𝜕𝑥𝑗

𝜕𝑤′

𝜕𝑥𝑗

〉, (3.2) 

where repeated indices imply summation. Note that this is 

half of the sum of the flux vector for the three normal 

stresses discussed in Chiarini and Quadrio (2021). Fig. 12 

plots the field lines of the flux vector over the colour 

contour of the source term 𝜉𝑘, or equivalently 𝛁 ∙ 𝝍. The 

fluxes allow a precise description of the spatial transfer, and 

their field lines visualise how the kinetic energy is 

transferred in space. Therefore, the fluxes explain the 

different positions at which k and 𝜉𝑘 have their peak. Their 

divergence, 𝛁 ∙ 𝝍, provides quantitative information about  

 

 

 

the energetic relevance of the fluxes. When 𝛁 ∙ 𝝍  is 

positive, i.e., 𝜉𝑘 > 0, the fluxes are energised by local 

production mechanism. In contrast, when 𝛁 ∙ 𝝍 is negative 

the fluxes release energy to sustain locally the fluctuations. 

The flux lines originate where 𝛁 ∙ 𝝍 has large positive 

values and vanish where 𝛁 ∙ 𝝍 is negative. 

The large contribution of the Kelvin–Helmholtz 

instability to 𝑃𝑘 yields large 𝜉𝑘 > 0 along the shear layer 

with a peak at (𝑥, 𝑦) ≈ (1.7,1); as expected the largest 

values are slightly shifted downstream in the rounded cases. 

Close to the cylinder side, i.e., approximately for 𝑦 ≤ 0.75, 

the negative contribution of 휀𝑘 dominates and leads to 

𝜉𝑘 < 0. A further region of positive 𝜉𝑘  is observed in 

correspondence of the TE shear layer. The fluxes of k differ 

from the fluxes of the three normal stresses. The large 

values of 𝜉𝑘 in correspondence of the shear layer energise  

 

Fig. 10 Map of the dissipation rate of the turbulent kinetic energy 

 

Fig. 11 Vertical profiles of the dissipation rate of the turbulent kinetic energy at four different stations over the cylinder side 

 

Fig. 12 Field lines of the flux vector ψ and colormap of the source 𝜉𝑘 = 𝑃𝑘 − 휀𝑘 for the reference sharp configuration. The 

arrows are tangent to the flux vector 𝝍 and provide directional information 
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all the fluxes that in turn transfer the excess of k over the 

entire domain. Four different types of lines are observed, 

which relate to different transport mechanisms. Some lines 

pass over the TE at relatively large 𝑦 and, dominated by 

the mean transport, continue in the wake region. A second 

group of lines passes very close to the TE and then they are 

further energised by the positive 𝜉𝑘 in the separating shear 

layer. These lines then vanish in correspondence of the rear 

vertical side of the cylinder, after having released k within 

the wake vortex. These two groups of field lines indicate 

that the flow over the cylinder side influences both the wake 

vortex and the downstream wake. The other two types of 

lines remain confined within the primary vortex, pointing to 

a self-sustaining mechanism, as predicted by Cimarelli et al. 

(2018a). Some are attracted by the cylinder side in the 

whole range 0 ≤ 𝑥 ≤ 5, indicating that part of the excess 

of k produced by the Kelvin–Helmholtz instability is 

released near the wall where it is partially dissipated by 

viscous effects and partially feeds the mean flow (recall the 

negative values of 𝑃𝑘 ). The last type of lines shows a 

spiral-like behaviour in the upstream part of the cylinder 

side. Such lines indicate that part of the k produced by the 

Kelvin–Helmholtz instability is transported and released 

upstream to feed the flow region close to the LE. This 

spiral-like pattern has two singularity points the lines are 

attracted to. For the sharp configuration they are located at 

(𝑥, 𝑦) ≈ (0.6,0.81)  and (𝑥, 𝑦) ≈ (1.8,0.85) . For the 

rounded configuration C1 the qualitative differences on 

these transfers are small, confirming again that a small 

rounding does not lead to an abrupt change in the transport 

of k. However, for C2 differences are more significant. In 

particular, the spiralling pattern is shifted downstream: the 

upstream singularity point moves to (𝑥, 𝑦) ≈ (0.87,0.83). 

Overall, this means that in the rounded configurations the 

downstream shift of the Kelvin–Helmholtz instability is 

accompanied by a downstream shift of the transfer 

mechanism involving the upstream part of the primary 

vortex. Therefore, both effects are responsible of the 

decrease of the intensity of k in the region close to the LE. 

