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We introduce a new finite-difference solver for the incompressible Navier–Stokes equations 
that exploits the direction-splitting method proposed by Guermond and Minev in 2010, 
but is formulated on a co-located grid. The main ingredients of the new solver are: i) the 
direction-splitting approach adopted for both the momentum and the pressure equations; 
and ii) the co-located grid approach. The solver is parallelised by the Schur-complement 
method, and achieves very high performance levels on thousands of processors. Several 
test cases are proposed to assess the accuracy and efficiency of the method.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

As the power of supercomputers increases, new problems become tractable that were out of reach only a few years ago. 
A typical application requiring an extensive computational time is the investigation of the stability properties of 3D laminar 
flows, the so-called tri-global stability analysis [1]. For this kind of flows, the methods relying on the explicit construction of 
the tangent matrix, to be used in Newton’s method to compute the base flow and in the calculation of the direct and adjoint 
eigenvectors, are usually too expensive in terms of memory and computing time, especially when the problem at hand lacks 
symmetries that can be leveraged to reduce its computational complexity [2]. For this reason, the most common approach 
to tri-global stability analysis is based on time-dependent solvers [3–5]. Also in this case, however, the high computational 
cost of this kind of calculations severely limits the kind of problems within reach. Other interesting and expensive problems 
arise in the numerical simulation of complex fluid-structure interaction problems typical of bio-medical applications [6] or 
mixing problems in microfluidics [7].

For such calculations, spectral-element methods are often used [4,8,9]. These methods provide better geometrical flexibil-
ity while still retaining high accuracy, and scale very well on massively parallel computers. Well tested open-source solvers 
are available online, such as Nek5000 [10] or Nektar++ [11]. Unfortunately, their computational complexity is quite high, 
they are limited to relatively simple geometries and lose part of their accuracy in presence of corners or singularities in the 
domain [12]. Moreover, their efficiency can degrade quite a lot in the case of moving bodies or fluid-structure interaction 
problems. This is also the case for finite-element methods, even when XFEM or similar techniques are used to take im-
mersed bodies into account [13,14]. The fastest solvers are those based on the finite-difference discretisation [15,16], even if 
quite recently, Lattice Boltzmann Methods are joining finite differences as a fast discretisation method for the incompressible 
Navier–Stokes equations [17]. Finite differences seem to provide the best trade-off between accuracy and efficiency when 
problems with moving bodies are tackled with the immersed boundary method [18].
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Several fast finite-difference Navier–Stokes solvers have been proposed in the past. Most of them rely on fast Poisson 
solvers [19,15,16] to solve the pressure equation. Such solvers exploit a spectral decomposition of the Laplacian operator and 
Fast Fourier Transforms (FFTs) in planes — where a uniform Cartesian grid has to be used — to reduce the solution of the 
problem to a set of tridiagonal linear systems for the third direction. While this approach leads to solvers with a suboptimal 
computational complexity, since the cost of fast Poisson solvers grows at least like N3 log N , it can leverage highly optimised 
libraries for FFT [20], thus leading to very efficient solvers. However, when the number of unknowns becomes very high, as 
is the case for very demanding present and future simulations, the uniform grid and the log N term become increasingly 
penalising constraints. To obtain an optimal scalable solver, multigrid has usually been the solver of choice for the pressure 
Poisson equation [21]. Unfortunately, the multigrid method has its drawbacks: it is an iterative scheme which may require 
complicate algorithmic constructions that limit the performance with respect to fast Poisson solvers [22], and it may suffer 
from the presence of nonuniform grids if ad hoc smoothers are not employed. Quite recently, Guermond and Minev [23,24]
proposed a new fractional-step method that requires only the solution of tridiagonal linear systems in solving for both 
the velocity and the pressure. This method actually extends the use of direction splitting [25], similar to ADI [26], to the 
pressure step, thus improving the efficiency and scalability of the solver. Since the method is direct, neither iterations nor 
special data structures are necessary. Moreover, using the Schur-complement method [27–29], high levels of parallelism can 
be achieved as well as an optimal computational complexity.

All of the aforementioned discretisation methods, with the exception of spectral methods in three-periodic boxes, suffer 
from the problem that a compatibility condition — the well known LBB condition [30–32] — must be satisfied by the spatial 
discretisation of the velocity field and that of the pressure field to obtain a stable discretisation. Incompatible discretisa-
tions will allow spurious pressure or velocity modes to appear and will often completely destroy the solution or, in any 
case, prevent the numerical solution from converging to the exact one [33]. For this reason, finite difference solvers are 
frequently formulated on staggered grids, where four different grids are employed for the three velocity components and 
pressure. When dealing with complicated geometries, or multiscale phenomena, that require local refinement, the staggered 
arrangement is quite inconvenient. Moreover, in the immersed-boundary method, interpolation stencils that are different for 
each grid must be computed. In fluid-structure interaction problems, this implies a four-fold increase of the computing time 
needed for the interpolations in 3D, a significant penalty especially for interpolation techniques that use extended stencils 
[34,35]. Also, when the grid is refined, the staggering must be taken into account and complicated interpolation stencils 
may be required [36]. For this reasons, the use of co-located grids where all variables are stored in the same grid point can 
lead to a distinct performance advantage.

Unfortunately, co-located grids do not satisfy the LBB condition, and are prone to the insurgence of pressure checker-
board modes [37]. Several techniques have been proposed in the past to eliminate such spurious pressure modes. They can 
be classified in two broad groups: stabilisation methods [38,39], where a special interpolation is used in the calculation of 
the divergence operator, and filtering methods [40]. While filtering methods are in principle an elegant way to solve the 
problem, without introducing any stabilisation, since they work by filtering spurious modes out of the solution, their use 
is practical only when uniform Cartesian grids are employed. Indeed, the idea behind filtering methods is to remove the 
unphysical oscillations by subtracting them from the solution. Since the spurious pressure modes belong to the null space 
of the discrete Stokes operator, the solution is first orthogonally projected on this null space, and the projection is then sub-
tracted from the solution. Regrettably, an orthonormal basis for the null space can be obtained trivially only for equispaced 
orthogonal Cartesian grids [40]; for nonuniform grids, it must be computed numerically by solving an eigenvalue problem. 
For what concerns stabilisation methods, the most renowned method was proposed by Rhie & Chow [38]. It was formulated 
as an interpolation method to be used in the calculation of the divergence of the momentum equation, to obtain a Poisson 
equation for the pressure. Indeed, the method can be reformulated as the addition of a stabilisation term, arising from the 
discretisation of a fourth-order elliptic operator, to the right-hand side of the Poisson equation for the pressure [37]. In [41], 
the authors showed that such a stabilisation term can be actually multiplied by a coefficient lower than one, and still a 
stable formulation is obtained.

