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The primary instability of the flow past rectangular cylinders is studied to comprehensively
describe the influence of the aspect ratio AR and of rounding the leading- and/or
trailing-edge corners. Aspect ratios ranging between 0.25 and 30 are considered. We show
that the critical Reynolds number (Rec) corresponding to the primary instability increases
with the aspect ratio, starting from Rec ≈ 34.8 for AR = 0.25 to a value of Rec ≈ 140
for AR = 30. The unstable mode and its dependence on the aspect ratio are described.
We find that positioning a small circular cylinder in the flow modifies the instability in
a way strongly depending on the aspect ratio. The rounded corners affect the primary
instability in a way that depends on both the aspect ratio and the curvature radius. For
small AR, rounding the leading-edge corners has always a stabilising effect, whereas
rounding the trailing-edge corners is destabilising, although for large curvature radii only.
For intermediate AR, instead, rounding the leading-edge corners has a stabilising effect
limited to small curvature radii only, while for AR � 5 it has always a destabilising effect.
In contrast, for AR � 2 rounding the trailing-edge corners consistently increases Rec.
Interestingly, when all the corners are rounded, the flow becomes more stable, at all aspect
ratios. An explanation for the stabilising and destabilising effect of the rounded corners is
provided.

Key words: absolute/convective instability, vortex streets, instability control

1. Introduction

The flow past bluff bodies has attracted the attention of many scholars for decades (Braza,
Chassaing & Minh 1986; Schumm, Berger & Monkewitz 1994; Saiki & Biringen 1996;
Williamson et al. 1996; Sohankar, Norberg & Davidson 1998; Kumar & Mittal 2006;
Pralits, Brandt & Giannetti 2010; Jiang & Cheng 2018), because of its relevance, that goes
beyond a fundamental interest to encompass industrial applications, especially in the field
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of vortex-induced oscillations (Williamson & Govardhan 2008). The pressure and friction
distributions produce net forces on the body. With the onset of the first two-dimensional
instability, i.e. the primary instability, pressure and friction start fluctuating, due to the
vortex shedding. Since large fluctuations may cause acoustic noise and structural damages,
understanding the instability of such flows is of interest for the fluid mechanics community,
driven by the goal of controlling it.

The circular cylinder is the natural prototype of a bluff body, owing to its simple
geometry, and it has been extensively investigated (see e.g. Zdravkovich 1997). At a critical
Reynolds number of Rec ≈ 47 the flow undergoes a Hopf bifurcation from a symmetric
steady state towards a time-periodic non-symmetric state (Provansal, Mathis & Boyer
1987; Sreenivasan, Strykowski & Olinger 1987; Noack & Eckelmann 1994). While a
global instability has been found to be responsible for the onset of the vortex shedding
(Jackson 1987), a complete understanding of the physical mechanism is still lacking. In
this respect, an important theoretical advancement has been the concept of the wave maker
(Monkewitz, Huerre & Chomaz 1993). In particular, when the interest lies in damping
the global instability, it is important to identify the so-called wave-maker region, i.e. the
region in the flow where the instability mechanism acts to produce the self-sustained
oscillations. Giannetti & Luchini (2007) first proposed the structural sensitivity as a way
to locate the wave maker in a global instability. They applied it to the two-dimensional
flow around a circular cylinder, showing that the wave-maker region is characterised
by two lobes symmetrically placed across the separation bubble, i.e. the closed region
delimited by two streamlines separating from the body surface. Active and passive control
techniques have been tested to control vortex shedding past a circular cylinder. For passive
control, Strykowski & Sreenivasan (1990) have experimentally shown that a small control
cylinder delays the onset of the primary instability when correctly placed within the flow.
Similar results were then obtained numerically by Mittal & Raghuvanshi (2001) via direct
numerical simulations, and by Morzyński, Afanasiev & Thiele (1999) via linear stability
analysis. Marquet, Sipp & Jacquin (2008) provided the theoretical framework to explain
the modification of the vortex shedding observed experimentally. They introduced the
concepts of sensitivity to base-flow modification and sensitivity to a steady force, which
quantify how a perturbation of the base flow and a steady force alter the onset of the
primary instability, the results for the circular cylinder being in good agreement with
experiments.

The rectangular cylinder has received less attention than its circular counterpart.
Nevertheless, the study of rectangular cylinders is of great interest from the point of
view of applications, as many structures, such as buildings, bridges, pylons, typically
have rectangular or nearly rectangular cross-sections (Tamura, Miyagi & Kitagishi 1998).
Despite the simple geometry, the problem is interesting from a fundamental viewpoint too.
Indeed, the flow around rectangular cylinders presents peculiar features that characterise
flows around bodies of more complex shape: corner-induced separations, shear layer
instability, recirculating flow regions and an unstable wake (see e.g. Almeida, Mansur
& Silveira-Neto (2008), and the references therein). Depending on its aspect ratio AR
(the ratio between the streamwise length L and the cross-stream dimension D of the
body), a rectangular cylinder spans a whole range of bluff blunt bodies, from a flat
plate placed normal to the flow (AR = 0) to a square cylinder (AR = 1) and, finally,
to a flat plate parallel to the flow (AR → ∞). Features of the cross-flow, pressure and
friction distributions bear a significant dependence upon the aspect ratio. For intermediate
Reynolds numbers, i.e. Re ≈ 300–400, the main features and their dependence on AR have
been thoroughly investigated. For small AR, i.e. AR < 2, the flow does not reattach after
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the separation at the leading edge (LE), and vortex shedding only occurs at the LE. For
intermediate AR, i.e. 2 � AR � 3, an intermittent reattachment on the longitudinal side
takes place. For larger AR, the flow reattaches permanently, and eventually separates again
at the trailing edge (TE). For these AR, vortex shedding occurs from the shear layers at both
the LE and TE. The phenomenon has a unique frequency, since the two shedding processes
are interlocked as a result of the impinging shear-layer instability that interacts with the
TE vortex shedding (Nakamura & Nakashima 1986; Hourigan et al. 1993; Hourigan,
Thompson & Tan 2001; Mills, Sheridan & Hourigan 2002, 2003). This interlocking
mechanism leads to a stepwise dependence on AR of the Strouhal number based on the
cylinder longitudinal length; it has been observed by several authors both numerically and
experimentally for Reynolds numbers up to 2000 (Okajima 1982; Nakamura & Nakashima
1986; Ozono et al. 1992; Tan, Thompson & Hourigan 1998). Similarly, several works have
studied the three-dimensional instability of this flow. Robichaux, Balachandar & Vanka
(1999), Blackburn & Lopez (2003), Sheard, Fitzgerald & Ryan (2009), Blackburn &
Sheard (2010) and others investigated the wake instability behind a square cylinder via
Floquet stability analysis, observing a quasi-periodic unstable mode that has been found
also in the wake of a circular cylinder (Blackburn, Marques & Lopez 2005). The effect
of AR was also assessed: for example, we mention the works by Choi & Yang (2014)
and Jiang & Cheng (2018), who studied the three-dimensional instability from the limit
AR → 0 (corresponding to a flat plate normal to the flow) to AR = 1 via Floquet analysis
and direct numerical simulations, and that by Hourigan et al. (2001), who investigated the
three-dimensional patterns in the boundary layer along rectangular cylinders with AR up to
13. However, for the low Reynolds number associated with the primary two-dimensional
instability, to the best of the authors’ knowledge, a comprehensive study encompassing the
whole range of AR is still missing. Indeed, all the studies at such low Reynolds number
focus on the square cylinder. For this aspect ratio, AR = 1, the onset of the primary
instability closely resembles the one for the circular cylinder with the flow undergoing
a Hopf bifurcation, but occurs at a lower Reynolds number, even though the reported data
are scattered according to Jiang & Cheng (2018), who themselves measure Rec = 46. For
example, Sohankar, Norberg & Davidson (1999) report Rec = 47 ± 2, Saha, Muralidhar
& Biswas (2000) set it at Rec = 45 and Park & Yang (2016) mention Rec = 44.7.

