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On the Turbulence Modeling of
Blood Flow in a Stenotic Vessel
Blood flow dynamics in a stenosed, subject-specific carotid bifurcation is numerically
simulated using direct numerical simulation (DNS) and Reynolds-averaged
Navier–Stokes (RANS) equations closed with turbulence models. DNS is meant to provide
a term of comparison for the RANS calculations, which include classic two-equations
models (k–e and k–x) as well as a transitional three-equations eddy-viscosity model
(kT � kL � x). Pulsatile inlet conditions based on in vivo ultrasound measurements of
blood velocity are used. The blood is modeled as a Newtonian fluid, and the vessel walls
are rigid. The main purpose of this work is to highlight the problems related to the use of
classic RANS models in the numerical simulation of such flows. The time-averaged DNS
results, interpreted in view of their finite-time averaging error, are used to demonstrate
the superiority of the transitional RANS model, which is found to provide results closer to
DNS than those of conventional models. The transitional model shows better predictive
capabilities in terms of turbulence intensity, temporal evolution of the pressure along the
cardiac cycle, and the oscillatory shear index (OSI). Indeed, DNS brings to light the
locally transitional or weakly turbulent state of the blood flow, which presents velocity
and pressure fluctuations only in the poststenotic region of the internal carotid artery
during systole, while the flow is laminar during diastole. [DOI: 10.1115/1.4044029]

1 Introduction

Atherosclerosis is a common inflammatory disease character-
ized by the development of lesions, or plaques, in the inner coat of
arteries [1]. Atherosclerotic plaques develop and change over dec-
ades, leading to the narrowing of the artery cross section. This
phenomenon, called stenosis, changes the hemodynamic condi-
tions within the vessel and prevents a normal blood flow. Stenoses
may be dangerous when the hemodynamic conditions lead to the
rupture of the plaque, or facilitate the formation of thrombi,
obstructing the artery and thus precluding proper blood supply to
organs.

One of the most common areas for the formation of atheroscler-
otic plaques is the carotid sinus, which is the part of the internal
carotid artery (ICA) next to the carotid bifurcation. Since the ICA
supplies blood to the brain, its obstruction may be responsible for
an ischemic stroke, which is the second cause of death after coro-
nary artery disease [2] and the leading cause of long-term disabil-
ity [3], obviously affecting the health budget for a significant
amount, $38.6 billion in 2009 in the U.S. according to Ref. [4].

Over the years, several hemodynamic factors have been sug-
gested to influence the formation, development, and eventual rup-
ture of atherosclerotic plaques. Regions with low wall-shear
stresses (WSS) have been associated with high probability of pla-
que formation [5–9]. On the other hand, high and temporally
oscillating WSS are related to plaque’s destabilization and rupture
[10–12]. Moreover, as reported in Refs. [13–15], high WSS within
the stenosis may activate platelets, which, in recirculation areas
downstream of the stenosis, could form thrombi and occlude the
vessel. For these reasons, it is important to properly characterize
the hemodynamic behavior of a stenotic vessel.

To date, the severity of a stenosis and the related need for surgi-
cal intervention are often assessed only via the percentage of
occlusion of the arterial lumen, neglecting the geometrical details
of the plaque. However, such details play a fundamental role as
they influence the hemodynamic parameters and therefore sten-
oses with equal extensions might imply different degrees of dan-
ger [16]. The same authors also noted that in case of severe

stenosis, the pressure drop in correspondence of the vessel nar-
rowing could lead to a collapse of the artery.

Thanks to the current advances in computational fluid dynamics
(CFD), numerical simulations are nowadays considered a useful
tool to investigate the characteristics of such flows, providing a
level of detail, which is not attainable by in vivo experimental
techniques. The latter, such as phase-contrast magnetic resonance
imaging or ultrasound, can provide velocity measurements, but
suffer from low spatial resolution [17,18]. The characterization of
the blood flow through stenosed vessels has been approached in
various ways over the years. In the brief review that follows, our
focus is only on CFD-oriented studies, which are grouped accord-
ing to the complexity of the geometrical model.