The aim of the present work is to introduce a new, fast, parallel solver for the incompressible Navier–Stokes equations 
that hinges on the direction-splitting, fractional-step method proposed by Guermond and Minev [23,24] and uses second-
order finite differences on a co-located grid. The resulting direction-splitting formulation is not prone to checker-board 
pressure modes, so that no stabilisation term is required. A simple and fast algorithm is thus obtained that only requires 
the solution of 1D tridiagonal linear systems. Such a solver is expected to be faster than its staggered counterpart, and can 
be used to implement fast immersed-boundary solvers aimed at solving triglobal stability problems [2] and fluid-structure 
interaction problems typical of biological and bio-medical applications [6,42].

The paper is organised as follows. After this introduction, in the next section the key elements of the solver are pre-
sented: the adopted time discretisation, the fractional-step algorithm, the formulation of the non-linear term and the 
imposition of boundary conditions. The third section describes the parallelisation. In the fourth section, we report some 
results to show the accuracy and efficiency of the method: thorough convergence studies have been carried out to check 
that the expected convergence rate was achieved, and several well-documented test cases have been reproduced to check 
the solution accuracy for different sets of boundary conditions. A few concluding remarks are drawn in the last section.
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2. Methods

2.1. Mathematical framework

We consider the time dependent, dimensionless incompressible Navier–Stokes equations solved in a three-dimensional 
volume � = (0, Lx) × (0, L y) × (0, Lz):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
+ (u · ∇) u − 1

Re
∇2u + ∇p = f in � × (0,T),

∇ · u = 0 in � × (0,T),

u|∂� = a in ∂� × (0,T),

u|t=0 = u0 in �,

(1)

where u is the velocity, p the reduced pressure, f a body force, a contains the boundary data and u0 is the initial condition. 
The initial and boundary conditions need to satisfy the well known compatibility conditions [43].

An approach often used to solve the Navier–Stokes equations is the incremental pressure-correction scheme, which can 
be written as the following singular perturbation problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂uε

∂t
+ (uε · ∇) uε − 1

Re
∇2uε + ∇pε = f uε |∂�×(0,T) = a, uε |t=0 = u0,

−�t∇2φε + ∇ · uε = 0
∂φε

∂n
|∂�×(0,T) = 0,

�t
∂ pε

∂t
= φε − χ

Re
∇ · uε pε |t=0 = p0,

(2)

where ε := �t is the perturbation parameter and χ ∈ [0, 1]. Guermond and Shen [44] found that uε is a O (�t2) perturba-
tion of u in the L2-norm for all χ ∈ [0, 1]. χ = 0 corresponds to the standard form of the projection method, while χ = 1
corresponds to the rotational form. Intermediate values of χ are possible.

Recently, Guermond and Minev [23] showed that the same stability properties and error estimates of the aforementioned 
singular perturbation problem can be obtained by substituting the Laplacian operator in the second equation with a more 
general operator, that will be called A, provided the bilinear form induced by A, a(p, q) := ∫

�
p Aq, is symmetric and 

‖∇q‖2
L2 ≤ a(q, q). Therefore, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uε

∂t
+ (uε · ∇) uε − 1

Re
∇2uε + ∇pε = f uε |∂�×(0,T) = a, uε |t=0 = u0,

�t Aφε + ∇ · uε = 0
∂φε

∂n
|∂�×(0,T) = 0,

�t
∂ pε

∂t
= φε − χ

Re
∇ · uε pε |t=0 = p0,

(3)

that coincides with the projection method if A = −∇2. It is interesting to notice that, for transient flow, the computed 
velocity field is not divergence free, owing to the second and third equations. However, uε is a second-order-in-time ap-
proximation of the exact velocity field.

Let the Crank–Nicolson time scheme be used for advancing the solution in time, with the leap-frog strategy for the 
pressure. As a result, the discrete expression of the pressure-correction scheme reads:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un+1 − un

�t
− 1

2Re
∇2 (

un+1 + un) = f n+1/2 − ∇p∗,n+1/2 − nl(u∗,n+1/2),

Aφn+1/2 = − 1

�t
∇ · un+1,

pn+1/2 = pn−1/2 + φn+1/2 − χ

2Re
∇ · (un+1 + un),

(4)

where nl denotes the nonlinear term, the superscripts n and n + 1 indicate two successive time steps for velocity, n + 1/2
the intermediate time step that is used for pressure and for the right-hand side. In particular, u∗,n+1/2 = (3un − un−1)/2 is 
a second-order extrapolation of the velocity field from the time steps n − 1 and n.

2.2. Algorithm

In this section we present the solution algorithm that is needed to advance the discrete solution in time. The solution 
algorithm exploits direction splitting [25] for the three directions for both the velocity, as already done in the past, see e.g. 
[45,46], and the pressure equation, as first proposed by Guermond and Minev [23,24], by suitably selecting the A operator 
in equation (4).
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2.2.1. Pressure predictor
The first step of the algorithm consists in computing the pressure predictor p∗,1/2. The algorithm is initialised by setting 

p∗,1/2 = p∗,−1/2, and for n > 0 we set

p∗,n+1/2 = p∗,n−1/2 + φn−1/2. (5)

2.2.2. Velocity update
In the second step, the velocity field is updated by solving the momentum equation. This amounts, by virtue of the 

direction splitting technique, to the solution of a set of tridiagonal linear systems in the three directions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξn+1 − un

�t
= 1

Re
∇2un + f n+1/2 − ∇p∗,n+1/2 − nl(u∗,n+1/2),

ηn+1 − ξn+1

�t
− 1

2Re

∂2

∂x2

(
ηn+1 − un) = 0,

ζn+1 − ηn+1

�t
− 1

2Re

∂2

∂ y2

(
ζn+1 − un) = 0,

un+1 − ζn+1

�t
− 1

2Re

∂2

∂z2

(
un+1 − un) = 0.

(6)

This formulation can be manipulated to make the computation of un+1 easier and more efficient. It reads:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
ηn+1 − un) − �t

2Re

∂2

∂x2

(
ηn+1 − un) = �t f n+1/2 − �t∇p∗,n+1/2 − �t nl(u∗,n+1/2),

(
ζn+1 − un) − �t

2Re

∂2

∂ y2

(
ζn+1 − un) = (

ηn+1 − un) ,

(
un+1 − un) − �t

2Re

∂2

∂z2

(
un+1 − un) = (

ζn+1 − un) .

(7)

These expressions show that updating the velocity field amounts to the solution of tridiagonal linear systems only.

2.2.3. Penalty step
In the third step, φn+1/2 is computed. In this algorithm, as suggested in [23,24], we use again the direction-splitting 

operator. The second equation of the system (4) reads:

Apn+1/2 = − 1

�t
∇ · un+1. (8)

The choice of the actual expression for the operator A is key to increasing the performance of the algorithm. As in [23,24], 
in this work we used the following expression for A := (1 − ∂2/∂x2)(1 − ∂2/∂ y2)(1 − ∂2/∂z2), that satisfies the necessary 
conditions for the stability and convergence of the method. We thus obtain that φn+1/2 can be computed by solving the 
following equation cascade:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ − ∂2ψ

∂x2
= − 1

�t
∇ · un+1,

∂ψ

∂x
|x=0,1 = 0,

ϕ − ∂2ϕ

∂ y2
= ψ,

∂ϕ

∂ y
|y=0,1 = 0,

φn+1/2 − ∂2φn+1/2

∂z2
= ϕ,

∂φn+1/2

∂z
|y=0,1 = 0.