It should be mentioned that perfectly sharp corners are just an idealisation, since the
corners of real bodies are always rounded to some extent. It is known that rounding
the corners of bluff bodies can significantly impact the flow properties (Park & Yang
2016; Cimarelli, Franciolini & Crivellini 2020; Rocchio, Mariotti & Salvetti 2020). For
rounded corners, despite the number of studies assessing the large-Reynolds number
case (see for e.g. Lamballais, Silvestrini & Laizet 2008, 2010; Cao & Tamura 2017),
few works have considered the dependence of the onset of the instabilities on the corner
curvature. Park & Yang (2016) determined, via linear stability analysis, how the primary
two-dimensional and the three-dimensional instabilities are affected by rounding the four
corners of a rectangular cylinder with AR = 1, exploring the shapes ranging between
the square cylinder with sharp edges and the circular cylinder. They observed that the
primary instability onset changes with corner curvature, finding that Rec does not change
monotonically with the curvature and that the most stable configuration is an intermediate
configuration between the circular and the square cylinder. For the three-dimensional
instability, instead, they found noticeable changes in terms of both unstable modes and
the range of unstable spanwise wavelengths.

The aim of the present numerical study is to provide a comprehensive overview of the
primary two-dimensional instability past rectangular cylinders in a wide range of AR.
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Figure 1. Sketch of the computational domain with the geometry of the rectangular cylinder.

Both sharp and/or rounded corners are considered, with 0.25 � AR � 30. The onset of
the primary instability is addressed, and the unstable modes and wave-maker regions
are identified. Sensitivity to either base-flow modifications or steady forces are evaluated
to assess how the onset of the instability can be delayed via suitable placement of a
small control cylinder. The paper is organised as follows. After this introduction, a brief
description of the mathematical formulation and of the numerical method adopted is
presented in § 2. Section 3 studies the rectangular cylinders with sharp corners in terms
of primary instability and structural sensitivities. In § 4 the dependence of the primary
instability on the rounding of the LE and/or TE corners is addressed. Concluding remarks
are drawn in § 5.

2. Mathematical formulation

2.1. Flow configuration
The incompressible flow over two-dimensional, rectangular cylinders with aspect ratio
0.25 � AR � 30 is considered. Figure 1 shows the geometry, the reference system and
the notation. A Cartesian coordinate system is used, with origin at the LE of the cylinder,
with the x axis being the symmetry axis aligned with the free-stream direction, and the
y axis denoting the cross-stream direction. The cylinder has length L and cross-stream
size D, and is placed in a uniform flow with velocity U∞. The computational domain has
dimensions Lx and Ly. The Reynolds number is Re = U∞D/ν. The flow is governed by
the incompressible Navier–Stokes equations,

∂u
∂t

+ u · ∇u = −∇p + 1
Re
�u + F ,

∇ · u = 0,

⎫⎬⎭ (2.1)

where F denotes a volume forcing.

2.2. Modal stability analysis
The onset of the instability is classically studied in linear theory by using a normal-mode
analysis (Theofilis 2003, 2011). The field {u, p} of velocity and pressure is decomposed
into the sum of a time-independent base flow {U,P} and an unsteady contribution {u′, p′}
929 A36-4
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with small amplitude ε, as

u(x, t) = U(x)+ εu′(x, t), p(x, t) = P(x)+ εp′(x, t). (2.2a,b)

Using this decomposition in the Navier–Stokes equations (2.1), separate equations for
the spatial structure of the base flow and the temporal evolution of the perturbation
are obtained. The base flow is governed by the steady version of (2.1), whereas the
perturbation field is described by the linearised unsteady Navier–Stokes equation (LNSE),

∂u′

∂t
+ L{U,Re}u′ = −∇p′,

∇ · u′ = 0,

⎫⎬⎭ (2.3)

where L stands for the linearised Navier–Stokes operator,

L{U,Re}u′ = U · ∇u′ + u′ · ∇U − 1
Re
�u′. (2.4)

The differential problem (2.3) is completed by initial and boundary conditions. The
perturbation velocity field is set to zero on the boundary of the computational domain,
except at the outlet boundary, where outflow boundary conditions

p′n − Re−1∇u′ · n = 0 (2.5)

are used, where n is the normal vector.
We are interested in the global modes of the linearised Navier–Stokes equations, i.e.

non-trivial solutions of the system (2.3) of the form

u′(x, t) = û(x)eλt, p′(x, t) = p̂(x)eλt. (2.6a,b)

Here λ is a complex number, while the complex field {û, p̂} satisfies

λû + L{U,Re}û + ∇p̂ = 0,

∇ · û = 0.

}
(2.7)

Solving the generalised eigenvalue problem for the complex frequency λ leads one to
ascertain the flow stability, which requires all the eigenvalues to have negative real part.

2.3. Structural sensitivity
A better understanding of the instability mechanisms can be obtained thanks to the
structural sensitivity, a concept introduced by Giannetti & Luchini (2007) for the primary
instability and then extended by Giannetti, Camarri & Luchini (2010) to the secondary
instability. Structural sensitivity is based on the interplay between direct and adjoint
modes.

The adjoint LNSE (see for e.g. Giannetti & Luchini 2007) are

−∂f +

∂t
+ L+{U,Re}f +−∇m+=0,

∇ · f +=0,

⎫⎬⎭ (2.8)

where L+{U,Re} is the adjoint of the linearised Navier–Stokes operator,

L+{U,Re}f += − (U · ∇) f ++ (∇U) · f +− 1
Re

∇2f +. (2.9)

The solution of the adjoint equations can be useful to study the receptivity of the modes
to an external forcing, as the receptivity of a mode to a periodic forcing in the momentum
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and/or continuity equation is proportional to the local magnitude of the adjoint fields f +
and m+.

Since our interest lies in the primary instability of the flow, we will seek non-trivial
solutions of the adjoint LNSEs (2.8) of the form

f +(x, t) = f̂ +(x)e−λt, m+(x, t) = m̂+(x)e−λt. (2.10a,b)

If {û(x)eλt, p̂(x)eλt} is a global mode of the LNSE corresponding to the eigenvalue λ,
{ f̂ +(x)e−λt, m̂+(x)e−λt} is the non-trivial solution of the adjoint LNSEs corresponding to
the same eigenvalue.

With direct and adjoint perturbation modes available, one knows the spatial location
of the largest perturbation amplitude and of the largest receptivity. These two pieces
of information are brought together by computing the structural sensitivity S, which
identifies the region where the instability mechanisms is at work. After defining the
employed inner product of two complex vector fields uA and uB as the inner product of
L2(D): (uA,uB) = ∫

D(u
∗
A · uB) dΩ , with ∗ denoting the complex conjugate, S is defined

by Giannetti & Luchini (2007) as

S(x) = ‖f̂ +(x)‖ ‖û+(x)‖
(f̂ +, û)

, (2.11)

where ‖.‖ represents the usual R
2 vector norm. Large values of S identify the region of

the flow where disturbance amplification and receptivity combine at their best to trigger
the instability.

2.4. Sensitivity to base-flow modifications and to steady forces
A small variation δU of the base flow leads to a variation of the complex eigenpairs
(σ, û, p̂), as discussed for the circular cylinder by Marquet et al. (2008). The variation of
the eigenvalues, δσ , and the perturbation of the base flow, δU , are linked by the following
inner product:

δσ = (∇Uσ, δU), (2.12)

where ∇Uσ denotes the sensitivity of σ to base-flow modifications. Similarly, variations
of the growth rate δλ and frequency δω may be expressed as

δλ = (∇Uλ, δU), δω = (∇Uω, δU), (2.13a,b)

where ∇Uλ and ∇Uω denote the corresponding sensitivities:

∇Uλ = Re{∇Uσ }, ∇Uω = −Im{∇Uσ }. (2.14a,b)

As described by Marquet et al. (2008), ∇Uσ is linked with the direct and adjoint
eigenmodes by

∇Uσ = −(∇û)H · f̂ ++∇f̂ + · û∗∫
Ω

û∗ · f̂ +dΩ
, (2.15)

where the superscript H designates the transconjugate.
Once again, large values of |∇Uλ| and |∇Uω| identify regions in the flow where λ or

ω are most sensitive to a modification δU of the base flow. Unlike the sensitivity S, these
quantities are vector fields, therefore providing directional information too.
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Analogously, an eigenvalue σ may be viewed as a function of a steady force F . A small
variation δF of the steady force F induces a variation δU of the base flow. The variation
δσ can be linked to δF via

δσ = (∇Fσ, δF ), (2.16)
where ∇Fσ is the sensitivity to a modification of the steady force and, as before,

∇Fλ = Re{∇Fσ }, ∇Fω = −Im{∇Fσ }. (2.17a,b)
Marquet et al. (2008) demonstrate that ∇Fσ equals the adjoint base-flow velocity.

