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Flow control for skin friction drag reduction

Vi(z,t) = Asin (wt) L,

o Flow control for skin-friction drag
reduction largely investigated for flows
over planar walls, where friction is the only 5

drag contribution



Flow control for skin friction drag reduction
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o In non-planar walls drag includes
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How does skin-friction reduction affect the other drag components?




¢ Banchetti et al. (JFM, vol. 896): a distributed
reduction of friction via spanwise forcing

How does skin-friction reduction affect the other drag components?

reduces the pressure drag in a channel flow

with a wall-mounted bump

o Nguyen et al. (JFM, vol. 912): a temporally
spanwise-oscillating pressure gradient reduces
both pressure and friction drag in a channel

flow with transverse bars at the wall

Taken from Nguyen et al.
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What about the other contributions to the total drag?



Effect of skin friction drag reduction on a transonic airfoil

First Direct Numerical Simulation (up to 1.8 billions cells)
Supercritical V2C airfoil

The control is applied on a portion of the suction side only
Streamwise travelling waves of spanwise velocity

Resw =3 % 10°, My = 0.7, v = 4°
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Numerical Simulation
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Instantaneous flow: near-wall fluctuations
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Aerodynamics forces

At the same incidence angle oo = 4°

Reference C2 A,
G 0.740 0.825 +11.3%
Cy 0.0247 0.0245 -0.8%

Ca s 0.0082 0.0071  -13.4%

Ca,p 0.0165 0.0174 +55%
Co/Cy 29.7 33.7 +13.5%

10



Aerodynamics forces

Approximately at the same C,

Reference C2 (v = 3.45°) JAV)
G 0.740 0.730 -1.3%
Cy 0.0247 0.0210 -15.0%
Car 0.0082 0.0074 -9.7%
Cap 0.0165 0.0136 -17.6%
Co/Cy 29.7 34.8 +17.2%
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How does it scale to a full aircraft?
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How does it scale to a full aircraft?

Assumptions:
o The wing is responsible for the entire lift and 1/3 of the total drag

o ACp and ACy due to the control do not change along the wing span
o AC; and ACy due to the control do not change with «, Res, and My,
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How does it scale to a full aircraft?
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o DLR-F6 (Second AIAA CFD drag prediction workshop) . 0.4 - .
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o Control C2 applied to both wings
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How does it scale to a full aircraft?
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o Control C2 applied to both wings
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actuation power ~ 1% of the overall power expenditure
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Conclusion

& The global aerodynamic performance of the wing is improved by locally reducing skin
friction over a portion of the suction side

o For the present case we measure AC, ~ 15% (but even more is possible!)
o For the full aircraft we estimate ACp ~ 8.5%

o Skin-friction drag reduction should be considered as a tool and not only as a goal

Reference: Quadrio et al. (J. Fluid Mech, vol. 942, R2)
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Thanks for the attention!
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Mean flow: downstream shift of the shock

0.2

0.1

0.2

0.1

d(p)/0u

Ref

0.1

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

17



Aerodynamics forces

At the same incidence angle oo = 4°

Reference C1 Aq
@) 0.740 0.751  +15%
Cy 0.0247 0.0236  -4.5%

Car 0.0082 0.0076  -7.3%

Csp | 00165 00161 -2.4%
C/Cq| 297 3.7  +6.8%
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Aerodynamics forces

At the same incidence angle oo = 4°

Reference C1 Aq C2 As
@) 0.740 0751 +15% 0825 +11.3%
Cy 0.0247 0.0236 -45% 0.0245 -0.8%
Car 0.0082 0.0076  -7.3% 0.0071 -13.4%

Ca,p 0.0165 0.0161 -2.4% 0.0174 +5.5%
Ce/Cy 29.7 3.7 +46.8% 337 +13.5%
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Aerodynamics forces

Approximately at the same C,

Reference C2 (o = 3.45°) JAV)
G 0.740 0.730 -1.3%
Cy 0.0247 0.0210 -15.0%
Car 0.0082 0.0074 -9.7%
Cap 0.0165 0.0136 -17.6%
Co/Cy 20.7 34.8 +17.2%
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