(9)

As for the velocity update, computing φn+1/2 too amounts to solve tridiagonal linear systems only.
We observe that, despite the chosen form of A leads to an operator whose kernel is void, in principle this does not 

ensure that spurious pressure modes cannot arise in the solution, as clearly shown in [33]. For some schemes, spurious 
pressure modes arise when very small time steps are considered, since the constant in the LBB condition can go to zero 
with the time step. For other schemes, the instability is not observed or it is only observed for very long simulations 
toward a steady state, see [36] and the references therein. For the proposed scheme, we did a lot of testing to ascertain the 
presence of spurious pressure modes, partially reported in section 5. We tried unsteady simulations with very small time 
steps with respect to the spatial discretisation, as in [33], and long simulations leading to a steady state. In both cases, we 
did not observe spurious pressure modes, either in the pressure fields or in the pressure-error field, when available. We 
also compared the solution obtained by the described algorithm with that obtained by adding a stabilisation term to the 
pressure equation according to [41]. The obtained pressure fields were almost identical. We are aware that numerical tests 
4
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are not equivalent to a rigorous mathematical proof, therefore we do not claim that the proposed method is always free 
from any pressure spurious mode. Nonetheless, we can say that the proposed method is very robust since no instabilities 
were observed in a wide range of simulations with very different time and space resolutions.

2.2.4. Pressure update
In the last step of the algorithm, the pressure is updated as follows:

pn+1/2 = pn−1/2 + φn+1/2 − χν∇ ·
(

1

2

(
un+1 + un)) . (10)

2.3. Treatment of the non-linear term

The formulation of the non-linear term has been chosen to ensure energy conservation. Indeed, it is well known that 
several different forms of the nonlinear term can be chosen, which are equivalent in the continuum setting but differ 
once discretised [47]. Such formulations differ essentially by a term multiplied by the divergence of the velocity, and are 
therefore equivalent only when the velocity field is divergence-free at machine precision. When the velocity field is only 
approximately divergence-free, as in the present case, the different forms of the nonlinear term are no longer equivalent 
and, in general, do not satisfy energy conservation, as it is the case in the continuum. Failing to conserve energy can lead 
to an explosive instability, especially at relatively high Reynolds numbers and when the smaller scales of the flow are not 
sufficiently resolved. We write the nonlinear term so as to conserve energy as suggested in [48]. For simplicity, we show 
the discretisation for the 2D case on a uniform grid, but the strategy can be easily extended to the three-dimensional case. 
The conservative discrete weak formulation is:

bh(uh,φh, ξh) =
M∑

i=1

N∑
j=1

{[�yui+(1/2) jφi+(1/2) jξi j − �yui−(1/2) jφi−(1/2) jξi j

+�xvij+(1/2)φi j+(1/2)ξi j − �xvij−(1/2)φi j−(1/2)ξi j
]

−1

2
�x�y

(ui+(1/2) j − ui−(1/2) j

�x
+ vij+(1/2) − vij−(1/2)

�y

)
φi jξi j}

(11)

where ui+(1/2) j denotes the velocity at the mid point between xi j and xi+1 j and its second order approximation is:

ui+(1/2) j = ui+1 j + ui j

2
. (12)

The last term of (11) can be recognised to be the divergence of the velocity. This term is supposed to be zero when the 
end-of-step velocity is divergence-free, not in our case. Here, this term is retained to ensure conservation. The proof of 
the conservation properties of this formulation of the nonlinear term is very similar to what is done in [49], and it is not 
repeated here for conciseness. As a result, the conservative formulation of the non-linear term in 3D reads:

(u · ∇) ul|xi ,y j ,zk ∼
1

4�x

[
ul(xi+1, y j, zk)

(
u(xi+1, y j, zk) + u(xi, y j, zk)

) − ul(xi−1, y j, zk)
(
u(xi−1, y j, zk) + u(xi, y j, zk)

)]+
1

4�y

[
ul(xi, y j+1, zk)

(
v(xi, y j+1, zk) + v(xi, y j, zk)

) − ul(xi, y j−1, zk)
(

v(xi, y j−1, zk) + v(xi, y j, zk)
)]+

1

4�z

[
ul(xi, y j, zk+1)

(
w(xi, y j, zk+1) + w(xi, y j, zk)

) − ul(xi, y j, zk−1)
(

w(xi, y j.zk−1) + w(xi, y j, zk)
)]

.

(13)

The numerical tests confirmed that this formulation does not lead to numerical instabilities as previously observed for the 
convective form.

3. An additional temporal scheme

This section describes the formulation of the algorithm when a different, more efficient time-advancement scheme is 
used instead of Crank–Nicolson’s, characterised by a larger stability margin in terms of the Courant-Friedrichs-Lewy condi-
tion, thus allowing larger time steps. Specifically, we describe the implementation of a popular scheme introduced in [50], 
hereafter called RK-RAI3. It is a partially implicit method, where the viscous terms are dealt with by a second-order-accurate 
Crank–Nicolson method, whereas a third-order Runge-Kutta scheme is employed for the convective terms. The single time 
step �t is thus divided into three substeps, each one corresponding to an advancement of 2

αi�t . After the time discretisation 
and by using again the leap-frog strategy for the pressure, the Navier–Stokes equations read:
5
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi

2

un
i − un

i−1

�t
− 1

2Re
∇2 (

un
i + un

i−1

)
= f n

i−1/2 − ∇pn
∗,i−1/2 − γi

(
un

i−1 · ∇)
un

i−1 − δi
(
un

i−2 · ∇)
un

i−2,

Aφn
i−1/2 = − αi

2�t
∇ · un

i ,

pn
i−1/2 = pn

i−3/2 + φn
i−1/2 − χ

2Re
∇ · (un

i + un
i−1),

b.c.

i.c.

(14)

Here the superscript n refers to the time step, while the subscript i refers to the three substeps needed to advance the 
solution by one time step �t , and αi , γi and δi are the following coefficients:

α1 = 120/32, α2 = 120/8, α3 = 120/20,

γ1 = 1, γ2 = 25/8, γ3 = 45/20,

δ1 = 0, δ2 = −17/8, δ3 = −25/20.

(15)

pn
∗,i−1/2 denotes the pressure predictor, described later.

Now, similarly to what is done for the Crank-Nicolson case, we briefly show the algorithm to be used at each time step 
if the RK-RAI3 time scheme is employed.