2.5. Numerical details
The base flow is obtained by solving the two-dimensional version of the steady
Navier–Stokes equations (2.1) using the Newton algorithm. The spatial discretisation
is based on a finite-element formulation using quadratic elements (P2) for the velocity
and linear elements (P1) for the pressure. This numerical method is implemented in the
non-commercial software FreeFem++ (Hecht 2012). A symmetric mesh with respect to
the x axis has been used for all the configurations to avoid introducing asymmetries in the
flow. The size and the spatial distribution of the triangles has been chosen to properly refine
the mesh around the cylinders and in the wake. The number of triangles changes with the
mesh and therefore with AR, and ranges from a minimum of approximately 40 × 103 to
a maximum of 60 × 103. The eigenvalue problem (2.7) is then solved with the Arnoldi
iterative algorithm by calling the ARPACK package (Lehoucq, Sorensen & Yang 1998).
When a single eigenvalue is required, a simple shift-and-invert method (Saad 2011) is used.

The computational domain used in the present analysis changes with the aspect ratio
of the rectangular cylinders. For AR � 5 the domain extends for −25D � x � 50D
in the streamwise direction and for −20D � y � 20D in the cross-stream direction
corresponding to a size of (Lx, Ly) = (75D, 40D), whereas for larger AR it is enlarged up
to (Lx, Ly) = (100D, 60D) extending from −25D � x � 75D and −30D � y � 30D in
the two directions; the rectangular cylinder is placed at 0 � x � L and −D/2 � y � D/2.

We have validated the results by varying both the grid resolution and the domain size.
The tests reported in the Appendix (A) confirm the reliability of the present results.

3. Rectangular cylinders with sharp corners

3.1. Base flow
The base flows are very similar over the whole range of considered AR. In figure 2,
the spatial distribution of the vorticity ωz = ∂V/∂x − ∂U/∂y is plotted, which is
antisymmetric with respect to the centreline y = 0, and presents its largest values near the
upstream corners of the cylinder. As an example, the base flows for AR = 3 and AR = 6 are
shown in figure 2 at a Reynolds number corresponding to the first onset of the instability,
i.e. Re = 78.3 and Re = 107.6, as discussed later. In both cases, two shear layers detach
from the corners, one on the upper side, and one on the lower side, with vorticity of
opposite sign. These shear layers delimit a symmetric separation bubble after the body
tail. However, for the larger AR = 6, a second, smaller recirculation bubble appears just
downstream of the LE of the cylinder: the separated flow reattaches on the cylinder walls,
before separating again at the TE. As indicated in figure 2(c), the secondary bubble only
appears for AR � 6, and its size increases with AR. In contrast, the length of the main
separation bubble downstream of the TE does not depend monotonically on AR. Indeed,
as shown in figure 2(d), the length generally decreases with AR but presents a localised
increase in the range 1 � AR � 2.
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Figure 2. (a,b) Base flow for AR = 3 at Re = 78.31 (a) and for AR = 6 at Re = 107.6, with the zoom on the
upstream separated region in the inset in panel (b). Streamlines are shown on top of a vorticity map; the dashed
line denotes U = 0. (c,d) Streamwise coordinate xr of the reattachment point (c) and length lr of the main
recirculating bubble (d) as a function of AR, measured at the Reynolds number corresponding to the first onset
of the instability. The inset in panel (d) shows a zoom of lr for 0.25 � AR � 2.5; the different lines highlight
the effect of rounding the TE corner: they refer to the sharp configuration (red), D/R = 8 (blue), D/R = 4
(grey) and D/R = 2 (green), respectively, where R is the radius of curvature of the rounded corner.

3.2. Global modes
The global stability of the base flow is studied by looking for the leading global mode
{û, p̂}, i.e. the global mode with the largest growth rate λ. Figure 3(a) plots the evolution
with AR of the critical Reynolds number Rec of the primary instability, i.e. the Reynolds
number at which the growth rate crosses the real axis; Figure 3(b) plots the corresponding
frequency fs = ω/2π. Numerical values are also reported in table 1.

For AR = 1, the flow is stable at Re = 44.5 and unstable at Re = 44.6, with Rec = 44.56
resulting by linear interpolation to obtain λ = 0. This is in good agreement with existing
results for the square cylinder. Yoon, Yang & Choi (2010) and Saha et al. (2000) found
Rec = 45, Sohankar et al. (1998) determine Rec = 47 ± 2, Park & Yang (2016) with
Rec = 44.7 and Jiang & Cheng (2018) report Rec = 46. Moreover, figure 3(a) shows that
increasing AR immediately leads to a more stable flow, i.e. a flow with larger Rec. The
increase of Rec with AR is quick at first, but the sensitivity of Rec to AR decreases as AR
is increased. The frequency fs does not show a monotonic trend: it generally decreases
with AR, but it increases for 1 � AR � 3.5, hence presenting a local minimum at AR = 1
and the absolute maximum at AR = 3.5. The dependence of fs on AR recalls that of the
size of the main recirculating bubble (see figure 2d) only incidentally, since the change
in slope occurs for different AR in the two cases. Additional information is found in
figure 3(c), where the growth rate λ is plotted as a function of the Reynolds number for
AR = 1, 2, 3, 4, 5. The slope of the curve λ(Re) decreases by increasing AR, including
when Re → Rec. This implies that, as AR is increased, the rectangular cylinder becomes
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Figure 3. Effect of AR on the primary instability. (a) Dependence of Rec and R̂ec = (|Umin|lr/ν)c on AR. The
dependence of fs on AR is shown in panel (b) with an inset showing a close-up. Panel (c) shows the λ(Re) curve
for AR = 1, 2, 3, 4, 5.

AR 0.25 0.5 0.75 1 1.5 2 2.5 3 3.5
Rec 34.80 37.44 40.65 44.56 53.80 63.20 71.41 78.31 84.17
fs 0.1061 0.1058 0.1050 0.1045 0.1049 0.1063 0.1075 0.1083 0.1085

AR 4 4.5 5 6 8 10 15 20 30
Rec 89.35 94.16 98.79 107.5 117.49 123.40 131.99 137.12 138.99
fs 0.1083 0.1080 0.1076 0.1070 0.1059 0.1022 0.0941 0.0908 0.0821

Table 1. Critical Reynolds number Rec of the primary instability and corresponding frequency fs for
rectangular cylinders with 0.25 � AR � 30.

less sensitive to a variation of the Reynolds number, as long as the primary instability is
considered.