Changes of k, 𝑃𝑘  and 휀𝑘  can be summarised by 

tracking them along the streamline starting just above the 

upstream separating point shown in Fig. 4. This is  

 

 

visualised in Fig. 13 where both k and 𝜉𝑘 are plotted as a 

function of the curvilinear coordinate s normalised with the 

length l of the streamline: 

𝑠 =
1

𝑙
∫ 𝑑𝑠

𝑙

0
 with 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑦2. (3.3) 

For 𝑠 ≤ 0.15 both 𝜉𝑘 and k are almost null, indicating 

the negligible turbulent activity in the first portion of the 

separating shear layer. For larger 𝑠, 𝜉𝑘  and k show an 

abrupt increase due to the occurrence of the Kelvin–

Helmholtz instability. The largest values of k are slightly 

delayed compared to the largest values of 𝜉𝑘 due to the 

action of the mean convection. Then, at larger 𝑠, both k and 

𝜉𝑘 decrease again. In the rounded cases these variations are 

shifted towards larger 𝑠, consistently with the picture of a 

delayed turbulent activity. This results in a lower intensity 

of both k and 𝜉𝑘 before their maxima, but also in larger 

intensities at larger 𝑠 . After the reattachment point 𝜉𝑘 

features negative values and becomes a sink for k. 

Consistently, k decreases in this region and reaches its 

minimum in correspondence of the TE. Then, when the 

streamline passes over the TE, positive 𝜉𝑘 are observed 

again in correspondence of the shear layer, while negative 

𝜉𝑘 are observed downstream, where there is no production 

of turbulent fluctuations. This results first in an increase of 

k, followed by a further decrease. 

 
3.3 Discussions  

 
The present results provide a picture of curvature-related 

effects that is not entirely in agreement with that emerging 

from the similar study by Rocchio et al. (2020). Indeed, the 

two studies possess significant differences, with the latter 

being based on implicit LES at the much higher 𝑅𝑒 =
40000. The range of curvature radii considered in Rocchio 

et al. (2020) is quite wide, spanning from 𝑅 𝐷⁄ = 1 20⁄  to 

𝑅 𝐷⁄ = 1 270⁄ , but this should be considered in view of 

their significantly higher 𝑅𝑒. With this premise, perhaps 

the main finding of Rocchio et al. (2020) is that even a tiny 

curvature radius produces an abrupt change of the mean 

flow, and a sudden enlargement of the primary vortex. On 

the contrary, our results indicate that a small amount of  

 

Fig. 13 Evolution of k (left) and 𝜉𝑘 (right) over the mean streamline originating at (𝑥, 𝑦) = (0,0.5) shown in Fig. 4 as a 

function of the normalised curvilinear coordinate s. The left vertical dashed line marks the reattachment point, and the right 

dashed line marks the TE 
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Fig. 14 Sketch of the polar coordinate system (𝑟, 𝜃) used 

to derive the analytical solution in the neighbourhood of 

the top LE corner 

 

 

rounding does not affect the flow significantly, and 

that=curvature effects manifest themselves gradually when 

the curvature radius increases. Moreover, we have found 

that the rounding affects the extension of the primary vortex 

in the opposite way, as in our experiments its size 

diminishes. In terms of turbulent kinetic energy distribution, 

though, there is qualitative agreement between Rocchio et 

al. (2020) and the present results, with differences in the 

amount of rounding-induced changes that may simply be 

due to the different 𝑅𝑒. 

Assessing the reason(s) for these differences certainly 

requires further studies. However, some hypotheses can be 

put forward. As observed by Lamballais et al. (2010) 

rounding the LE corners has two opposite effects. The 

downstream shift of the Kelvin–Helmholtz instability tends 

to increase the length of the primary vortex, while the 

decrease of the separation angle at the LE tends to decrease 

it. In the present DNS the latter effect seems to prevail, 

while in Rocchio et al. (2020) the former one seems to 

dominate. Moreover, Rocchio et al. (2020) interestingly 

describes the appearance of a region with larger k near the 

LE not only over the separated shear layer, but also over the 

front face of the body, before the separation point. To 

explain this observation, that cannot be attributed to an 

upstream shift of the shear layer instability, the authors of 

Rocchio et al. (2020) mention that the sharp corner might 

introduce a large amount of k which is not fully damped in 

their implicit LES simulation. This suggests the possibility 

that, at least partially, the large sensitivity to the curvature 

radius reported in Rocchio et al. (2020) is associated to the 

specific numerical approach. Indeed, the proper description 

of a sharp corner, especially at high 𝑅𝑒, requires extremely 

fine grids, which is the very motivation for our accounting 

of the geometrical singularity analytically (see next Sec. 4). 