Pressure predictor

pn
∗,i−1/2 = pn

i−3/2 + αi

αi−1
φn

i−3/2. (16)

Velocity update⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αi

�t

(
ηn

i − ũn
i−1

) − 1

Re

∂2

∂x2

(
ηn

i − ũn
i−1

) = rhs,

αi

�t

(
ζn

i − ũn
i−1

) − 1

Re

∂2

∂ y2

(
ζn

i − ũn
i−1

) = (
ηn

i − ũn
i−1

)
,

αi

�t

(
ũn

i − ũn
i−1

) − 1

Re

∂2

∂z2

(
ũn

i − ũn
i−1

) = (
ζn

i − ũn
i−1

)
,

(17)

where

rhs = 2

Re
∇2ũn

i−1 − 2∇pn
∗,i−1/2 + 2 f n

i−1/2 − 2γi
(
un

i−1 · ∇)
un

i−1 − 2δi
(
un

i−2 · ∇)
un

i−2.

Penalty step⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn
i−1/2 − ∂2ψn

i−1/2

∂x2
= − αi

2�t
∇ · ũn

i−1,

ϕn
i−1/2 − ∂2ϕn

i−1/2

∂ y2
= ψn

i−1/2,

φn
i−1/2 − ∂2φn

i−1/2

∂z2
= ϕn

i−1/2.

(18)

Pressure update

pn
i−1/2 = pn

i−3/2 + φn
i−1/2 − χ

2Re
∇ · (un

i + un
i−1). (19)

4. Parallel implementation

The present algorithm has been implemented using central finite differences for the first- and second-order derivatives. 
The parallel implementation is based on a Cartesian block decomposition of the domain (as shown in Fig. 1), and uses the 
Message Passing Interface (MPI) library for maximum portability. Each processor deals with a different block.

The grid points in each block are divided into internal points xi and shared interface points xs . For internal points, the 
right-hand side of the linear systems can be assembled locally to the processor since their stencil is within the same block. 
In contrast, for the shared interface points, assembling the right-hand side requires some sort of communication as such 
points are placed on the interfaces between the blocks and their stencil is shared between consecutive processors. Two 
processors dealing with two consecutive blocks share the interface points placed on the face they have in common — see 
6
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Fig. 1. Domain partitioning for parallel implementation. Left: block decomposition of the three-dimensional domain. Right: grid decomposition for parallel 
execution on the plane highlighted in the left panel; grey circles denote shared interface grid points; red stars, blue diamonds and green squares denote 
the internal grid points of the blocks highlighted by the same colour code in the left panel; white circles denote the internal grid points of the other blocks. 
The dotted line highlights the line in the x direction considered in §4.1. (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)

the right panel of Fig. 1 — and both of them solve the linear systems for such points in the two directions parallel to the 
face; in the following we show that this small overhead is necessary to highly reduce the communication among processors. 
The overall number of shared interfaces along one direction Ns,i (with i = 1, 2, 3 denoting the direction) depends on the 
boundary conditions. Indeed, in case of a periodic direction — where the first and last block can be thought as consecutive 
— the number of interfaces is equal to the number of blocks Np,i in that direction while to Np,i − 1 in all the other cases.

The solver is parallelised keeping the communication among processors to a minimum. Communication is needed only 
for the solution of the linear systems and the assembling of the right-hand sides at the interface points.

4.1. Parallelisation of the solution of the linear systems

The spatial discretisation we used reduces each one-dimensional linear problem to a tridiagonal linear system, that can 
be easily solved using the Schur complement method [27–29], adopting the same strategy proposed in [24]. To explain the 
procedure, we consider only a line in the x direction for brevity, along which the solution is split across N px processors 
(see the right panel of Fig. 1 as an example); for each processor the unknowns u are divided in internal unknowns ui and 
shared interface unknowns us . The unknowns and equations of the tridiagonal system associated with the considered line 
can be reordered so as to separate the internal unknowns from those on the shared interfaces:[

Aii Ais
Asi Ass

][
ui
us

]
=

[
f i
f s

]
. (20)

The reordered linear system is no longer tridiagonal, clearly. Considering for example the case in Fig. 1 with Npx = 3 and 
Nsx = 2 — corresponding to non-periodic boundary conditions — the matrices have the following pattern:

Aii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ais =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AT
si =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ass =
[ ]

. (21)
7
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Algorithm 1: Procedure performed by each processor to solve tridiagonal linear systems in parallel. White circles de-
note local computations, while the red square denotes computations that need communication between processors.

Preprocessing

Assemble the tridiagonal matrix S := (Ass − Asi A−1
ii Ais)

Runtime

Compute the right-hand side for the internal points f i

Compute processor’s contribution to the right-hand side of the equation for the shared interface unknowns: fs − Asi A−1
ii f i

Assemble via communication all processors’ contributions to f s − Asi A−1
ii f i

Solve for the shared interface unknowns us

Compute f i − Aisus

Solve for the internal unknowns ui

As in Fig. 1, red stars, blue diamonds and green squares refer to the internal grid point of the three processors, whereas grey 
circles indicate the shared interface grid points. As shown in the previous equation, Aii is tridiagonal and Ass is diagonal, 
while both Ais and Asi are extremely sparse.

Using block Gaussian elimination, the reordered linear system can be reduced to triangular form. Then, the solution 
reduces to the successive solution of the following linear systems

Sus = (Ass − Asi A−1
ii Ais)us = f s − Asi A−1

ii f i, (22)

Aiiui = f i − Aisus, (23)

where S is the Schur complement, and in the above example with Npx = 3 and Nsx = 2 its pattern is

S =
[ ]

. (24)

By virtue of the sparse pattern of the matrix blocks, the Schur complement S is also tridiagonal for the present discretisa-
tion, although this is not evident in the present example with two shared interface unknowns only.

As a result, the equations for the shared interface points (22) and for the internal points (23) become decoupled. Fur-
thermore, the equations for the internal points of different blocks are decoupled too. Indeed, owing to the tridiagonality 
of the original linear system and the locality of the finite-difference operators, Aii is a block-diagonal matrix (see equation 
(21)). Therefore, in the present algorithm, only tridiagonal linear system must be solved.

The tridiagonal systems (22) and (23) are solved by Thomas’ algorithm [51] which is equivalent to a banded LU decom-
position without pivoting [52] when the coefficients are saved in the forward step. This is convenient in the present case, 
since the matrices do not vary in time, and can therefore be factored once and for all at the beginning of the computation. 
The internal linear systems have to be solved twice, the first time to compute the right-hand side of the linear systems for 
the shared interface unknowns, right-hand side in (22), the second time to compute the internal ones by solving (23).