1.1 Idealized Geometries. Early studies employed idealized
vessel geometries modified by geometrically simple narrowings
[15,19–23]. All considered a plane channel flow with a semicircu-
lar stenosis [19,22,23] or cosine-shaped stenosis [15,20] on a sin-
gle wall, or a semicircular stenosis on both walls [21]. The first
three studies investigated the potential of large eddy simulation
(LES), while the last two performed a direct numerical simulation
(DNS). Both techniques solve for the three-dimensional unsteady
velocity and pressure fields: the former models the small-scale tur-
bulent motions to some extent, while the latter is a no-model,
more computationally demanding approach that solves the flow
down to the smallest dissipative scales relevant for the flow
dynamics.

Other studies considered a cylindrical geometry, i.e., pipe flow.
For example, Varghese et al. [24,25] performed a DNS with axi-
symmetric and nonaxisymmetric stenosis with pulsatile inlet, and
highlighted that the laminar flow at the inlet section experiences
transition to turbulence when a slight asymmetry is present in the
geometry of the stenosis. This study clearly revealed the complex
nature of the flow, which is laminar upstream of the model steno-
sis, and becomes transitional and/or turbulent just downstream,
with possible relaminarization further downstream the narrowing
at certain phases of the cardiac cycle.

It was henceforth natural to explore the potential of transitional
models in the context of the Reynolds-averaged Navier–Stokes
(RANS) equations, which are computationally less expensive than
the DNS or LES approach. Transitional RANS models were
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assessed in Ref. [26], where various RANS and LES models were
compared on the same, idealized geometry; Tan et al. [27] com-
pared the performance of a transitional version of the k–x turbu-
lence model on the same idealized geometry introduced by
Varghese et al. [24]. All these studies suggested that, in the pres-
ent context, any model capable of “seeing” the laminar-turbulent
transition should be more appropriate.

1.2 Parametric Idealized Geometries. A further category of
studies involving simplified geometries concerns simulations car-
ried out on parametric geometries. This approach aims at repro-
ducing the real form of the carotid bifurcation by using simple
parametric shapes created by computer-aided design software.
The advantage of this strategy is that the shape and degree of the
stenosis can be easily modified by changing a few parameters,
allowing one to investigate how they affect the flow. Banks and
Bressloff [28] and Ghalichi and Deng [29] assessed the reliability
of the transitional version of the k–x model in this situation. The
first study demonstrated that the transitional model agrees better
with experimental data on the same geometry when compared to
the classic k–x model. The second one lacks a comparison with
DNS or experimental data, but clearly demonstrates the capability
of the transitional model to predict transition to turbulence above
a certain degree of stenosis.

1.3 Patient-Specific Geometries. A number of CFD studies
were carried out on patient-specific geometries obtained with
medical imaging techniques, such as magnetic resonance imaging
or computed tomography. Obviously, this approach is computa-
tionally more expensive, but provides the most clinically useful
information. In this context, Kaazempur-Mofrad Schirmer et al.
[30] and Kaazempur-Mofrad Schirmer and Malek [31] neglected
both transition and turbulence, and carried out a laminar simula-
tion using commercial software. In the second paper, a nonNewto-
nian rheological model is used to account for the shear’s
dependence of the viscosity. Stroud et al. [32] tried two variants
of the k–e model on a two-dimensional geometry with nonNewto-
nian fluid, and verified their inadequacy to represent the transi-
tional nature of the flow. Birchall et al. [8] used a high-Re k–e
model, usually adopted for fully turbulent flows, and failed to cor-
rectly describe the transitional and laminar behavior. Tan et al.
[33] and Dong et al. [34] explored the transitional RANS models
(in particular the SST-transition model), suggesting that the latter
might be more accurate than the classic two-equation models.
Also, the LES technique was investigated by Rayz et al. [35], who
compared it with the k–e model (the Chien variant) in a steady
case. As expected, the LES analysis better captured the transi-
tional nature of the flow, at the expense of an increased computa-
tional cost. In all these studies, the validation of the fluid
dynamics model, when present, is not performed on the same
patient-specific geometry, but on the simpler ones mentioned
before (pipe or channel flow).