A further partial explanation of the discrepancy resides in 

the different numerical noise produced by the numerical 

methods used here and in Rocchio et al. (2020), coupled 

with the large receptivity of this flow to inflow 

perturbations. Indeed, it is well known that numerical errors 

and interaction between inlet and outlet boundary 

conditions can be artificial sources of inflow perturbations, 

whose level depends on the accuracy of the numerical 

method. The receptivity of this flow on the inflow 

perturbations has been largely studied to address the 

discrepancy between numerical simulations and 

experiments. For example, Ricci et al. (2017) via LES 

simulations found that a higher level of incoming 

turbulence corresponds to a shorter primary vortex and to 

an upstream shift of the secondary vortex. Lamballais et al. 

(2010) observed that this receptivity increases with the 

curvatures radius and report that for 𝑅 𝐷⁄ = 1 12⁄  the size 

of the primary vortex decreases of approximately 60% 

compared to the case without perturbations. 

Per se, the present results are self-consistent, and 

compare well with other similar numerical analyses of low-

𝑅𝑒  flow around bluff bodies with rounded LE. For 

example, Lamballais et al. (2008) studied a three-

dimensional D-shaped body with rounded LE at 𝑅𝑒 =
2500, and considered two relatively large curvature radii, 

i.e., 𝑅 𝐷⁄ = 1 2.5⁄  and 𝑅 𝐷⁄ = 1 5⁄ . In qualitative 

agreement with our results, they observed that increasing R 

leads to a decrease of both longitudinal and vertical 

extensions of the main recirculating region over the 

longitudinal body side. Lamballais et al. (2010) performed 

two-dimensional and three-dimensional DNS of the flow 

past a flat plate with rounded leading edge at Re=4000, with 

curvature radius ranging between 𝑅 𝐷⁄ = 1 2⁄  and 

𝑅 𝐷⁄ = 1 16⁄ . Their three-dimensional simulations confirm 

that for larger R the extension of the primary vortex 

decreases. Moreover, a slight downstream shift of the 

secondary vortex is observed, which is in line with our 

results for the 𝑅 𝐷⁄ = 1 64⁄  case, together with a decrease 

of the slope of the separating shear layer. They also find a 

decrease of the backflow in the region close to the plate 

side, in agreement with our simulations. Their two-

dimensional simulations, instead, show completely different 

results, but it is known that at their high 𝑅𝑒 the flow is 

strongly unstable to three-dimensional perturbations. In 

contrast, we have conducted preliminary two-dimensional 

simulations in the laminar regime at 𝑅𝑒 = 500, and these 

confirm our results in the turbulent regime and agree with 

the three-dimensional simulations at the same Reynolds 

number. This is because at 𝑅𝑒 = 500  the three-

dimensionality of the flow almost does not affect the mean 

flow. Indeed, we have observed that the 𝑅𝑒 = 500 only 

slightly exceeds the critical Reynolds number for the first 

onset of the first three-dimensional instability. Finally, 

Cimarelli et al. (2020) perform LES simulations of a flat 

plate at 𝑅𝑒 = 3000 with both sharp and rounded LE with 

𝑅 𝐷⁄ = 1 2⁄ . Again, their results qualitatively confirm that 

in the rounded configuration the extension of the main 

recirculating region decreases. 

 

 

4. Corner correction 
 

The two upstream LE corners where the flow impinges 

before separating are nominally sharp, and as such 

constitute a geometrical singularity that locally impacts the 

solution accuracy, to an extent that depends on the local 

fineness of the adopted grid. To overcome this, one may 

analytically determine the solution near the corner. In this 

work we follow an idea originally introduced by Luchini 

(1991) and later taken up and expanded in Burda et al. 

(2012). The strategy leverages the fact that, close enough to 

the corners, viscous effects dominate as the velocity 
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gradients become infinitely large. As a result, locally the in-

plane velocity components (i.e., 𝑢 and 𝑣) can be deduced 

from the Stokes equations, where the non-linear convective 

terms of the Navier–Stokes equations are discarded. 