The procedure is explained in more detail in Algorithm 1. The tridiagonal matrix S := (Ass − Asi A−1
ii Ais) of size Nsx × Nsx

is computed in the preprocessing stage and stored on each processor. Then for each time step, after computing the right-
hand sides for the internal grid points f i , each processor computes the contribution to the right-hand sides of the equations 
for the shared interface unknowns, f s − Asi A−1

ii f i , associated with its portion of the stencil; then all the contributions are 
assembled on each processor via communication. Once the linear system (22) has been assembled, it can be solved on 
each processor to minimise the required communication during time advancement. Indeed, for the usual fluid dynamic 
problems, the size of the Schur complement is much lower than the dimension of the internal problems: Ns � Ni . Finally, 
each processor evaluates locally its internal unknowns without the need of communication by solving the tridiagonal system 
(23), in which the equations for internal points of different blocks are decoupled, as said above.

With this procedure, the communication is kept to a minimum. It is only needed when assembling the right-hand side 
of the equations for the shared interface points.

4.2. Parallel treatment of the right-hand side

For simplicity, in this section we consider the domain to be decomposed into two blocks in the z direction; see Fig. 2. 
As said above, at each time step the following linear systems, dealing with the x, y and z directions, have to be solved for 
both the momentum and the pressure steps:{

Axψ = f ,

b.c.

{
A yϕ = ψ,

b.c.

{
Azφ = ϕ.

b.c.
(25)

However, at the shared interface points (the grey points in Fig. 2) the right-hand side f i for the system dealing with the x
direction cannot be fully computed in any of the two processors sharing the interface, since the needed stencil is distributed 
8
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Fig. 2. Grid decomposition for parallel execution in the x − z plane. The domain is divided into two blocks in the z direction. Red stars denote the internal 
grid points for block/processor 1; blue diamonds denote the internal grid points for block/processor 2; grey circles denote the shared interface grid points.

across the two processors. Indeed, as long as we want to minimise communication, the communication should only occur 
when strictly necessary, i.e. when assembling the right-hand side of the Schur complement, in this case when solving the 
z direction. For this reason, we avoid the communication of the missing information necessary to build the right-hand side 
of the aforementioned linear systems on the two processors. As it will become clear in a moment, this is not necessary. We 
show, as an example, the component of the pressure gradient in the z direction evaluated on a homogeneous grid, i.e.

∂ pn
k

∂z
:= − pn

k−1

δz︸ ︷︷ ︸
Processor 1

+ pn
k+1

δz︸ ︷︷ ︸
Processor 2

; (26)

where the index k denotes a shared interface point. Without any communication, the first term of the right-hand side can 
be evaluated only by processor 1, whereas the second one only by processor 2.

We therefore leverage the linearity of the equation and split the solution at the shared interface points among the 
processors. In detail, we write:

f i = f i,1 + f i,2 (27)

where f i,1 and f i,2 denote the contributions to f i evaluated with the portion of the stencil available on the two processors, 
respectively. In doing this, one has to pay attention not to consider the contribution from the shared interface point twice. 
Considering the above example, the first term of equation (26) goes into f i,1, whereas the second term into f i,2.

Therefore, when we solve for the shared interface points along the x and y directions, the two processors compute:{
Axψi,1 = f i,1,

b.c.|1,

{
Axψi,2 = f i,2,

b.c.|2, (28)

{
A yϕi,1 = ψi,1,

b.c.|1,

{
A yϕi,2 = ψi,2,

b.c.|2, (29)

respectively, where b.c.|1 + b.c.|2 = b.c; this requirement can be met, for instance, by imposing the actual boundary condi-
tions when solving on one processor and homogeneous conditions on the other one.

It turns out that, once the previous linear systems have been solved for the shared interface points along the x and y
directions, the two processors computed

ϕi,1 = A−1
y A−1

x f i,1

and

ϕi,2 = A−1
y A−1

x f i,2,

respectively. Finally, when the z direction is considered, which is normal to the interface in this example, the Schur comple-
ment is used. As already mentioned, at this stage the right-hand side of the equations for the interfaces is built assembling 
the contributions from the different processors. Therefore, the shared interface unknown results in

φi = A−1
z

(
ϕi,1 + ϕi,2

) = A−1
z A−1

y A−1
x

(
f i,1 + f i,2

) = A−1
z A−1

y A−1
x f i . (30)

Therefore, this procedure requires to solve the tridiagonal systems for the shared interface points on both processors 
sharing them, which is a small overhead necessary to limit the inter-processor communication to the construction of the 
right-hand side of (22).
9
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5. Numerical results

In this Section, we assess the accuracy and efficiency of the method with some example problems. First, the spatial 
and temporal convergence of the scheme is investigated for a manufactured solution of the Navier–Stokes equations, i.e. 
a solution obtained by introducing a suitable body force in the right-hand side of the equations [53]. Then, three classic, 
well-documented test cases are presented to describe the capabilities of the algorithm: one with two periodic directions, 
one with a single periodic direction, and two with no periodic directions: the driven cavity problem (internal flow) and the 
flow around a rectangular plate (external flow).

5.1. Convergence tests

In order to investigate temporal and spatial convergence, the algorithm has been tested numerically on the following 
manufactured solution of the Navier–Stokes equations:

u = sin(x) cos(t + y) sin(z), v = cos(x) sin(t + y) sin(z), w = 2 cos(x) cos(t + y) cos(z),

p = 3

Re
cos(x) cos(t + y) cos(z).

(31)

The body-force field f that closes the momentum equation for this manufactured solution reads:

fx = sin(x)

Re

[1

2
(Re cos(x) (1 + 2 cos (2(t + y)) + cos(2z)))

− 3 cos(t + y) (cos(z) − sin(z)) − Re sin(t + y) sin(z)
]
,

f y = 1

4 Re

[
Re cos2(x)

(
3 + cos(2z)

)
sin(2(t + y)) − 2Re sin2(x) sin(2(t + y))sin2(z)

+ 4 cos(x)
(

− 3 cos(z) sin(t + y) + (
Re cos(t + y) + 3 sin(t + y)

)
sin(z)

)]
,

f z = 1

Re

[
cos(x)

(
− 2Re cos(z) sin(t + y) + cos(t + y)

(
6 cos(z) − 3 sin(z)

))
− 1

2

(
Re cos2(x)

(
3 + cos(2(t + y))

)
sin(2z)

)
− Re cos2(t + y) sin2(x) sin(2z)

]
.

The problem is solved in the cubic domain � = (0, 6) × (0, 6) × (0, 6) for 0 ≤ t ≤ T = 1 and a Reynolds number Re = 1. 
Dirichlet boundary conditions are used for the velocity and are given by the exact solution calculated on the boundary. The 
initial condition is the exact solution at t = 0. Temporal and spatial accuracies of the algorithm are tested on five uniform 
grids of varying size, i.e. 103, 203, 403, 803 and 1603 points, with seven values of the time step, i.e. �tn = 0.1 × 2−n , where 
n is an integer in the interval [0, 6].