Perhaps the most accurate description of the flow to date
through a patient-specific stenosed carotid bifurcation was pro-
vided by Lee et al. [36], who performed a DNS on a geometry
reconstructed by magnetic resonance imaging. They used a pulsa-
tile, fully developed inlet boundary condition, with blood consid-
ered as a Newtonian fluid and the vessel considered as a rigid wall.
The authors used a spectral-element solver, with no turbulence
modeling, on a mesh with approximately 1,854,000 grid points and
a time-step of Dt ¼ 10�5 s such that all the scales of motion are
resolved. Even if this approach is the only one that provides an
accurate description of the flow, its computational cost is large (in
this case, each simulated cardiac cycle took 20 h using 256 comput-
ing processors), and thus DNS is not a suitable method to produce
clinically relevant information within a short time.

1.4 Goal of This Work. From the summary presented above,
it emerges that turbulence RANS modeling for the blood flow in a

stenotic carotid bifurcation is not an entirely settled topic.
Although there seems to be consensus about the superiority of
transitional RANS models, to the best of our knowledge, no study
is available in the literature to document and quantify the
improvement of the results when moving from classical two-
equation turbulence models to transitional models in a realistic,
patient-specific geometry. To this purpose, a DNS carried out on
the same anatomy is necessary to provide the reference solution
upon which the critical evaluation of the turbulence models will
be based.

It is the main goal of this work to provide such quantification,
by critically comparing a set of DNS results with those of various
RANS models, all applied to the same realistic anatomy of a
carotid artery bifurcation affected by a stenosis. The focus will be
on the improvements made possible by a transitional model.

2 The Geometrical Model

With approval by the internal Technical Scientific Committee
of the ICS Maugeri IRCCS Tradate, a standard computer
tomography-angiography (CTA) of an adult male patient is used
to build a three-dimensional model of the carotid vessel. Figure 1
shows a sagittal section of the CTA: the presence of the contrast
medium increases the radiodensity of blood and allows to easily
distinguish the vessels from the surrounding tissues.

The segmentation process is carried out with the open-source
software 3D SLICER [37]. The carotid artery is first separated from
the rest of the CTA. Minor vessels (interested by a small fraction
of the flow rate) are then removed, and the geometry is eventually
exported in the stereolithography (STL) format. The final result is
shown on the right of Fig. 1, where the common carotid artery
(CCA) is visible in the lower part, the external carotid artery
(ECA) on the upper left and the ICA with an evident stenosis on
the upper right. Although simplified to some extent, this patient-
specific geometry is used in the rest of the work as a realistic
testbed to assess the blood flow dynamics.

2.1 Mesh Generation. Two different meshes are produced,
one suitable for the DNS and one for the RANS simulations.

A uniform background mesh is created first by defining a paral-
lelepiped containing the STL file, and then subdividing it into an
appropriate number of cubic cells. Although very simple, the con-
struction of the background mesh is important because it affects
quality and quantity of the cells obtained at the end of the meshing
procedure. The three-dimensional mesh that approximates,
according to suitably specified parameters, the STL surface is then
created by adding a number of layers near the solid boundaries, a
step particularly important for the (coarser) RANS mesh, owing to

Fig. 1 Left: sagittal section of the CTA, with the carotid artery
highlighted in white by the contrast medium. Right: the vessel
geometry employed in the present work, showing the stenosed
section A–A.
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the nature of the RANS models employed, which demand the first
computational cell being well embedded within the viscous layer.

Figure 2 shows the inlet section of the CCA for both meshes,
and vividly shows how the DNS mesh is much finer. Table 1 sum-
marizes some information about the quality of the two meshes
obtained: the RANS mesh has approximately 1.35� 106 cells,
whereas the DNS mesh has more than 30� 106 cells. Table 1
reports quantitative information about the two meshes, including
the maximum values of parameters related to the quality of the
mesh. The RANS mesh is designed to yield a problem of reasona-
ble computational size, whereas the rationale behind the design of
the DNS mesh is discussed below.

