Drag reduction on a transonic airfoil

M. Quadrio¹, <u>A. Chiarini¹</u>, J. Banchetti¹, D. Gatti², A. Memmolo³ & S. Pirozzoli⁴

1

July 2022, TSFP12

¹Politecnico di Milano, ²Karlsruhe Institute of Technology, ³CINECA Interuniversity Consortium, ⁴La Sapienza Università di Roma

Flow control for skin friction drag reduction

 Flow control for skin-friction drag reduction largely investigated for flows over planar walls, where friction is the only drag contribution

Flow control for skin friction drag reduction

 Flow control for skin-friction drag reduction largely investigated for flows over planar walls, where friction is the only drag contribution

 In non-planar walls drag includes additional contributions

How does skin-friction reduction affect the other drag components?

How does skin-friction reduction affect the other drag components?

 Banchetti et al. (JFM, vol. 896): a distributed reduction of friction via spanwise forcing reduces the pressure drag in a channel flow with a wall-mounted bump

 Nguyen et al. (JFM, vol. 912): a temporally spanwise-oscillating pressure gradient reduces both pressure and friction drag in a channel flow with transverse bars at the wall

Taken from Nguyen et al.

How does skin-friction reduction affect the other drag components?

 Banchetti et al. (JFM, vol. 896): a distributed reduction of friction via spanwise forcing reduces the pressure drag in a channel flow with a wall-mounted bump

 Nguyen et al. (JFM, vol. 912): a temporally spanwise-oscillating pressure gradient reduces both pressure and friction drag in a channel flow with transverse bars at the wall

Taken from Nguyen et al.

What about the other contributions to the total drag?

Effect of skin friction drag reduction on a transonic airfoil

- ♦ First Direct Numerical Simulation (up to 1.8 billions cells)
- ♦ Supercritical V2C airfoil
- ♦ The control is applied on a portion of the suction side only
- ♦ Streamwise travelling waves of spanwise velocity
- $\diamond~ {\it Re}_{\infty} = 3 imes 10^{5}$, ${\it M}_{\infty} = 0.7$, $lpha = 4^{\circ}$

0.2 $w_w = A_1 f(x) \sin(\kappa_x - \omega t)$ C1For C1: y/c0 $\diamond A_1 = 0.5, \ \omega = 11.3, \ \kappa_x = 161$ ♦ $x_{s,1} = 0.3c$, $x_{e,1} = 0.78c$ $x_{s,1}$ x_e -0.20 0.1 0.2 0.3 0.4 0.50.6 0.70.8 0.9 x/c0.2 $w_w = A_2 f(x) \sin(\kappa_x - \omega t)$ C2For C2: y/c0 $\diamond A_2 = 0.684, \omega = 11.3, \kappa_x = 161$ $x_{s,2} = 0.2c, x_{e,2} = 0.78c$ $x_{s,2}$ x_e -0.20 0.10.20.30.40.50.60.70.80.9x/c

5

Instantaneous flow: near-wall fluctuations

Friction coefficient

8

Pressure coefficient

$$c_p = rac{2(p_w - p_\infty)}{
ho_\infty U_\infty^2}$$

At the same incidence angle $\alpha=4^\circ$

	Reference	C2	Δ_2	C2 ($lpha=$ 3.45°)	Δ_2
C_ℓ	0.740	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_d	29.7	33.7	+13.5%	34.8	+17.2%

Approximately at the same C_ℓ

	Reference	C2	Δ_2	C2 ($lpha=$ 3.45°)	Δ_2
C_ℓ	0.740	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_d	29.7	33.7	+13.5%	34.8	+17.2%

How does it scale to a full aircraft?

Assumptions:

- \diamond The wing is responsible for the entire lift and 1/3 of the total drag
- $\diamond~\Delta C_\ell$ and ΔC_d due to the control do not change along the wing span
- $\diamond \Delta C_\ell$ and ΔC_d due to the control do not change with lpha, Re_∞ and M_∞

- ◊ DLR-F6 (Second AIAA CFD drag prediction workshop)
- \diamond Flight condition: $M_{\infty}=0.75,~Re_{\infty}=3 imes10^{6}$
- ♦ Control C2 applied to both wings

taken from https://aiaa-dpw.larc.nasa.gov/

- ◊ DLR-F6 (Second AIAA CFD drag prediction workshop)
- \diamond Flight condition: $M_{\infty}=0.75,~Re_{\infty}=3 imes10^{6}$
- $\diamond\,$ Control C2 applied to both wings

	Uncontrolled	Controlled
C_L	0.5	0.5
α	0.52°	0.0125°
C_D	0.0295	0.0272

taken from https://aiaa-dpw.larc.nasa.gov/

◊ DLR-F6 (Second AIAA CFD drag prediction workshop)

- \diamond Flight condition: $M_{\infty}=0.75,~Re_{\infty}=3 imes10^{6}$
- ♦ Control C2 applied to both wings

	Uncontrolled	Controlled
C_L	0.5	0.5
α	0.52°	0.0125°
C_D	0.0295	0.0272

 $\Delta C_D \approx 8.5\%$

actuation power $\approx 1\%$ of the overall power expenditure

taken from https://aiaa-dpw.larc.nasa.gov/

- ◇ The global aerodynamic performance of the wing is improved by locally reducing skin friction over a portion of the suction side
- ♦ For the present case we measure $\Delta C_d \approx 15\%$ (but even more is possible!)
- \diamond For the full aircraft we estimate $\Delta C_D \approx 8.5\%$
- $\diamond\,$ Skin-friction drag reduction should be considered as a tool and not only as a goal

Reference: Quadrio et al. (J. Fluid Mech, vol. 942, R2)

Thanks for the attention!

Mean flow: downstream shift of the shock

At the same incidence angle $\alpha=4^\circ$

	Reference	C1	Δ_1	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_ℓ	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_d	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

At the same incidence angle $\alpha=4^\circ$

		Reference	C1	Δ_1	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C,	2	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C	1	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
C_d	, <i>f</i>	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
C_d	,p	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
$C_\ell/$	C_d	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

Approximately at the same C_ℓ

	Reference	C1	Δ_1	C2	Δ_2	C2 ($lpha=$ 3.45°)	Δ_2
C_ℓ	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_d	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%