 
4.1 Formulation 
 

One begins by solving the Stokes equation within the 

portion of plane identified by two semi-infinite and 

perpendicular straight lines. In the following discussion we 

only describe the case of the top LE corner, shown in Fig. 

14, but the same procedure holds with obvious 

modifications for the bottom LE corner. 

The two-dimensional Stokes equation is written in 

a longitudinal, 𝑧 = 𝑐𝑜𝑛𝑠𝑡 plane in terms of vorticity 

ω and streamfunction 𝜓, with a polar coordinate system 

(𝑟, 𝜃)  such that 𝑥 = 𝑟 cos (𝜃)  and 𝑦 = 𝑟 sin (𝜃) . The 

equations read: 

𝜕2𝜓
𝜕𝑟2  +  

1
𝑟

𝜕𝜓
𝜕𝑟

 + 
1
𝑟2

𝜕2𝜓
𝜕𝜃2  =  − 𝜔

𝜕2𝜔
𝜕𝑟2  +  

1
𝑟

𝜕𝜔
𝜕𝑟

 +  
1
𝑟2

𝜕2𝜔
𝜕𝜃2  =   0

 (4.1) 

where the radial and azimuthal velocity components, 𝑢𝑟 

and  𝑢𝜃 are related to 𝜓 by: 

𝑢𝑟 =
1

𝑟

𝜕𝜓

𝜕𝜃
, 𝑢𝜃 = −

𝜕𝜓

𝜕𝑟
. (4.2) 

We look for separable solutions in the form: 

𝜓(𝑟, 𝜃) = 𝑃(𝑟)𝐹(𝜃), 𝜔(𝑟, 𝜃) = 𝑅(𝑟)𝐺(𝜃). (4.3) 

By introducing the functional form above into (4.1), and 

requiring the solutions to be regular when the corner is 

approached i.e., 𝑟 → 0, one obtains 

𝑃(𝑟) = 𝑟𝐾+2;      𝑅(𝑟) = 𝑟𝐾  (4.4) 

and the Stokes problem reduces to the following pair of 

ODEs: 

𝐺′′(𝜃) + 𝐾2𝐺(𝜃) = 0     𝐹′′(𝜃) + (𝐾 + 2)2𝐹(𝜃) = 𝐺(𝜃). (4.5) 

The boundary conditions require the velocity to be zero 

on the two straight sides of the corner; in polar coordinates, 

this translates into: 

𝜕𝜓

𝜕𝜃
(𝑟, 0) = 0;  𝜓(𝑟, 0) = 0; 

𝜕𝜓

𝜕𝜃
(𝑟,

3𝜋

2
) = 0;  𝜓 (𝑟,

3𝜋

2
) = 0. (4.6) 

Solving the two ODEs (4.5) leads to: 

𝐺(𝜃) = 𝐴1 cos(𝐾𝜃) + 𝐴2 sin(𝐾𝜃)

𝐹(𝜃) =

𝐵1 cos((𝐾 + 1)𝜃) + 𝐵2 sin((𝐾 + 2)𝜃) + 𝐵3 cos(𝐾𝜃) + 𝐵4 sin(𝐾𝜃)

 (4.7) 

where 𝐴1 , 𝐴2 , 𝐵1 , 𝐵2 , 𝐵3 , 𝐵4  are constants to be 

determined via the boundary conditions 4.6. A linear system 

is obtained: 

𝑀(𝛾)𝒃 = 𝟎 

where 𝛾 = 𝐾 + 1, and b is the vector of the unknowns 𝒃 =
(𝐵1, 𝐵2, 𝐵3, 𝐵4) needed to determine 𝜓 and therefore 𝑢𝑟 

and 𝑢𝜃. To solve the system we require that 

det(𝑀(𝛾)) = 0 

which leads to the following relation: 

𝛾2 − sin2 (𝛾
3𝜋

2
) = 0. (4.8) 

The numerical solution of this equation via bisection 

yields 𝛾 ≈ 0.5444837. Then by solving the linear system, 

and by taking 𝐵1 = 1 without loss of generality thanks to 

the linearity of the problem, the unknowns 𝒃 are obtained: 

𝐵1=1  

𝐵2=

(𝛾−1) cos((𝛾−1)
3𝜋
2

)−(𝛾−1) cos((𝛾+1)
3𝜋
2

)

(𝛾−1) sin((𝛾+1)
3𝜋
2

)−(𝛾+1) sin((𝛾−1)
3𝜋
2

)

=𝐷2(𝛾)

𝐵3=−1

𝐵4=

(𝛾+1) cos((𝛾+1)
3𝜋
2

)−(𝛾+1) cos((𝛾−1)
3𝜋
2

)

(𝛾−1) sin((𝛾+1)
3𝜋
2

)−(𝛾+1) sin((𝛾−1)
3𝜋
2

)

=𝐷4(𝛾).