3 The Numerical Approach

In this work, four numerical simulations are carried out on the
same anatomy. The first one is a DNS, used for reference, while
the remaining three are RANS simulations employing eddy-
viscosity-type turbulence models to account for the effects of tur-
bulence on the mean velocity and pressure fields. Two models are
classic two-equation models, and the third is a transitional model,
that is supposed to deal better with flows where turbulence is
localized, either spatially or temporally. The rheological model of
the fluid, the treatment of the wall, and the boundary conditions
are identical. All the simulations are performed with the open-
source finite volume solver OpenFOAM, version 2.3.0.

3.1 Numerical Schemes. The mathematical modeling of the
blood flow is based on the incompressible Navier–Stokes equa-
tions which, for a Newtonian fluid without body forces, read

r � V ¼ 0 (1a)

@V

@t
þ V � rð ÞVþ 1

q
rp ¼ �r2V (1b)

where V and p are velocity and pressure, �¼ l/q is the kinematic
viscosity (ratio of dynamic viscosity and density). A second-order
linear scheme is employed for the discretization of the gradient
operator and a Gauss linear corrected scheme for the Laplacian
term in the momentum equation. The discretization of the nonlin-
ear terms of the momentum equation is carried out with a Gauss
linear scheme for the DNS, while a Gauss upwind scheme is used
for the RANS simulations to achieve convergence. All the

simulations use a second-order backward difference formula for
the temporal discretization.

3.2 Rheological Model and Treatment of the Vessel Walls.
It is well known that blood in oscillatory flow may exhibit non-
Newtonian characteristics, such as shear thinning, thixotropy, and
viscoelasticity [38–40]. However, the assumption of Newtonian
fluid is generally accepted [41] when dealing with large arteries.
This is corroborated also by Lee and Steinman [42], who eval-
uated the effects of different rheological models on the results of
CFD simulations on a patient-specific (nonstenotic) geometry, and
concluded that the uncertainties related to the constitutive relation
of the fluid are smaller than those deriving from the reconstruction
of the geometry. The same conclusion was obtained in Ref. [17]
with a laminar simulation. Hence, in our simulations, blood is
considered a Newtonian fluid with kinematic viscosity
� ¼ 3:8� 10�6 m2=s.

In Refs. [41] and [43], it is also mentioned that the compliance
of the vessel walls only marginally affects the results, in compari-
son with the uncertainty on geometry. Furthermore, the presence
of an atherosclerotic plaque causes a hardening of the vessel walls
(the meaning of the term atherosclerosis is precisely “hardening”
or “loss of elasticity”) such that in a stenosed vessel, the assump-
tion of rigid walls is even more reasonable. Hence, in our simula-
tions, the vessel walls are considered rigid.

3.3 Boundary Conditions. Boundary conditions must be
specified at four different portions of the computational domain:
the inlet (CCA), the two outlets (ECA and ICA), and the vessel
walls.

For the inlet section, in vivo velocity measurements at the CCA
of the patient, acquired by means of ultrasound technique, are
available during one cardiac cycle, lasting T¼ 0.9 s, as shown in
Fig. 3 where the systolic peak is at t¼ 0.1 s, and the diastolic min-
imum at t¼ 0 s and t¼ 0.9 s.

Although the inlet flow is laminar, assuming a parabolic shape
for the inlet velocity profile, as taken from the Hagen–Poiseuille
solution valid for an infinite cylindrical pipe, may be an oversim-
plification, owing to the flow unsteadiness. The relative

Fig. 2 Inlet section of the volume mesh at the CCA, for DNS
(left) and RANS (right)

Table 1 Parameters of the finer mesh used for the DNS simulation and the coarser one used for the RANS simulations

Nodes Faces Cells Max. aspect Ratio Max. non orthogonality Average non orthogonality Max. skewness

DNS 32,108,376 92,401,932 30,252,836 19,9 64,9 5,5 2,1
RANS 1,447,647 4,120,075 1,344,073 13,6 39,9 6,6 2,2

Fig. 3 Patient-specific temporal waveform of the blood flow
velocity at the center of CCA, as obtained from in vivo ultra-
sound measurements
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importance of the unsteady forces with respect to the viscous
forces in cylindrical pipe flow is expressed by the Womersley
number a. When a is small, viscous forces dominate, the velocity
profile is parabolic, and the centerline velocity oscillates in phase
with the driving pressure gradient [44]. At the inlet section, the
Womersley number computed for a cylindrical pipe whose diame-
ter D equates the hydraulic diameter of the CCA is

a ¼ 1

2
D

ffiffiffiffiffiffi
2p
�T

r
¼ 5:04 (2)