The L2-norm of the velocity and pressure error is plotted in Fig. 3 and 4 for χ = 0 and χ = 1, respectively, and a 
comparison with the staggered algorithm presented in [24] is also reported, for the same size of the grid and time step. 
The left panels concern the spatial convergence; here the time step is fixed at �t = 0.003125. They show that both the 
velocity and the pressure approximations are second-order accurate, as expected. In the right panels, the time accuracy is 
considered; here the grid size is fixed at the smallest value �x = 0.0375, to keep the spatial error below the temporal 
error, at least for the largest time steps considered. The results show that both approximations, for velocity and pressure, 
are second-order accurate. Interestingly, the convergence curves show that the pressure approximation converges faster for 
χ = 0. The velocity and pressure approximations seem to be slightly more accurate when the staggered version of the 
algorithm is used.

We tested the presence of spurious pressure modes for very small time steps. We advanced the solution in time for 200
time steps according to what has been proposed in [33]. The pressure-error field, reported in Fig. 5 for three different values 
of �t , shows no evidence of spurious pressure modes.

5.2. Scalability

The scalability of the computer code implementing the method has been tested using the previously described manufac-
tured solution. The simulations have been run on the GALILEO supercomputer at CINECA. It features 1022 36-core computing 
nodes connected through an Intel OmniPath (100 Gb/s) high-performance network. Each node contains two 18-cores Intel 
Xeon E5-2697 v4 (Broadwell) at 2.30 GHz. All the computing nodes have 128 GB of memory. In Fig. 6, we show the scalabil-
ity tests of the presented code. The left panel shows the strong scalability test. It consists in fixing the overall number of grid 
points and measuring the CPU time as the number of processing cores N p increases (Np = 16, 32, 64, 128, 256, 512, 1024 is 
considered). The figure shows a better-than-ideal behaviour. Indeed, The CPU time per timestep and grid point goes from 
5.78 · 10−7 s for 16 processors to 4.24 · 10−7 s for 1024 processors, with a decrease for Np > 256. A preliminary analysis of 
10
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Fig. 3. Standard form, i.e. (χ = 0). L2-norm of the error at T = 1 on uniform grids with respect to the manufactured solution given in eq. (31) for Re = 1, 
compared with the results obtained using the code of Ref. [24]. Top: velocity; bottom: pressure. Left: spatial convergence; right: temporal convergence.

the code performance suggests that the code is memory-bound, i.e. the performance is limited by the memory bandwidth 
[54]. Indeed, a high speed-up is observed using a single core per node, irrespective of the number of nodes. This observa-
tion explains the present results for strong scalability, since for smaller local problems a larger portion of the data fits into 
higher-level cache memory, thus increasing the available memory bandwidth for data transfer.

The right panel, instead, shows the results for a weak scalability test. In this case the number of grid points per processor 
is fixed. The figure shows that the CPU time per timestep divided per overall number of grid points goes from 5.707 · 10−7 s
for 16 processors to 6.397 ·10−7 for 1024 processors. This is a very good result, considering that the code, although carefully 
written, still has to undergo a detailed optimisation of the parallel communication, for instance by overlapping computation 
and communication.

5.3. Comparison with established benchmarks

In this section we compare the accuracy of our code with that of well established results.

5.3.1. 3D driven cavity
The first validation test consists in solving the three-dimensional lid-driven cavity problem in the domain � = (0, 1) ×

(0, 1) × (−1, 1) (in the x, y and z direction, respectively) at Re = V wh/ν = 1000, where V w denotes the driving lid velocity, 
h the length of the cavity edge in the x and y directions, ν the kinematic viscosity of the fluid. This test has been chosen 
since it is an established test case and a benchmark solution obtained with the staggered version of the present algorithm 
[55] is available online. Here, quantities are made dimensionless with V w and h. The driving lid is the side wall at x = 1, 
where u = (0, 1, 0) is the imposed velocity, while homogeneous Dirichlet boundary conditions are imposed on the other 
walls. Two grids consisting of 200 × 200 × 400 and 400 × 400 × 800 in the x, y, z directions, respectively, have been used to 
show the convergence. As in [55], if Ni denotes the number of points in the i−direction, the coordinates of the grid points 
are defined as:

Ci = 1 + (2/Li)
1
2 , (32)

Xk = k − 1
Li k = 1, .., Ni, (33)
Ni − 1

11
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Fig. 4. Rotational form, i.e. (χ = 1). L2-norm of the error at T = 1 on uniform grids with respect to the manufactured solution given in eq. (31) for Re = 1, 
compared with the results obtained using the code of Ref. [24]. Top: velocity; bottom: pressure. Left: spatial convergence; right: temporal convergence.

Fig. 5. Pressure error in the X = 5 plane for the problem with manufactured solution (31) after 200 time steps. For this simulation the domain is � =
(0, 10) × (0, 10) × (0, 10) with �x = �y = �z = 0.1; the Reynolds number is set to Re = 1. Left: �t = 10−4; centre: �t = 10−5; right: �t = 10−6.

xk =
{

Ci X
3
2

k (1 + X
1
2

k )−1 if Xk ≤ Li/2,

Li − Ci(Li − Xk)
3
2 (1 + (Li − Xk)

1
2 )−1 otherwise,

(34)

to properly resolve the boundary layer without excessively stretching the grid cells. The simulation has been performed 
using the Crank–Nicolson time scheme with an average CFL ∼ 0.4, slightly below the stability limit of this scheme. The two 
spatial discretisations have been used alternatively to verify the accuracy of both near their stability limit.

Fig. 7 is a colour plot of the magnitude of the velocity vector in the z = 0 plane at t = 8. The figure portraits a quali-
tatively correct solution: one clearly appreciates the high-speed region near the moving lid, as well as a high-speed region 
in the shear layer produced near the downstream corner of the lid. The figure also shows the main vortex that is forming 
near the centre of the cavity and the low-speed region near the side opposite to the moving lid. Fig. 8 shows the u and v
12
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Fig. 6. Scalability tests: CPU time per timestep and grid point versus the number Np of parallel processors. Left: strong scalability test, with the total 
number of grid points fixed to Npoints = 4003. Right: weak scalability test, with Npoints/N p = 1003.

Fig. 7. Three-dimensional driven cavity: velocity magnitude in the z = 0 plane at time t = 8, Re = 1000.

velocity components along the vertical and horizontal lines in the plane z = 0 passing through the point x = 0.5, y = 0.5
and z = 0 (see lines 1 and 2 in Fig. 7) at time t = 8. This allows a quantitative comparison with the results by Guermond 
and Minev contained in Ref. [55], which are also available online. Fig. 8 shows that they are in very good agreement; the 
differences among the two simulations, shown in the right column, are in average less than one percent for both u and 
v . These differences become smaller if the finer grid is used, the ratio between the differences being consistent with the 
expected second-order convergence.