 
(4.9) 

Once the asymptotic behaviour of 𝜓(𝑟, 𝜃)  in the 

vicinity of the corner has been determined, we get 𝑢𝑟(𝑟, 𝜃) 

and 𝑢𝜃(𝑟, 𝜃) by their definitions (4.2): 

𝑢𝑟(𝑟, 𝜃)

= 𝑟𝛾 (
(𝛾 − 1) sin((𝛾 − 1)𝜃) − (𝛾 + 1) sin((𝛾 + 1)𝜃) +

+𝐷4(𝛾)(𝛾 − 1) cos((𝛾 − 1)𝜃) + 𝐷2(𝛾)(𝛾 + 1) cos((𝛾 + 1)𝜃)
) (4.10) 

𝑢𝜃(𝑟, 𝜃)

= −(γ + 1)𝑟𝛾 (
cos((𝛾 + 1)𝜃) + 𝐷2(𝛾) sin((𝛾 + 1)𝜃) +

− cos((𝛾 − 1)𝜃) + 𝐷4(𝛾)(𝛾 − 1)
) (4.11) 

Last, the Cartesian velocity components 𝑢 and 𝑣 can 

be easily retrieved by: 

𝑢 = 𝑢𝑟 cos(𝜃) − 𝑢𝜃 sin(𝜃);   𝑣 = 𝑢𝑟 sin(𝜃) + 𝑢𝜃 cos(𝜃). (4.12) 

Pressure is obtained from the Stokes equation in polar 

coordinates solved for 𝜕𝑝 𝜕𝑟⁄ , i.e.,: 

𝜕𝑝

𝜕𝑟
= 𝜈 (

𝜕2𝑢𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 −
2

𝑟2

𝜕𝑢𝜃

𝜕𝜃
−

𝑢𝑟

𝑟2). (4.13) 

An integration in r yields: 

𝑝(𝑟, 𝜃) = 4𝜈𝛾𝑟𝛾−1(𝐷4(𝛾) cos((𝛾 − 1)𝜃)

− 𝐷3(𝛾) sin((𝛾 − 1)𝜃)). (4.14) 

Once the correct local behaviour of 𝑢, 𝑣 and 𝑝 in the 

vicinity of the corner is analytically determined, this 

information is used in the DNS code, in such a way that the 

DNS solution possesses the required characteristics. The 

general idea is to use the exact Stokes solution to enforce a 

deferred correction of the DNS solution via two correction 

terms, one for the momentum equations in the 𝑥 direction 

and one for that in the 𝑦 direction, that are used at each 

iteration to ensure that the updated solution satisfies the 

Stokes equation in the vicinity of the corner. In the 

following the region near the corner interested by the 

correction is defined by: 

(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 ≤ (0.1𝐷)2 

where (𝑥𝑐  , 𝑦𝑐) are the coordinates of the corner. In the 

present work we choose to apply the correction within a 

distance of 0.1D from the corner, that is enough to let the 

correction decrease to zero, but it must be noted that the  
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distance needs to be accurately tuned, to avoid an 

incomplete correction due to an excessively short distance. 

 

4.2 Results 
 

The improvement made possible by the analytical 

correction for the LE corner singularity are considered here 

in terms of mean flow. Since the nominal geometry is the 

same, they can be simply expressed in terms of the 

difference between the two mean fields, with and without 

correction. Note that the very fine grid of the reference flow 

is used, and this precludes observing potentially large 

benefits. The goal of the present work is only the qualitative 

description of the effects induced by the analytical 

correction. 

Fig. 15 plots the difference of the mean velocity field in 

terms of its two components, 

𝛿𝑈 = 𝑈𝑐 − 𝑈𝑟 and 𝛿𝑉 = 𝑉𝑐 − 𝑉𝑟 

where the subscripts·𝑐 and·𝑟  refer to the case with the 

analytical correction and to the reference case without it. 

