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Flow control for skin friction drag reduction

⋄ Flow control for skin-friction drag

reduction largely investigated for flows

over planar walls, where friction is the only

drag contribution

⋄ In non-planar walls drag includes

additional contributions
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How does skin-friction reduction affect the other drag components?

⋄ Banchetti et al. (JFM, vol. 896): a distributed

reduction of friction via spanwise forcing

reduces the pressure drag in a channel flow

with a wall-mounted bump

⋄ Nguyen et al. (JFM, vol. 912): a temporally

spanwise-oscillating pressure gradient reduces

both pressure and friction drag in a channel

flow with transverse bars at the wall

Taken from Nguyen et al.

What about the other contributions to the total drag?
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Effect of skin friction drag reduction on a transonic airfoil

⋄ First Direct Numerical Simulation (up to 1.8 billions cells)

⋄ Supercritical V2C airfoil

⋄ The control is applied on a portion of the suction side only

⋄ Streamwise travelling waves of spanwise velocity

⋄ Re∞ = 3× 105, M∞ = 0.7, α = 4◦
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Numerical Simulation

For C1:

⋄ A1 = 0.5, ω = 11.3, κx = 161

⋄ xs,1 = 0.3c , xe,1 = 0.78c

For C2:

⋄ A2 = 0.684, ω = 11.3, κx = 161

⋄ xs,2 = 0.2c , xe,2 = 0.78c
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Mean flow

M = 1 (Ref)
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Instantaneous flow: near-wall fluctuations
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Friction coefficient

cf =
2τw

ρ∞U2∞
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Pressure coefficient

cp =
2(pw − p∞)

ρ∞U2∞
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Aerodynamics forces

At the same incidence angle α = 4◦

Reference C2 ∆2 C2 (α = 3.45◦) ∆2

Cℓ 0.740 0.825 +11.3% 0.730 -1.3%

Cd 0.0247 0.0245 -0.8% 0.0210 -15.0%

Cd,f 0.0082 0.0071 -13.4% 0.0074 -9.7%

Cd,p 0.0165 0.0174 +5.5% 0.0136 -17.6%

Cℓ/Cd 29.7 33.7 +13.5% 34.8 +17.2%
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Aerodynamics forces

Approximately at the same Cℓ

Reference C2 ∆2 C2 (α = 3.45◦) ∆2
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How does it scale to a full aircraft?

Assumptions:

⋄ The wing is responsible for the entire lift and 1/3 of the total drag

⋄ ∆Cℓ and ∆Cd due to the control do not change along the wing span

⋄ ∆Cℓ and ∆Cd due to the control do not change with α, Re∞ and M∞
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How does it scale to a full aircraft?

⋄ DLR-F6 (Second AIAA CFD drag prediction workshop)

⋄ Flight condition: M∞ = 0.75, Re∞ = 3× 106

⋄ Control C2 applied to both wings

Uncontrolled Controlled

CL 0.5 0.5

α 0.52◦ 0.0125◦

CD 0.0295 0.0272

∆CD ≈ 8.5%

actuation power ≈ 1% of the overall power expenditure
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Conclusion

⋄ The global aerodynamic performance of the wing is improved by locally reducing skin

friction over a portion of the suction side

⋄ For the present case we measure ∆Cd ≈ 15% (but even more is possible!)

⋄ For the full aircraft we estimate ∆CD ≈ 8.5%

⋄ Skin-friction drag reduction should be considered as a tool and not only as a goal

Reference: Quadrio et al. (J. Fluid Mech, vol. 942, R2)
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Thanks for the attention!
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Mean flow: downstream shift of the shock
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Aerodynamics forces

At the same incidence angle α = 4◦

Reference C1 ∆1 C2 ∆2 C2 (α = 3.45◦) ∆2

Cℓ 0.740 0.751 +1.5% 0.825 +11.3% 0.730 -1.3%

Cd 0.0247 0.0236 -4.5% 0.0245 -0.8% 0.0210 -15.0%

Cd,f 0.0082 0.0076 -7.3% 0.0071 -13.4% 0.0074 -9.7%

Cd,p 0.0165 0.0161 -2.4% 0.0174 +5.5% 0.0136 -17.6%

Cℓ/Cd 29.7 31.7 +6.8% 33.7 +13.5% 34.8 +17.2%
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