Since a¼ 5.04 is not necessarily small, the CCA inlet profile is
taken to be the Womersley profile, corresponding to the analytical
solution of fully developed pulsatile laminar flow in a circular
pipe [44]. Moreover, the profile is tilted to align with the local ori-
entation of the CCA axis. The remaining boundary conditions are
quite standard, and they are summarized in Table 2. The near-wall
region is resolved without resorting to wall functions, as the mesh
is designed to have the first cell well within the buffer layer
(yþ< 1). A special remark is in order for the outlet condition.
Although more detailed approaches are possible, we have decided
to employ the simple outflow condition that is very popular in
CFD applications. In fact, in several previous studies, even sim-
pler approaches were used, see for example the DNS study in Lee
et al. [36], where a predetermined 59:41 partitioning of the flow
rate between ECA and ICA is enforced. In our DNS and RANS
simulations, the flow rate partition is allowed to change during the
beat, and indeed assumes slightly varying values of 58%–61% in
the ECA and 39%–42% in the ICA.

3.4 Computational Details. The simulations are carried out
on the cluster GALILEO of the CINECA Italian Supercomputing
Center. The unsteady PIMPLE solver is used to simulate eight
cardiac cycles. The three RANS cases are initialized with the
result of a steady RANS simulation carried out with the SIMPLE
solver. To remove any influence from the initial conditions, the
first simulated cycle (either RANS and DNS) is discarded when
evaluating statistics.

The RANS cases took 25 h and 35 h on 36 cores for the classic
and transitional RANS, respectively. Hence, classic RANS mod-
els are computationally cheaper by approximately 30% for a given
mesh size. The DNS required 250 h on 144 cores to simulate one
cardiac cycle. The number of simulated cycles in DNS is eight
(including the initial one), which is similar to Ref. [36], where six
cardiac cycles were employed.

4 Turbulence Models

The dynamics of an incompressible flow of a Newtonian fluid
is fully described by the Navier–Stokes equations (1). The pres-
ence of turbulence in the blood flow is accounted for in the present
work via two alternative approaches: either the whole range of
dynamically relevant spatio-temporal scales of motion is solved
with DNS, or the RANS equations in conjunction with turbulence
modeling are solved at a reduced computational cost.

In this study, the DNS simulation is used as a reference to
evaluate the modeling error introduced by the various turbulence

models. Sections 4.1–4.3 briefly describe the main characteristics
of the two approaches.

4.1 Direct Numerical Simulation. The DNS performed in
this work may be defined as a quasi-DNS (q-DNS). The notion of
q-DNS is intended as in Ref. [45], which assessed the capabilities
of this approach for arbitrary polyhedral meshes. In a flow as com-
plex as the present one, it is not trivial to rigorously establish the
adequacy of a mesh to resolve all the spatial scales, short of carry-
ing out costly mesh-refinement studies. Our approach is that of
adopting a fine enough mesh to yield a DNS-like resolution, while
at the same time employing (and bearing the cost of) a subgrid-
scale LES turbulence model. The LES model is expected to affect
the simulation only marginally, through very small values of the
subgrid-scale turbulent viscosity, provided the mesh is sufficiently
fine. The advantage of the present approach is twofold: it provides
a backup should the resolution become marginal in some regions
of the computational domain and at some phases of the cycle, and
it lends itself to a straightforward a posteriori verification of the
adequacy of the spatial resolution.