The increase of Rec with AR is associated with the progressive diffusion of the shear
layers that separate from the LE corners. Indeed, owing to viscous diffusion, the two
shear layers that produce the instability become thicker in the instability region as AR
is increased, since the pockets of instability positioned on the two sides of the separation
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bubble move downstream with respect to the LE where the shear layers are produced, as
reported later in this article. This is confirmed by a progressive reduction of the minimum
reverse-flow speed within the separation bubble. Since the reverse-flow speed has a strong
impact on the growth rate of the unstable mode (Hammond & Redekopp 1997), the
instability mechanism becomes less intense as AR increases, and the critical Reynolds
number progressively increases. For AR > 2, the same phenomenon (i.e. the increasing
diffusion of the separated shear layers) is responsible for a reduction of the length of the
separation bubble, see figure 2(d). The non-monotonic behaviour of lr comes from the
interaction of the fore region of the shear layer separating from the LE with the aft corners
for low AR. By plotting the pressure over a line slightly above or below the rectangle,
a negative pressure peak is visible in the position of the aft corners (not shown here
for brevity). For AR < 2 the pressure peak interacts with the fore portion of the shear
layer which faces a strong adverse pressure gradient, while for AR > 2 it interacts with
the aft part of the shear layer. This hypothesis is confirmed by the fact that rounding
the TE corners progressively eliminates the non-monotonic behaviour, as shown in the
inset of figure 2(d). The minimum speed in the recirculation bubble and its length are
the most important scales in the instability phenomenon. The former directly impacts the
local amplification of the unstable wave packets, while the second one dictates the spatial
extent of the absolute instability (Chomaz 2005), thus affecting the global stability of
the flow. This observation is confirmed by considering the Reynolds number defined as
R̂e = |Umin|lr/ν and plotting its critical value R̂ec(AR). Figure 3(a) shows that the relative
variation of R̂ec(AR) is smaller by an order of magnitude with respect to that of Rec(AR).
This scaling is not perfect, as R̂ec should be ideally constant with AR in this case, but
is far more accurate than that based on the cylinder thickness D and on the free stream
velocity U∞. For sufficiently large AR, the same phenomenon leads the frequency of the
instability to decrease, as observed in figure 3(b), since the length scale of the instability
increases and the flow speed decreases. The non-monotonic behaviour observed for small
AR, however, seems not related to the interaction of the main shear layers with the TE
corners, since it is insensitive to rounding the TE corners; its origin remains elusive.

The spatial shape of the leading unstable global mode remains qualitatively similar
across the considered aspect ratios. In figure 4 the mode computed for AR = 6 and
Re = Rec = 107.5 is shown as an example. For all the considered AR, the leading
global mode propagates downstream and is antisymmetric, as for the circular cylinder
(Marquet et al. 2008). The y-averaged perturbation energy grows spatially downstream,
reaching a maximum, for example, at x ∼ 38, 48, 48, 49 for AR = 1, 2, 3, 5, respectively.
Although the position of the maximum approaches the outlet for AR = 3, 5, the results
are independent from the length of the computational domain, as shown in the Appendix
(A) where the independence of the results on both the grid resolution and domain size for
AR = 5 is demonstrated; see also Giannetti & Luchini (2007), where the dependence of
the leading global mode on the domain length is investigated.

The adjoint ( f̂ +,m+) of the leading global mode for AR = 6 and Re = 107.5 is
shown in figure 5. Like the direct modes, the adjoint modes are antisymmetric. They
show spatial oscillations upstream of the rectangular cylinder; the same was observed
for the adjoint modes for the circular cylinder (Marquet et al. 2008). Unlike û, the
largest magnitude of f̂ + is reached very close to the downstream corners, for example
at (x, y) = (1.05, 0, 6), (2.02, 0.6), (3.07, 0.6), (5.03, 0.6) for AR = 1, 2, 3, 5, and it is
almost null at a distance downstream from TE which depends on AR (e.g. for AR = 6,
f̂ + is negligible for x > 10 as shown in figure 5). The different localisation of the direct
and adjoint global modes (downstream for the former and upstream for the latter) results
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Figure 4. Real part of the direct eigenmode for AR = 6 and Re = 107.5.

from the opposite transport of perturbations by the base flow in the direct and adjoint
operators (Chomaz 2005).

3.3. Structural sensitivity
Figure 6 shows the structural sensitivity S for rectangular cylinders with AR = 1 and AR =
6, as representative of the overall range of AR considered. The sensitivity S identifies the
region of the flow where generic structural modifications of the stability problem produce
the strongest drift of the leading eigenvalue; the so-called wave-maker region. The spatial
distribution of S for the square cylinder resembles that of the circular cylinder described by
Giannetti & Luchini (2007), with the largest values occurring in two lobes symmetrically
located across the separation bubble, indicated by the green dashed line in the figure.
Everywhere else in the flow domain, as for the circular cylinder, the product of the adjoint
and direct modes is small. Therefore, the core of the primary instability for non-elongated
bodies is located just downstream, near the end of the recirculating region. The small
recirculation that arises near the upstream corners for larger AR is not involved in the
primary instability, since S remains negligible there. However, when AR is increased, the
lobes with the largest S shift farther downstream, and tend to only affect the area outside
the recirculating region. The distribution of S explains how the chosen streamwise length
of the computational domain is enough to capture the instability dynamics (see Giannetti
& Luchini 2007).
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Figure 5. Real part of the adjoint eigenmode for AR = 6 and Re = 107.5.
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Figure 6. Structural sensitivity with AR = 1 at Re = 44.6 (a) and AR = 6 at Re = 107.5 (b). The green dashed
line denotes the streamlines drawn for zero stream function, ψ(x, y) = 0, and delimit the separated region or
coincide with the symmetry axis. The blue dashed line corresponds to U = 0 and marks the extent of the
reverse-flow region.

3.4. Sensitivity to base-flow modifications
Figures 7 and 8 report the growth rate sensitivity ∇Uλ and the frequency sensitivity ∇Uω
for rectangular cylinders with AR = 0.25, 1, 5, 6 at their critical Reynolds number Rec.
They represent the complete range of AR studied in this work. Both ∇Uλ and ∇Uω are
two-dimensional real vector fields: their field lines provide the local orientation of the
sensitivity field, whereas their magnitude provides its intensity.
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Figure 7. Here ∇Uλ: absolute value and field lines with AR = 0.25 at Re = 37.8 (a); AR = 1 at Re = 44.6
(b); AR = 5 at Re = 98.8 (c); AR = 6 at Re = 107.5 (d). The dashed lines are as in figure 6.
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Figure 8. Here ∇Uω with panels as in figure 7.

Let us first focus on ∇Uλ in figure 7. First, we observe that ∇Uλ always vanishes far
from the cylinder, owing to the spatial segregation of the direct and adjoint modes, and
for AR > 3, it becomes negligible also on the horizontal sides of the cylinder. Also ∇Uλ
strongly depends on the aspect ratio: at small AR, it is qualitatively similar to the results
found for the circular cylinder by Marquet et al. (2008), but for larger AR qualitative
changes are observed. For AR = 0.25, the largest values of |∇Uλ| are observed close to the
TE corners, and within the reverse-flow region, with a maximum placed on the centreline
at x = 0.976. For AR = 1, the sensitivity in the reverse-flow region becomes stronger. The
peak is shifted downstream at x = 3.60. Interestingly, for this AR, two additional regions of
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large sensitivity appear in the separation bubble, starting from the rear corners, just outside
the reverse-flow region. At larger AR the picture changes again. As shown in figure 7(b,d)
for AR = 5 and AR = 6, the sensitivity decreases in the core of the reverse-flow region
dropping almost to zero for AR = 5. The largest values are instead observed in four lobes
placed symmetrically with respect to the y = 0 axis. For AR = 5, the first pair of lobes
is placed just outside the reverse-flow region whereas the other pair is placed inside it.
The first pair moves just outside the recirculation bubble for AR = 6, while the second
pair moves downstream. Quantitatively, the sensitivity maximum is placed at the end
of the separation bubble, i.e. at (x, y) ≈ (8.03, 0) for AR = 5 and (x, y) ≈ (9.01, 0) for
AR = 6, confirming that at large AR the largest changes of λ are observed for base-flow
modifications occurring in the separation bubble or just downstream of its end.