The following discussion only considers the top side of the  

 

 

cylinder, but the same observations are valid for the bottom 

side too, by suitably accounting for the symmetries of the 

flow. The black solid line is the streamline of the reference 

case starting just above the top LE corner at (𝑥, 𝑦) =
(0,0.5001), and is useful to locate the shear layer. The 

maps of 𝛿𝑈 and, to a larger extent, 𝛿𝑉 both reveal the 

presence of a small amount of statistical noise, due to the 

finite temporal average. However, the robustness of the 

observations has been checked by computing the maps with 

only half of the sample size; the noise is correspondingly 

increased, but the qualitative scenario remains unchanged. 

Near the LE corner, where the analytical correction is 

directly applied, both 𝛿𝑈 and 𝛿𝑉 are positive in the shear 

layer. On the other hand, just before the corner there are 

two tiny regions with 𝛿𝑈 < 0 and 𝛿𝑉 < 0 attached to the 

vertical side of the cylinder. This indicates that the 

corrected flow is decelerated just before its impingement on 

the corner, whereas the shear layer separating from it is 

accelerated. The maps of 𝛿𝑈 and 𝛿𝑉 show that in the flow 

with correction the streamlines more closely follow the 

geometry of the corner, as explained in the following 

discussion. The local slope of a mean streamline 𝑦𝑠(𝑥) is 

 

 

  

Fig. 15 Effect of the analytical correction of the LE corner singularity on the mean flow. Top panel is for 𝛿𝑈 = 𝑈𝑐 − 𝑈𝑟  

while the central one for 𝛿𝑉 = 𝑉𝑐 − 𝑉𝑟, where subscripts ·𝑐 and ·𝑟refer to the corrected and the reference case. The black 

line, drawn for the reference case, indicates the streamline originating from just above the LE corner and locates the shear 

layer. The bottom panels show a zoom on the LE corner for 𝛿𝑈 (left) and 𝛿𝑉 (right) 
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defined as:  

𝑑𝑦𝑠

𝑑𝑥
=

𝑉

𝑈
 

Therefore the slope change induced by the correction is 

𝛿 (
𝑑𝑦𝑠

𝑑𝑥
) =

𝑉𝑐

𝑈𝑐
−

𝑉𝑟

𝑈𝑟
=

𝑈𝑟𝑉𝑐−𝑈𝑐𝑉𝑟

𝑈𝑐𝑈𝑟
. 

This quantity is plotted in figure 16, where blue 

indicates 𝛿(𝑑𝑦𝑠 𝑑𝑥⁄ ) < 0 and orange 𝛿(𝑑𝑦𝑠 𝑑𝑥⁄ ) > 0. Just 

before the corner  𝛿(𝑑𝑦𝑠 𝑑𝑥⁄ )  is positive for 0.4 ≤ 𝑦 ≤
0.5; note that this vertical extension almost corresponds to 

the distance chosen for the correction to apply. This 

indicates that the corrected streamlines are more vertical in 

this region and, therefore, more aligned with the vertical 

side of the cylinder. On the other hand, the blue region after 

the corner indicates that the streamlines, after crossing the 

LE, have a lower slope and align better to the longitudinal 

side of the cylinder. In other words, the separation angle of 

the shear layer decreases once the analytical correction is 

used. 

The analytical correction acts locally near the corners, 

but its effects are seen also further from it, in the entire 

region above the cylinder side. For example, similarly to 

what previously observed for the rounded configurations, 

the decrease of the separation angle of the shear layer 

results in a slight decrease of both the vertical and 

longitudinal extent of the primary vortex, with 𝐿1 dropping 

from 3.955 to 3.92 (≈ −1.3%). The top panel of Fig. 15 

indicates that within the primary vortex the analytical 

correction yields 𝛿𝑈 > 0 almost everywhere but close to 

the cylinder side for 𝑥 ≥ 2.5 , where 𝛿𝑈 < 0  shows an 

increase of the backflow. The positive 𝛿𝑈 > 0  in the 

region around the limiting streamline is consistent with a 

smaller vertical extent of the primary vortex. On the other 

hand, after the first portion of the shear layer where 𝛿𝑉 >
0 , for intermediate x 𝛿𝑉  becomes negative and then 

positive again after the reattachment point. This once again 

agrees with the picture of a shorter primary vortex. Indeed 

this change of the sign of 𝛿𝑉 is due to an upstream shift of 

the point at which the streamlines turn towards lower 𝑦. 