The q-DNS mesh is designed on the basis of the following con-
siderations: The most convenient Reynolds number to describe
transition in pipe flow [46] is based on the bulk velocity, i.e., the
mean volumetric flow rate divided by the cross-sectional of the
vessel, and the hydraulic diameter. The cycle maximum value of
Reb at the inlet is Remax

b;in ¼ 1040 at t¼ 0.1 s. The largest value of
Reb in the whole domain takes place at the section B–B of Fig. 1,
where Dh¼ 3.23 mm, and is Remax

b;A�A ¼ 1136.
The q-DNS mesh used in this work consists of about 130 cells

over the diameter at the section A–A. In order to get a qualitative
feeling for the adequacy of the spatial resolution, we mention that
the DNS of a turbulent flow in a cylindrical straight pipe at
Reb¼ 4600 requires 96 mesh points over the radius of the pipe
section [47,48] to properly resolve all the scales of motion. In
other words, with a 4-times larger Re and a fully turbulent regime
only, 50% more points were used in the radial direction (which is
the most demanding one in terms of spatial resolution), which
suggests that the present mesh is sufficiently refined. It is worth
mentioning again that the quantitative analysis of the subgrid-
scale viscosity introduced by the LES model in the whole domain
will make it possible to verify these estimates a posteriori (see
Fig. 4 and related discussion below), thus confirming the ade-
quacy of the present mesh.

Although the LES turbulence model employed in this simula-
tion will be shown to have little to no effect on the results, its
main characteristics are briefly reported below. The LES model-
ing starts from a decomposition between the resolved large scales
and the modeled small (or subgrid) scales

uðx; tÞ ¼ ~uðx; tÞ þ u0ðx; tÞ

where the operator ~� is a low-pass filter.
In the filtered incompressible Navier–Stokes equations, the

residual stress tensor sr
ij appears, which is expressed after the

model introduced by Smagorinsky [49]

sr
ij ¼ �2�sgsðx; tÞ~Sij (3)

~Sij is the filtered shear field, and the subgrid-scale viscosity
�sgsðx; tÞ is defined as

�sgsðx; tÞ ¼ ðCsDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2~Sij

~Sij

q
(4)

where D is the mesh length scale, and Cs¼ 0.17 is a model
constant.

The local and instantaneous value of the subgrid-scale viscosity
�sgsðx; tÞ, proportional to the square of the mesh length scale,
determines the magnitude of the residual stresses, and provides a
proxy to assessing how much the LES model affects the results.

Table 2 Boundary conditions employed in the present work
for pressure and velocity; turbulence variables are only used in
the RANS calculations

Inlet Outlet Walls

Pressure zeroGrad zero zeroGrad
Velocity Womersley zeroGrad zero
k

k ¼ 3

2
ð0:015 � uÞ2 zeroGrad zero

kL zero zeroGrad zero
e e ¼ C

3=2
k =‘m zeroGrad zeroGrad

x x ¼ C
1=2
k =‘m zeroGrad zeroGrad
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During the cardiac cycle, the maximum value of �sgsðx; tÞ is found
to be 1:032� 10�6 m2 s�1, while an average over the cycle and
the spatial domain gives �sgsðx; tÞ ¼ 2:1� 10�8 m2 s�1. The mean
maximum value over the whole cycle is 5:322� 10�7 m2 s�1.
These values are, respectively, 27.2%, 0.57%, and 14.03% of the
blood molecular viscosity �, confirming that the mesh is suffi-
ciently refined, and that the present simulation can be rightfully
considered a q-DNS. Figure 4 shows the ratio �sgsðx; tÞ=� at
t¼ 0.1 s of a generic cardiac cycle, i.e., at the most demanding
phase, and confirms that even at this phase the value of the ratio is
always significantly smaller than 1.

4.2 Reynolds-Averaged Navier–Stokes Models. The RANS
approach avoids the solution of the time-dependent
Navier–Stokes equations, and resorts to the so-called Reynolds’
decomposition of the velocity (and pressure) field

uðx; tÞ ¼ uðxÞ þ u0ðx; tÞ

where uðxÞ is the mean velocity field obtained by applying the
time averaging operator to uðx; tÞ

u xð Þ ¼ lim
T!þ1

1

T

ðT

0

u x; tð Þ dt

The flow of interest (the cardiac cycle) is clearly time-
dependent; as such, it requires the solution of the unsteady
Reynolds-averaged Navier–Stokes equations, where the mean
velocity field retains a residual dependence upon time. In this
case, one assumes that two well-separated time scales T1 and