The effect of AR is also observed on the field lines of ∇Uλ. Indeed, at the lower aspect
ratios, AR = 0.25 and AR = 1, similarly to what is observed for the circular cylinder,
the field lines in the reverse-flow region are directed upstream. Therefore, increasing the
reverse flow will enhance the instability. This makes sense, since a stronger reverse flow
increases the instability feed-back. The instability is also enhanced by a thinner separation
bubble. For larger AR, instead, in the portion of the reverse-flow region that is near to the
cylinder, the field lines point downstream. A further difference is close to the TE corners,
where for AR � 1 the lines are directed towards y = 0 from the outer region of the flow,
whereas for larger AR they switch direction pointing from the centreline outwards. This
provides evidence that the same base flow modification leads to different effects depending
on AR. For example, a δU which increases the backflow velocity in the recirculating region
has a strong destabilising effect (i.e. δλ > 0) for AR � 1, but a much lower effect for larger
AR. In contrast, a base-flow modification δU > 0 in the separated region has a strong
destabilising effect for AR > 1, but an almost negligible effect for smaller AR.

Let us now observe ∇Uω in figure 8. Like ∇Uλ, it vanishes far from the cylinder, and
depends on AR. For AR = 0.25, the largest values are observed in four different regions:
just downstream of the TE, on the U = 0 line, in two lobes at the edge of the reverse-flow
region and in two other lobes outside the recirculation bubble. For AR � 1, the sensitivity
progressively decreases just behind the TE, while it increases in the other regions. The
two lobes just outside the reverse-flow region move farther with respect to the symmetry
axis, while those located outside the recirculation bubble gradually move downstream. The
field lines of ∇Uω also depend on AR. Indeed, for AR = 0.25 they are directed upstream
in the region behind the TE, where |∇Uω| is maximum, whereas for larger AR the lines
are directed downstream in the reverse-flow region. This means that a δU which increases
the backflow in this region leads to different effects depending on the aspect ratio: δω > 0
for AR = 0.25 and δω < 0 for AR � 1.

3.5. Sensitivity to a steady force
Figures 9 and 10 plot the growth rate sensitivity ∇Fλ and the frequency sensitivity ∇Fω
to a steady force for rectangular cylinders with AR = 0.25, 1, 5, 6 at their critical Reynolds
number Rec. They are representative of the complete range of AR studied in this work.

Let us first focus on the growth-rate sensitivity depicted in figure 9. For low aspect
ratios (AR = 0.25, 1), |∇Fλ| is largest near the rear corners and in the reverse-flow region.
For AR = 0.25, two further lobes are barely visible outside the recirculation bubble; by
increasing AR they first disappear, then reappear with slightly larger intensity. Near the
rear corners the sensitivity is still strong, while it decreases substantially on the symmetry
axis in the reverse-flow region becoming stronger on its boundary near the U = 0 line.
Interestingly, unlike |∇Uλ|, |∇Fλ| is non-negligible on the top and bottom sides of the
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Figure 9. Here ∇Fλ with panels as in figure 7.
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Figure 10. Here ∇Fω with panels as in figure 7.

cylinder up to the LE, especially at the lower AR. This suggests that a localised steady force
applied on the top/bottom of the cylinders may be effective in altering the flow stability.

The field lines of ∇Fλ are directed upstream in the recirculation region, and have an
elliptical shape outside the separated region. For large AR, a second region with lines
directed upstream appear above the separated region. Moreover, along the top and bottom
edges of the cylinder with AR � 5 the lines are directed upstream rotating anticlockwise
close to the LE corners, implying that here a localised steady force may have a stabilising
or destabilising effect depending on the distance from the cylinder wall.

The sensitivity ∇Fω, plotted in figure 10, shows a stronger dependence on AR. It is
consistently large close to the TE corners and within the reverse-flow region, with the
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field lines directed downstream for all AR. For AR � 5, the field lines locally switch
direction and direct upstream in the region just outside the separation bubble where,
however, the sensitivity is low. It is quite large along the sides of the rectangle, at a distance
which slightly grows with AR, and for AR � 1 outside the recirculation bubble, with the
maximum value reached at a distance from the bubble increasing with AR.

Overall, a downstream-directed steady force applied within the reverse-flow region, or
in the region close to the TE corners, is predicted to have a stabilising effect, producing
δλ < 0 and δω > 0. On the other hand, a downstream force applied above or below the
reverse-flow region at y ≈ ±1 has a destabilising effect, producing δλ > 0 but still leading
to δω > 0. Interestingly, for AR > 3 an upstream force along the streamwise edges of the
cylinder has a stabilising effect with δλ < 0 when placed near the cylinder surface, i.e.
y0 ≈ 0.5, but a destabilising effect at larger y; this is verified below.

3.6. Passive control of the primary instability
It is known (Strykowski & Sreenivasan 1990) that a small control cylinder placed in the
wake of a bluff body can alter or even suppress vortex shedding. For the circular cylinder,
and for a Reynolds number close to Rec, they determined where the control cylinder, with
a radius one tenth of that of the main cylinder, should be placed in the flow to suppress
the shedding. Here, we extend the analysis done by Marquet et al. (2008) for the circular
cylinder, and determine the optimal placement of a small control cylinder to suppress
shedding from square cylinders with different aspect ratios (AR = 0.25, 1, 2, 3, 5, 6) at
Re ≈ Rec. The presence of the control cylinder is modelled by a point source of momentum
F in the Navier–Stokes equations, applied at the centre (x0, y0) of the control cylinder.
Owing to the low Reynolds number, the wake of the control cylinder is always steady,
regardless of its placement. Hence, the control cylinder is modelled as a localised force
acting in a direction opposite with respect to that of the base flow, with modulus
proportional to the square of the base-flow speed,

δF (x) = −αUU δ(x − x0), (3.1)

with 0 < α 
 1. The resulting changes in growth rate and frequency are written as

δλ = −αU∇Fλ · U,

δω = −αU∇Fω · U .

}
(3.2)

Since Re ≈ Rec and the flow is marginally stable, i.e. λ ≈ 0, δλ < 0 implies a stabilisation
of the flow.

Figure 11 shows how the normalised growth-rate change δλ/α varies with the location
of the control cylinder. For every AR, putting a control cylinder in the region just outside
the shear layer separating from the LE corners, and down to the TE corners of the
rectangle, has a destabilising effect, i.e. δλ > 0, whereas a cylinder inserted just outside
the separation bubble has a stabilising effect. For AR � 3 a second destabilising region
emerges, located outside the stabilising one near the separation bubble, and connects with
the other destabilising region for AR � 5. This new destabilising region ensues because of
the field lines of ∇Fλ, which for such aspect ratios are directed upstream in this region.
For the largest aspect ratio, a thin stabilising region emerges in the shear layer separating
from the LE corners.

The normalised frequency change δω/α due to a control cylinder is shown in figure 12
for the same AR and Re considered in figure 11. The main effect of the control cylinder,
for every AR, is to decrease the frequency of the instability. The most sensitive region is
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Figure 11. Variations of the growth rate δλ/α as a function of the position of the control force (3.2), for
different values of AR. For the symbols in panel (e) see § 3.6.1.

near the LE corners. The sensitivity decreases moving downstream. A slight increase in
the frequency can be obtained by inserting the control cylinder far from the symmetry
axis, in the outer region for y ≈ 1.9 and x corresponding to the separation bubble, or just
outside it, but only for AR � 5. Again, differences between these regions are explained by
the different direction of the field lines of ∇Fω.

These results are useful for a deeper understanding of the instability mechanism. We
first observe that the control cylinder always introduces a viscous drag force, opposed to
the base flow. Therefore, it is most effective in the high-speed regions, and this is why the
largest effects of the control cylinder are observed above and below the cylinder, in the
high-speed region, while it is marginal in the separation bubble. The control cylinder acts
by reducing the speed locally while increasing it in the surrounding region by the blockage
effect. Concerning the growth rate of the instability, we notice that the control cylinder
stabilises the flow when placed just outside the recirculation bubble. Reducing the flow
speed here reduces the amplification mechanism of the shear layer, thus leading to a more
stable flow. The blockage effect is probably the reason why the control cylinder enhances
the instability when placed in the regions above and below the rectangle. We observe that
the positive and negative sensitivity regions are adjacent to each other, thus suggesting
that the underlying mechanism in both regions is the decrease/increase of the shear-layer
intensity. The cylinder can act either directly, by reducing the flow speed, or indirectly,
by enhancing the flow speed through blockage. For what concerns the frequency of the
instability, the control cylinder seems to act reducing the speed in the high-speed region of
the base flow. A simple dimensional analysis indicates that this leads to a corresponding
reduction in the instability frequency.
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Figure 12. Variations of the frequency δω/α as a function of the position of the control force (3.2). Results
are computed at Rec for AR = 0.25 (a), AR = 1 (b), AR = 2 (c), AR = 3 (d), AR = 5 (e), AR = 6 ( f ). For the
symbols in panel (e) see § 3.6.1.