5.3.2. 3D periodic driven cavity
The second validation test case consists in solving the three-dimensional flow in a square lid driven cavity in � =

(−0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5), with the moving wall placed at x = 0 and the periodic boundary conditions in the z
direction. With respect to the previous one, this test case involves periodic boundary conditions and a steady-state solution. 
We compare the solution obtained with the present numerical method with the reference solution reported in [56] that 
has been obtained with a different numerical approach, a projection time-advancement scheme and a Chebyshev spectral 
method for the spatial discretisation with subtraction of the singularity to improve the accuracy. As in [56], the Reynolds 
number Re = V wh/ν is again set to 1000, and the grid consists of 96 ×96 ×96 points. Along the x directions the grid points 
are distributed as:

xi = −1

2
cos

(
(i − 1)π

Nx − 1

)
i = 1, .., Nx, (35)

where Nx denotes the number of points. The same grid is used also in the y direction. In the z direction a uniform grid is 
used, with the points distributed as:

zk = 1
(

2(k − 1) − 2

)
k = 1, .., Nz. (36)
2 Nz − 2

13
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Fig. 8. Three-dimensional driven cavity: solution at t = 8, Re = 1000. Top: x-component of the velocity along the vertical line in the z = 0 plane passing 
through the point (x, y, z) = (0.5, 0.5, 0), see line 1 in Fig. 7. Bottom: y-component of the velocity along the horizontal lines in the z = 0 plane passing 
through the point (x, y, z) = (0.5, 0.5, 0), see line 2 in Fig. 7. Left: velocity components. Right: difference between the present results and that reported in 
[55].

Fig. 9. Three-dimensional periodic driven cavity test. Velocity magnitude of the steady solution in the z = 0 plane for Re = 1000.

The simulation is advanced with the RK-RAI3 time scheme previously described with an average C F L ∼ 1 until the steady-
state solution is reached. As a criterion to ensure convergence to the steady solution, the following condition is used:

max|ui(x, t) − ui(x, t − �t)|
�t

< 10−7. (37)

Fig. 9 shows the magnitude of the velocity in the z = 0 plane. The picture is qualitatively similar to that shown for the 
start-up of the 3D cavity, with two regions of high speed and the vortex. In this steady case, the vortex is more extended, 
and the recirculation regions in the corners opposite to the moving lid can be recognised. A separation region forms also on 
the lower horizontal side, not far from the intersection with the moving lid. To validate the results, Fig. 10 plots u, v and 
p along the horizontal and vertical lines in the z = 0 plane passing through x = 0 and y = 0; see Fig. 9, with superimposed 
14
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Fig. 10. Three-dimensional, periodic driven-cavity test, steady state at Re = 1000. Top: x-component of the velocity (left) and pressure (right) along the 
vertical line in the z = 0 plane passing through the point (x, y, z) = (0.5, 0.5, 0) (see line 1 in Fig. 9). Bottom: y-component of the velocity (left) and 
pressure (right) along the horizontal lines in the z = 0 plane passing through the point (x, y, z) = (0.5, 0.5, 0) (see line 2 in Fig. 9). Steady-state results are 
compared with data in [56], denoted with white squares.

the results taken directly form the paper of [56] shown with open symbols. Again, a complete agreement is found as the 
two results perfectly overlap.

5.3.3. Optimal perturbations in plane Couette flow
A further validation test involves two periodic directions. It concerns the amplification of optimal transient perturbations 

in plane Couette flow. For this purpose the work of [57] is considered as a reference and the main results replicated. The 
authors investigated the transition scenario in a Couette flow in which the transient growth mechanism is initiated by four 
decaying modes, showing that if their initial structure corresponds to counter-rotating vortex pairs, they are sufficient to 
capture the transient growth mechanism. Indeed, the energy growth based on non-linear DNS simulations for small initial 
amplitudes of the disturbances is in very good agreement with the linear analytical one based of the first four even modes.

In this test we replicate such work. We compute the energy growth with our program and we compare it with the 
analytical solution of the linearised Navier–Stokes equations based on the following velocity field:

u(y, z, t) = U b(y) + u1(y, z, t) (38)

where x, y and z denote the streamwise, wall-normal and spanwise directions; U b = (0, y, 0) and u1 as:

u1(y, z, t) =�ReA0[A1Fsq1(y)e−iωsq1t + Fos1(y)e−iωos1t

+ A2Fsq2(y)e−iωsq2t + A3Fos2(y)e−iωos2t] cos(βz)
(39)

v1(y, z, t) = A0[Vos1(y)e−iωos1t + A3Vos2(y)e−iωos2t] cos(βz) (40)

w1(y, z, t) = −A0[Wos1(y)e−iωos1t + A3Wos2(y)e−iωos2t] sin(βz) (41)

where the expressions of ω, F, V and W and the values of A1, A2 and A3 are given in [57].
The domain is � = (0, 2π) × (−1, 1) × (0, 2π) and the grid consists of 96 × 96 × 96 points uniformly placed along the 

periodic directions and with a hyperbolic-tangent distribution along the y direction to provide enhanced resolution the 
near-wall regions:
15
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Fig. 11. Two-dimensional visualisation of the initial cross-stream velocity field, consisting of a counter-rotating vortex pair superimposed to the laminar 
Couette base flow. Left: wall-normal velocity component; right: spanwise velocity component.

Fig. 12. Couette-flow test. Energy-growth curve for Re = 1000 and β = 1. Comparison between the analytical curve based on four even modes as in [57]
and our non-linear DNS results. Left: complete curve; right: zoom of the maximum.

yi = ymin + ymax − ymin

2

⎡
⎣ tanh

(
a
(

2i
N y

− 1
))

tanh (a)
+ ymax − ymin

2

⎤
⎦ i = 1, N y,

where a = 1.2, ymin = −1, ymax = 1 and N y denotes the number of points in the wall-normal direction. The Reynolds 
number Re = U wh/ν (where U w is the velocity of each wall and h the half height of the channel) is set to 1000. The 
initial condition at t = 0 consists on a counter rotating vortex pair superimposed on the laminar Couette solution, with the 
perturbation field u1 defined with β = 1, see Fig. 11. Three values of A0 have been considered: A0 = 0.0001, A0 = 0.001 and 
A0 = 0.002. The simulation is advanced for T = 400h/U w with the Crank–Nicolson time scheme with an average C F L ∼ 0.1. 
We used the same averaged C F L as in [57]. Fig. 12 compares the energy growth measured by the present code with the 
analytical curve, shown with open symbols. Our simulation is in very good agreement with the results reported in [57] (see 
Fig. 3 in their paper): the DNS with the smallest A0 follows the predicted curve. This is because the reference solution is 
obtained for the linearised equations, and therefore it is exact in the limit of infinitesimal perturbations. For this reason a 
small gap between the DNS and the predicted results can be observed close to the maximum of the curve. Such difference, 
also visible in the pseudo-spectral DNS results reported in [57], decreases as the amplitude A0 is decreased, as expected; 
see the right panel in Fig. 12.