The small differences between the reference case and 

the case with the analytical correction confirm that the 

resolution used in this work near the LE corners is more 

than adequate. We expect that increasing the resolution 

further would lead eventually to vanishing differences. 

 

 

5. Conclusions  
 

The present work has studied via Direct Numerical 

Simulations (DNS) the BARC benchmark flow in the 

turbulent regime at 𝑅𝑒 =  3000 , with focus on the 

geometrical characterisation of the leading-edge (LE) 

corners. In doing so we intend to contribute to the 

discussion whether the geometrical details of the nominally 

sharp LE corners could explain at least partially the scatter 

of available data. 

In the first part of the work, the effect of rounded LE 

corners has been studied. Two values for the curvature 

radius 𝑅 have been considered, namely 𝑅/𝐷 =  1/128  

 

Fig. 16 Sign of the change 𝛿(𝑑𝑦𝑠 𝑑𝑥⁄ ) in the local slope 

of mean streamlines. Blue: negative change; orange: 

positive change 

 

 

and 𝑅/𝐷 =  64,  which mimic the unavoidable 

imperfections that would be present in a physical model 

owing to manufacturing procedures. The present 

investigation follows a similar one by Rocchio et al. (2020), 

who simulated the flow via Large Eddy Simulations at a 

much larger Reynolds number, i.e., 𝑅𝑒 =  40000. We 

have discussed the possible reasons for differences between 

that study and the present results, which may be traced 

down to the significantly different Reynolds number 

combined with the different modelling approach and 

numerical method. Unlike in Rocchio et al. (2020), we have 

found that a small amount of rounding does not abruptly 

change the features of the mean flow, and that the effects 

increase gradually with 𝑅. In the rounded configurations, 

the shear layer separates from the LE with a milder slope, 

so that the vertical and longitudinal sizes of the main 

recirculating region are both reduced. Interestingly, 

rounding the LE corners has been found to affect the wake 

vortex too, with its longitudinal size slightly increasing with 

𝑅. This is explained by the observation that rounding the 

LE increase the velocity over the last part of the cylinder 

side after the reattachment point, resulting in a faster TE 

shear layer. 

The inspection of the turbulent kinetic energy reveals 

that in the rounded cases the turbulent activity is slightly 

delayed in the downstream direction compared to the sharp 

configuration, so that k is decreased in the first part of the 

cylinder, but slightly increased in the second part. This 

happens via the downstream shift of the Kelvin–Helmholtz 

instability of the shear layer, accompanied by a similar shift 

of the transport mechanism involving the upstream portion 

of the primary vortex. A partial explanation of the slight 

increase of k in the second part of the cylinder side resides 

in the larger increase of the production 𝑃𝑘  of turbulent 

kinetic energy compared to its dissipation rate 휀𝑘, resulting 

in an overall increase of the source term 𝜉𝑘 = 𝑃𝑘 − 휀𝑘 . 

Once again, the present results do not fully agree with 

findings reported by Rocchio et al. (2020). They observed a 

spatially delayed development of the turbulent activity too, 

but in their simulation this produces a large increase of the 

longitudinal size of the primary vortex already for very 

small 𝑅. 

The second part of the work restores the LE corners to 

their nominal sharp geometry. For the first time in the 
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BARC context, we use an analytical solution of the Stokes 

flow over a sharp corner (Moffatt 1964, Luchini 1991) to 

locally improve the accuracy of the DNS numerical 

solution, which is unavoidably degraded by the geometrical 

singularity. We have outlined a strategy based on the idea 

that, in the vicinity of the corner, the in-plane velocity 

components must obey the Stokes equations, as viscous 

effects are dominant. By applying a numerical correction to 

the DNS solution such that near the LE corners the Stokes 

solution is recovered, we have described how the mean flow 

appears to better adapt to the corner shape and becomes 

more aligned to the cylinder sides. As a result, the shear 

layer separates from the LE with a milder angle, therefore 

yielding a decrease of the size of the primary vortex. It 

should be noted that, in the present work, the analytical 

correction has been applied to a well-resolved DNS only. As 

a consequence, the improvements are small in magnitude. 

Further work is needed to properly characterize and assess 

the performance of the method. However, the true value of 

the approach can be appreciated when the correction is 

enforced to coarser-grid simulations, where it should allow 

a significantly lower computational cost for a given 

accuracy. 
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