3.6.1. Passive control via a control cylinder
The validity of such results is additionally checked by a linear stability analysis, for AR = 5
and Re = Rec = 98.8, in which an actual control cylinder of circular cross-section and
very small diameter d = D/100 is placed in the flow. A set of seven significant positions
for the control cylinder is chosen, as shown in figures 11(e) and 12(e).

As summarised in table 2, the results of the force-based analysis above have been
confirmed for six of the seven points considered, i.e. c1 − c6. Indeed, both the growth
rate and the frequency change in the same direction predicted by the linear stability
analysis. Note, moreover, that this analysis confirms the prediction of the positions that
yield the largest changes of both the growth rate and the frequency. Indeed the largest δλ
and δω are found for the control cylinder c1 that is placed in the shear layer close to the
upstream corner, where the force-based sensitivity predicts the largest values of both δλ/α
and δω/α. Point c7, with coordinates (x, y) = (7.05, 1.18), is the sole position where a
stabilising effect (albeit very small) is computed, but a destabilising effect was predicted
by the force-based sensitivity. However, this may be due to nonlinear effects owing to the
finite diameter of the control cylinder.

To verify the working mechanism of the control cylinder explained before, we
compare the unperturbed base flow with the perturbed base flows computed for two
different positions of the control cylinder, one stabilising (c5) and one destabilising
(c2). Two small symmetric cylinders with diameter d = D/100 have been used in both
controlled cases to preserve the symmetry of the flow and to facilitate the analysis.
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c1 c2 c3 c4 c5 c6 c7

(xc, yc) (1, 0.9) (4.579, 0.79) (4.632, 1.502) (4.649, 1.068) (6, 0.9) (7.5, 1.98) (7.05, 1.18)
δλ 0.233 0.0330 0.0019 −0.0418 −0.0463 −0.0193 −0.0299
δω −0.1144 −0.0527 −0.0274 −0.0281 −0.0448 0.0175 −0.0043

Table 2. Variations of the growth rate δλ and of the frequency δω for AR = 5 and Rec = 98.8 when a circular
control cylinder with diameter d = D/100 is placed in the flow. Seven significant positions (xc, yc) are chosen
as shown in figures 11(e) and 12(e).

0
3 4 5 6 7 8 9 10

0.5

1.0

y

0
3 4 5 6 7 8 9 10

0.5

(c2)

1.0

y

0
3 4 5 6 7 8 9 10

0.5

(c5)

1.0

y

x

(b)

(a)

(c)

Figure 13. Base flow for AR = 5 and Rec = 98.8 with and without a circular control cylinder with diameter
d = D/100 placed in the flow. The blue-to-red symmetric map is for U and the dashed line denotes U = 0.
Here: (a) no control cylinder; (b) case c2 in table 2, with the control cylinder placed at (xc, yc) = (4.579, 0.79);
(c) case c5 in table 2 with the control cylinder placed at (xc, yc) = (6, 0.9).

Comparing the panels in figure 13, we observe that the stabilising cylinder perturbs the
base flow by decreasing the flow speed in the high speed region that drives the shear
layer, thus reducing the shear layer intensity and the instability, as explained before. The
destabilising cylinder, in contrast, reduces the flow speed near the cylinder and, by its
blockage, enhances the flow speed in the high-speed region, leading to an increase of
the shear-layer intensity and to a more unstable flow. It is worth noting that consistent
with the previous discussions, in the destabilising case (c2) the presence of the control
cylinder leads to an increase of both the length of the recirculating bubble lr and the
minimum negative velocity |Umin|, resulting in a larger R̂ec, while the opposite occurs in
the stabilising case (c5).

4. Rectangular cylinders with rounded corners

For the sole aspect ratio AR = 1, Park & Yang (2016) have studied the primary instability
when the LE and TE of a square cylinder are rounded, with a radius of curvature R. They
found that Rec has a non-monotonic dependence on the parameter D/R. The most stable
configuration was found at D/R = 4. The goal of this section is to expand their study to
elucidate the effect of the radius of curvature on the primary instability at different AR.
The following values of D/R have been considered: D/R = 2, 4, 8, 16, 32, 64, 128. It is
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Figure 14. Dependence of Rec on D/R at various AR. The dashed horizontal line corresponding to sharp
corners. The black and red lines indicate rounded corners at the TE and LE, respectively, while for the blue
line all corners are rounded.

worth noting that D/R = 2 denotes a cylinder with a semicircle at the LE and/or TE and
D/R = ∞ is the limit of sharp corners. This justifies the asymptotic behaviour of figures 14
and 15.

929 A36-20

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ol
ite

cn
ic

o 
di

 M
ila

no
, o

n 
02

 N
ov

 2
02

1 
at

 1
8:

07
:4

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.819


Stability of the steady flow past rectangular cylinders

(e)

(b)(a)

(c) (d )

( f )

(g) (h)

0.111

0.110

0.109

0.108

0.107

0.106

0 50

fs

fs

fs

fs

100

AR = 0.25
0.115

0.105

0.110

0 50 100

AR = 0.5

0.115

0.110

0.105

0 50 100

AR = 1

0.114

0.116

0.106

0.112

0.108

0.110

0 50 100

AR = 2

0.115

0.120

0.110

0 50 100

AR = 3
0.120

0.110

0.115

0 50 100

AR = 4

0.116

0.118

0.114

0.112

0.110

0.106

0.108

0 50

D/R D/R
100

AR = 5
0.114

0.112

0.108

0.106

0.104

0.110

0 50 100

AR = 8

TE

TE + LE

D/R = ∞

LE

Figure 15. Dependence of fs of the unstable eigenvalue at Rec on D/R. Lines and symbols as in figure 14.

In figures 14 and 15, the dependence of Rec and fs on D/R is shown for AR =
0.25, 0.5, 1, 2, 3, 4, 5, 8. Rounding the LE corners only (red lines in the figure) produces
effects which change across the observed aspect ratios. For AR < 1, rounding has
a stabilising effect that decreases with D/R. We notice, however, that the largest
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Figure 16. Qualitative description of the stabilising/destabilising effect of the LE (a) and TE (b) rounding for
0.25 � AR � 8 and 2 � D/R � 128. Green circles indicate stabilising configurations, while red circles the
destabilising ones.

curvature radii are not considered in the cases with AR = 0.25, 0.5. For 1 < AR � 3,
a non-monotonic dependence of Rec on D/R is observed. At AR = 1, rounding has a
stabilising effect for all the D/R with the maximum Rec occurring at D/R = 4. For
intermediate aspect ratios, i.e. AR = 2, 3, the effect can be stabilising or destabilising
depending on D/R, with destabilisation occurring for very small D/R, whereas marginal
stabilisation occurs for D/R � 4. By increasing the aspect ratio, the peak becomes less
prominent and slightly shifted towards larger D/R. Finally, for AR � 5, LE rounding
has a destabilising effect for all the D/R, with the most destabilising configuration
corresponding to D/R = 2.