5.4. Instability of the wake of a flat plate with aspect ratio 1:6 and oriented perpendicularly to the incoming flow

The last validation consists in investigating the destabilisation of the three-dimensional steady wake developing behind a 
thin rectangular plate oriented perpendicularly to the uniform incoming flow. Here, x is the streamwise direction, whereas 
y and z denote the two cross-stream directions. The thickness-to-width ratio of the plate is Lx/L y = 1/6, while the length 
to width ratio is Lz/L y = 6. The work of Marquet and Larsson [2], where this problem is addressed via linear stability 
analysis and finite elements, is taken as reference. The presence of the flat plate is dealt with by an explicit immersed-
boundary method [58]. At each time iteration, after the viscous step and before the pressure step, the velocity is linearly 
interpolated on the points nearest to the boundary. The Reynolds number based on the undisturbed incoming flow and on 
L y , Re = U∞L y/ν , is set to 60, which is just above the first critical Reynolds number for such flow configuration according 
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Fig. 13. Three-dimensional visualisation of the steady, three-dimensional flow at Re = 60. The white isosurface denotes U = 0 and highlights the recirculat-
ing region behind the plate. The colour contours show the streamwise velocity at different stations down the wake.

to [2]. The size of the computational domain is −15 ≤ x ≤ 20, −20 ≤ y ≤ 20 and −20 ≤ z ≤ 20 with the geometric centre of 
the plate placed at (x, y, z) = (0, 0, 0). The grid consists of 272 × 376 × 448 points in the three directions, with 50, 100 and 
200 points over the plate sides in the x, y and z directions, respectively. A geometric progression is adopted to distribute 
the points:

xi = xi−1 + ki−1
x �x1

y j = y j−1 + k j−1
y �y1

zk = zk−1 + kk−1
z �k1

where �x1 = 0.00335, �y1 = 0.00494 and �z1 = 0.0032751 indicate the x- y- and z-size of the cells at the corners of the 
plate in the three directions; kx is 1 for 0 ≤ x ≤ 1/6 and 1.05 otherwise; ky = 1.04; kz is 1.03 for −3 ≤ z ≤ 3 and 1.04
otherwise. The simulation is advanced with the Crank–Nicolson time scheme for a time interval of 630L y/U∞; the time 
step is set to �t = 0.00125 which corresponds to a C F L ≈ 0.5. The boundary conditions of the problem are the no-slip 
condition on the surface of the plate together with unperturbed velocity (U∞, 0, 0) at the inlet, symmetry conditions in the 
far field in the y and z directions and a homogeneous Neumann condition for the velocity at the outlet.

In order to represent the shape of the unstable mode, the steady three-dimensional velocity field has been subtracted 
from an instantaneous velocity field of the unsteady nonlinear simulation. To compute such steady-state solution, corre-
sponding to the baseflow in the linear stability analysis [2], we carried out an additional simulation inhibiting the onset of 
the instability by imposing the symmetry of the flow with respect to the two symmetry planes of the plate aligned with the 
free-stream velocity. Therefore, the simulation is carried out considering only 1/4 of the overall computational domain, i.e. 
−15 ≤ x ≤ 20, 0 ≤ y ≤ 20 and 0 ≤ z ≤ 20, using symmetry boundary conditions on the planes y = 0 and z = 0. This simula-
tion is carried out with the same parameters described above and is advanced in time until the steady state is reached, i.e. 
when the difference of the velocity between two successive iterations is ≤ 10−5. Fig. 13 shows the three-dimensional base 
flow obtained after mirroring it with respect to the two symmetry planes. The white isosurface indicates U = 0 and high-
lights the recirculation region downstream the plate, whereas the contour of U is shown in different stations downstream 
the plate. The figure closely recalls the results in [2]; indeed, both the U = 0 isosurface and the evolution of U in the wake 
have the same shape. To be more quantitative, we found that the length of the recirculation region is Lb ≈ 6.34 that is very 
close to the value of Lb = 6.33 found in [2], the difference being about 0.15%.

The simulation carried out on the complete domain reveals that the wake is unstable at this Reynolds number: an 
unstable mode is found to break the top/bottom symmetry. Fig. 14 shows the power spectral density of the v velocity 
component computed at the point (x, y, z) = (0.2189, 0.3458, 1.7400) via Fourier Transform. There is a clear spike, which 
reveals that the frequency of the unstable mode is f ≈ 0.0835. This is again very close to the value f = 0.084 reported in 
[2]. The spatial distribution of the unstable mode is depicted in Fig. 15 with isosurfaces of positive (red) and negative (blu) 
streamwise velocity. As in [2], spatial structures of alternating sign are observed to develop in the x direction in both the 
shear layers. Such structures have opposite sign in the two shear layers as can be seen looking at the y − x plane.

6. Conclusions

We have presented an original finite-difference solver for the incompressible Navier–Stokes equations, based on a 
direction-splitting fractional step method to advance the equations in time. It extends the approach proposed by Guer-
mond & Minev [24], with the important difference that a co-located grid is used instead of a staggered one. The main 
characteristics of the solver are: (i) the use of the direction-splitting technique for both the viscous and the pressure steps 
of the algorithm; (ii) the use of the Schur-complement method for the parallelisation.
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Fig. 14. Power spectral density of the v velocity component computed at (x, y, z) = (0.2189,0.3458,1.7400).

Fig. 15. Three-dimensional visualisation of the unstable mode for Re = 60. Isosurfaces of positive and negative streamwise velocity are shown in red and 
blue, respectively. The isosurface of zero streamwise steady velocity is displayed in white.

The solver is extremely efficient from the computational viewpoint. Indeed, combining the direction-splitting technique 
with the discretisation of derivatives through second-order central differences leads to a computer code whose kernel con-
sists in solving tridiagonal linear systems, which takes place via the Thomas algorithm. The Schur-complement method 
allows a massive and effective parallelisation of such solutions and of the code as a whole; we have demonstrated very 
good parallel performance on thousands of processors, measuring a CPU time equal or less than 6 × 10−7 seconds per time 
step and per point, with both weak and strong scaling.

The most notable feature of this solver is the use of a co-located grid combined with direction splitting. This is an impor-
tant step forward in view of its use combined with the immersed-boundary technique, to deal for example with situations 
with moving boundaries of complex shape, as in many fluid-structure interaction problems. In this case, a co-located grid 
reduces the required number of interpolations in comparison with the staggered case, further contributing to the compu-
tational efficiency of the solver, while decreasing its algorithmic complexity. A common disadvantage of using co-located 
grids is the need to annihilate the spurious modes of the pressure. In the present solver, by virtue of the properties of the 
operator used in the penalty step where the pressure is computed, no spurious pressure modes are observed, and there 
is no need to add a stabilisation term in the formulation. Like other co-located methods, the present approach conserves 
energy only in the limit of �t and �x approaching zero. Therefore, the space and time resolution required for the direct 
numerical simulation of turbulent flows is higher than in standard solvers, making the present approach less interesting for 
this kind of flows.

The second-order convergence in space and time has been assessed by using the solver on a manufactured solution of 
the Navier–Stokes equations. Several tests have also been presented to check the accuracy of the code with different sets of 
boundary conditions and flow phenomena, including steady and time-dependent, internal and external flows.
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