When the TE corners are rounded (black lines in the figure), a different scenario arises.
For AR � 2, rounding the LE corners has a stabilising effect for all the D/R, with the most
stable configuration corresponding to the largest rounding radius. For AR � 1, instead,
rounding has a destabilising effect for sufficiently large curvature radii and stabilising
otherwise. The maximum stabilising effect is observed at D/R = 8 for AR = 1 and higher
for AR = 0.5 and 0.25. The crossover point, where Rec does not change, is shifted towards
smaller D/R as AR increases, up to a point where rounding the TE is always stabilising.
Rounding the TE has a larger effect on Rec than rounding the LE for AR � 2. This
is consistent with the structural sensitivities, that show that the leading eigenvalue is
more sensitive to flow modifications occurring in the wake region and less sensitive to
modifications occurring close to the LE when AR is large enough. In contrast, for small
AR, the effect of rounding the LE is found to dominate. Figure 16 qualitatively summarises
the stabilising/destabilising effects of the LE and TE rounding, shown by green/red
circles.

Finally, when both LE and TE corners are rounded (LE + TE, blue lines in the
figure), a stabilising effect is consistently observed for all AR and D/R. However, some
differences among the considered aspect ratios can be observed. Indeed, as found by Park
& Yang (2016), for AR = 1, Rec has a non-monotonic dependence on D/R, with the most
stabilising configuration corresponding to D/R = 4. For AR < 1 and AR > 1, instead, a
monotonic (decreasing) dependence is recovered. Interestingly, due to nonlinearity, the
effect of LE and TE rounding is not additive: for instance, at AR = 3 LE rounding
is destabilising, TE rounding is stabilising, but rounding both is more stabilising than
rounding the TE alone.
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Stability of the steady flow past rectangular cylinders

The effect of the rounded corner on the frequency fs of the leading eigenvalue is
shown in figure 15, and is qualitatively the same at every AR. Indeed, fs is consistently
increased by rounding the corners. For every AR, the largest drift is observed in the LE+TE
configuration. When either LE or TE are considered, LE produces dominant changes for
small AR, but when AR > 4 the opposite occurs, and TE rounding leads to the largest
effects.

The changes of λ (or equivalently of Rec) and fs observed for the rounded-corner
configurations can be associated with the sensitivities to base-flow modifications ∇Uλ
and ∇Uω shown in § 3.4. In this analysis, AR = 1, 2, 3, 5 and 8 have been examined,
with D/R = 2, 16 and 32. The sensitivity results match the physical observations for all
cases, with the exception of the low aspect ratios AR � 3 with the smallest D/R = 2.
In this region of the parameter space, indeed, the modification of the base flow cannot
be considered a small perturbation. Therefore, the linearised theory is no longer accurate
enough, and second-order sensitivities should be considered. In the following, the cases
with AR = 3 at Re = 78.4 and AR = 8 at Re = 107.5 are considered as an example,
investigating the changes produced in the eigenvalues by rounding the TE or LE corners
with D/R = 16. These values of AR and D/R have been chosen because of the significant
changes in λ and ω. Moreover, this choice enables us to compare two cases that have
different behaviours with respect to an intermediate value of the LE radius, with stabilising
effect for AR < 5 and destabilising elsewhere, see figure 14.

In figure 17, the configuration with rounded LE corners is considered. Panels (a,b,e, f )
report the base-flow modifications δU (figure 17a) and δV (figure 17b) due to rounding
the LE corners and the normalised quantities δλ/|δλ|max (figure 17c) and δω/|δω|max
(figure 17d), computed in the sharp-corner configuration for AR = 3. In the same figure,
panels (c,d,g,h) show the same information for AR = 8. Here δλ and δω are defined as

δλ(x, y) = ∇Uλ(x, y) · δU(x, y),

δω(x, y) = ∇Uω(x, y) · δU(x, y).

}
(4.1)

Rounding the LE corners leads to an increase of the streamwise velocity component,
δU > 0, upstream of the cylinder and in the separated region that originates at the LE;
δV is antisymmetrical with respect to the y axis, it is positive just upstream of the LE top
corner, and becomes negative in the separated region. Although not visible in the figure,
rounding the LE corners affects the base flow downstream of the cylinder too, with a
slightly stronger backflow in the reverse-flow region, δU < 0. For AR � 4, however, an
increase of the streamwise velocity is observed at the end of the reverse-flow region,
δU > 0. This difference is due to the fact that the accelerated shear layers separating
from the LE affect the region behind the cylinder farther downstream as AR is increased,
owing to their interaction with the TE corner. It is worth reporting that the portion
of the reverse-flow region with δU > 0 increases for the smallest AR. Overall, these
changes of δU lead to variations of λ that depend on the considered flow region. For
the present cases, a tiny region with δλ > 0 is observed just upstream of the LE corners,
with a region of opposite sign just downstream. Notably, the largest changes of δλ take
place downstream of the cylinder. These regions with δλ > 0 are located outside the
separation bubble. This area is surrounded by zones of negative δλ, both inside the
separation bubble and far from it. Although changes of the base flow are quite small
behind the cylinder, the expected variation δλ is not negligible because ∇Uλ is large there.
Due to the different sign observed at the end of the reverse-flow region and immediately
downstream for δU for the two AR, as described above, δλ assumes large negative
values in this region for AR = 3, while positive or slightly negative values for AR = 8.
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Figure 17. Effect of rounding the LE corners with D/R = 16 for AR = 3 at Re = 78.4 (a–d) and for AR = 8 at
Re = 117.5 (e–h), plotted over the sharp-corner geometry. The panels of each group are organised as follows:
(a,b,e, f ) base flow modifications δU (a,e) and δV (b, f ); (c,d,g,h) δλ = ∇Uλ · δU (c,g) and δω = ∇Uω · δU
(d,h). The black dashed line indicates U = 0.

Consistently with δU, the area with negative δλ at the end of the reverse-flow region
increases as AR is reduced.

The variations δλ assume both signs in the domain. Notably, this is in accordance with
the prediction of the stability analysis, which suggests a globally stabilising effect for AR =
3 and a globally destabilising effect for AR = 8. Indeed, by taking the volume integral of
the changes δλ over the computational domain Ω ,

�λ =
∫
Ω

δλ dΩ, (4.2)

�λ < 0 is obtained for AR = 3 and �λ > 0 for AR = 8. This holds true also for the other
AR and intermediate D/R, with �λ < 0 for AR � 4 and �λ > 0 for AR � 5. Hence, for
the largest AR, the destabilising effect associated with rounding the LE corners is mainly
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Stability of the steady flow past rectangular cylinders

due to the flow acceleration δU occurring outside the separation bubble downstream of
the TE and to the acceleration of the LE shear layers close to the upstream corners.
An explanation is that increasing the velocity outside the separation bubble increases the
vorticity in the shear layers, with a consequent destabilising effect. For the smallest AR,
instead, the same rounding has a stabilising effect due to the positive δU at the end of the
reverse-flow region and immediately downstream.

Changes of δω are also symmetric with respect to y = 0, and are mainly observed in
two different regions of the flow: near the LE corners and outside the separation bubble,
in the rear end of the cylinder. Above the top LE corner, there is a small region of positive
values surrounded by a larger negative area that marks the LE separation. The most
evident changes are again downstream, with relatively large regions with δω of either sign
flanking the border of the separation bubble. As for δλ, the differences between the two AR
considered is associated with the different δU at the end of the reverse-flow region. Here,
δω is positive for AR = 3 and negative for AR = 8. Also, the integral of these changes
confirms the linear stability analysis, as for both AR,

�ω =
∫
Ω

δω dΩ > 0. (4.3)

However, the integral is larger for AR = 3 than for AR = 8, owing to the positive
contribution of the reverse-flow region; this is consistent with the results of the linear
stability analysis, predicting smaller δω as AR increases, see figure 15.

Figure 18 is structured as figure 17, but the TE corners are rounded in this case, with
a stabilising effect. The base-flow modifications are smaller with respect to the previous
case and propagate up to the LE. In particular, δU > 0 has its maximum close to the
TE corners, but its value is not negligible in a large area, especially near the cylinder
sides and in the wake. Now δV , in contrast, is quite localised at the LE and TE corners.
Small AR feature a lower δU > 0 in the reverse-flow region and in general over the y = 0
line. As above, this is due to the different interaction between the LE shear layer and the
TE corners. Unlike the previous case, however, significant δλ and δω are only observed
downstream. A thick region with δλ < 0 is seen close to the U = 0 line starting from the
TE corners, whereas δλ > 0 is flanking it, in the reverse-flow region and in the external
region. For AR = 8 this region of negative δλ has larger intensity, due to the larger δU > 0.
The integral of these changes leads to�λ < 0 for both AR considered, as confirmed by the
linear stability analysis. The larger negative δλ over the U = 0 line leads to a more negative
�λ for AR = 8, consistently with what shown in figure 14. Differently, for both AR, an
area with large δω > 0 is observed in the reverse-flow and external regions, separated by
δω < 0. Overall, �ω is positive, confirming once again the result of the linear stability
analysis. This indicates that the stabilising effect associated with rounding the TE corners
is due to δU > 0 occurring close to the rear corners and to the U = 0 line delimiting the
reverse-flow region; the increased value of the frequency is associated with the reduced
backflow occurring in the same region, and to the δU > 0 in the outer region downstream
of the cylinder.

The stabilising/destabilising effect of rounding the corners is consistent with the changes
of R̂ec. Again, we refer to the above considered cases for AR = 3 and AR = 8 with D/R =
64. For AR = 3 the LE rounding results in a stabilising effect and, therefore, to a decrease
of R̂ec. In this case |Umin| slightly increases as witnessed by the negative δU < 0 within
the reverse-flow region, and the decrease of R̂ec is due to the decrease of lr, visible in
figure 17(a) by the positive δU > 0 at the end of the reverse-flow region. For AR = 8
the LE rounding has a destabilising effect, with an increase of R̂ec. Unlike for smaller
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Figure 18. Effect of rounding the TE corners with D/R = 16 for AR = 3 at Re = 78.4 (a–d) and for AR = 8 at
Re = 117.5 (e–h), plotted over the sharp-corner geometry. The panels of each group are organised as follows:
(a,b,e, f ) base-flow modifications δU (a,e) and δV (b, f ); (c,d,g,h) δλ = ∇Uλ · δU (c,g) and δω = ∇Uω · δU
(d,h). The black dashed line indicates U = 0.

AR, in this case the dominant effect is the slight increase of |Umin|. Indeed, lr is almost
unchanged owing to the interaction of the accelerated shear layer separating from the LE
with the TE corners. Rounding the TE corners has a stabilising effect for both AR, and R̂ec
decreases. In this case this is due to a combination of the decrease of both |Umin| and lr,
as indicated by the positive δU > 0 in the overall reverse-flow region.

5. Conclusions

The flow past rectangular cylinders is of paramount interest from both academic and
applied viewpoints, especially in the field of vortex-induced vibrations. The present work
has thoroughly investigated, for the first time, the properties of the primary instability of
the flow past rectangular cylinders as a function of the aspect ratio AR and of the rounding
of the body corners, highlighting strong qualitative and quantitative changes.
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Stability of the steady flow past rectangular cylinders

Several properties of the primary instability have been shown to depend on the
aspect ratio. The primary instability is invariably the result of a Hopf bifurcation, as
for the circular cylinder. However, the critical Reynolds number Rec is an increasing
function of the aspect ratio, starting from Rec ≈ 34.8 at very small AR, increasing to
Rec ≈ 44.5 for the square cylinder at AR = 1 and to a value of Rec ≈ 140 for AR = 30.
The instability has been fully characterised and explained through the whole range of
aspect ratios. Interestingly, the wave-maker region is always localised in two separated
lobes symmetrically placed across the separation bubble in the wake, showing that the
smaller recirculations appearing near the upstream corners for AR � 6 are not involved in
triggering the primary instability. The core of the primary instability moves downstream
by increasing AR and it only involves the area just outside the separation bubble at the
largest AR.

The aspect ratio also affects the sensitivity to base-flow modifications and to external
forcing. The sensitivity to steady forces has been used to compute the proper positioning
of a small control cylinder intended to modify the onset of the primary instability; again
a quantitative and qualitative dependence on AR is observed. For all the aspect ratios, a
control cylinder placed in the region above the shear layer that separates from the LE
corners, or downstream the TE corners, has been found to destabilise the flow; when
placed above the reverse-flow region, the control cylinder has a stabilising effect. However,
for AR > 3 an additional destabilising region has been identified outside the wake. An
explanation for the stabilising/destabilising effects has been provided.

Rounding the corners affects the primary instability in a non-trivial way that depends on
the aspect ratio and on the curvature radius R. We have extended the work of Park & Yang
(2016), who only studied a square cylinder and rounded all the corners simultaneously (i.e.
changing from a square to a circle), by considering the whole range of AR and rounding the
fore/aft corners independently. Rounding all the corners simultaneously always stabilises
the flow. However, the same does not hold true when only the LE or TE corners are
rounded. Indeed, rounding the LE corners consistently stabilises the flow for AR � 1 and
destabilises it for AR � 5. For intermediate ARs, instead, its effect strongly depends on
the curvature radius: it is destabilising for large R and stabilising for small R. In contrast,
rounding the TE corners has a stabilising effect for all AR and R, with the exception of
AR � 1 when the largest curvature radii are considered. We provided an explanation of
these phenomena, observing that such stabilising and destabilising effects are related to
the base-flow modifications with respect to the sharp-corner configuration.

Finally, we highlighted the important role of the minimum speed in the reverse flow
region and of the length of the recirculation bubble to predict the stability of the flow as a
function of AR and of the radius of curvature of the corner fillets.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Sensitivity of the results to domain size and resolution

In this section, the sensitivity of the leading eigenvalue to domain size and grid resolution
is briefly investigated. This is done by performing the stability computations for the
rectangular cylinder with AR = 5 on seven additional meshes (M1 − M7). This value of
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M0 M1 M2 M3 M4 M5 M6 M7

Ly 40D 20D 30D 50D 60D 80D 40D 40D
Lx 75D 75D 75D 75D 75D 75D 95D 75D
Rec 98.79 98.68 98.96 98.57 98.53 98.46 98.68 98.81
Im(σc) 0.676 0.710 0.685 0.673 0.670 0.669 0.676 0.676

Table 3. Variations of the critical Reynolds number Rec and frequency Im(σc) for the unstable global mode of
the rectangular cylinder with AR = 5 on seven different meshes M1 − M7, where M0 indicates the mesh used
for the stability computations in this work, M1 − M5 indicate the meshes with different cross-stream extension
Ly, M6 is the mesh with larger streamwise extension Lx of the domain and M7 is the mesh with finer grid
resolution.

the aspect ratio has been chosen as it is the most delicate, since for larger AR the domain
size is increased. Results of the sensitivity study are summarised in table 3.

Five meshes (M1 − M5) have been used to investigate the sensitivity to the cross-stream
extent of the domain, varying Ly in the range 20D � Ly � 80D. The number of triangles is
changed to maintain the resolution almost constant. The cross-stream extent of the domain
mainly affects Im(σc) as it is sensitive to the confinement effect. By increasing Ly from
20D to 80D the change of Im(σc) is approximately 4 %. For the chosen value of Ly = 40D,
Rec and Im(σc) are within 0.26 % and 0.89 % the values predicted for Ly = 60D and within
0.34 % and 1.04 % of those predicted for the largest cross-stream extension considered,
Ly = 80D. Mesh M6 has been used to investigate the sensitivity to the streamwise extent
of the domain. The position of the outlet is shifted downstream with the domain extending
−25 � x � 70, and – in this case too – the number of triangles is increased to guarantee
the same spatial resolution. With the longer domain Rec is within 0.12 % of the value
predicted by the the used mesh M0, while Im(σc) is unchanged up to the third significant
digit. Lastly, mesh M7 has been used to investigate the sensitivity to the grid resolution.
The same domain as M0 is used, but the number of triangles is increased of approximately
50 %, mainly increasing the resolution near the cylinder and in the wake region. Again both
Rec and Im(σc) are almost insensitive to this increase of the resolution as their change is,
respectively, of 0.02 % and less than 0.01 %.
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