T2 � T1 exist in the flow. The Reynolds’ averaging operator can
be thus redefined as

u x; tð Þ ¼
1

T

ðT=2

�T=2

u x; tþ t0ð Þ dt0 T1 � T � T2

The unsteady Reynolds-averaged Navier–Stokes equations are
obtained by using this averaging operator

r � u ¼ 0 (5a)

q
@u

@t
þ qr � uuð Þ þ rp þr � Jd

Q ¼ 0 (5b)

where Jd
Q is the dissipative part of the stress tensor which for

Newtonian fluids can be written as

Jd
Q;ij ¼ �l

@ui

@xj
þ @uj

@xi

� �

The nonlinear term uu in Eq. (5b) can be rewritten as

uu ¼ u u þ u0u0

The quantity R ¼ qu0u0 is called Reynolds stress tensor, and a
total stress tensor T is introduced as

T ¼ Jd
Q þ R

Therefore, Eq. (5b) becomes

q
@u

@t
þ qr � u uð Þ þ rp þr � T ¼ 0 (6)

The equations just obtained cannot determine the mean velocity
field u as the link between u and R does not exist. Closure of the
problem can be achieved with the Boussinesq assumption

Rij ¼ �2�tSij

which states that every component Rij of the Reynolds stress ten-
sor is proportional to the tensor S of components

Sij ¼
1

2

@ui

@xj
þ @uj

@xi

� �

The proportionality factor �t, function of the position x, is the
eddy viscosity, and the various models differ in the way �t is
calculated.

The main features of the two well-known and commonly used
two-equations models employed in this work are described below,
followed by the transitional kT � kL � x model.

4.2.1 The k–e Model. The k–e model uses one differential
transport equation for the turbulent kinetic energy k, and another
for its dissipation rate e, complemented by an algebraic constitu-
tive relation linking �t to k and e. The variant employed here is
that described in Ref. [50], where the selection of the numerical
values of the various model constants is improved compared to
the original version [51].

The model equation for k is

Dk

Dt
¼ Pk � eþ @

@xj
� þ �t

rk

� �
@k

@xj

" #
(7)

where D=Dtð�Þ � @=@tð�Þ þ ui@=@xið�Þ is similar to a material
derivative, rk is a model constant, and Pk is the production rate of
k, given by

Fig. 4 Ratio msgs(x; t)/m at t 5 0.1s of a generic cardiac cycle.
Nonnegligible values are visible only in the poststenotic region
and in the final part of the ECA, but these values are smaller
than 1. The visible step changes (e.g., near the outlet sections)
are due to mesh density changes.
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Pk ¼ 2�tSijSij

The model equation for e descends from the previous Eq. (7) mul-
tiplied by e/k, and is

De
Dt
¼ C1e

e
k
Pk � C2e

e2

k
þ @

@xj
� þ �t

re

� �
@e
@xj

" #
(8)

where C1e; C2e, and re are model constants. Once Eqs. (7) and (8)
are solved, the eddy viscosity is obtained via the constitutive
equation

�t ¼ Cl
k2

e
(9)

4.2.2 The k–x Model. The k–x model developed by Wilcox
in Ref. [52] utilizes an equation for x (interpreted as the turbu-
lence frequency, and linked to the other turbulence variables by
the relation x ¼ e=kÞ instead of the equation for e. The equation
for k has the same structure of Eq. (7) and is written as

Dk

Dt
¼ Pk � b�xk þ @

@xj
� þ ak�tð Þ

@k

@xj

� �
(10)

The model equation for x is

Dx
Dt
¼ a

x
k
Pk � bx2 þ @

@xj
� þ ax�tð Þ

@x
@xj

� �
(11)

Once Eqs. (10) and (11) are solved, the eddy viscosity is calcu-
lated as

�t ¼
k

x

Tables 3 and 4 show the employed values of the model constants
for k–e and k–x, respectively.

4.3 The Transitional kT2kL2x Model. The transitional
RANS model considered in this work is the kT � kL � x model
developed in Ref. [53], as a follow-up of Ref. [54]. It is based on
the idea of bypass transition, according to which transition to tur-
bulence is related to the amplification of streamwise fluctuations
generated in the pretransitional region of a boundary layer [55].
These fluctuations are not strictly turbulent, and the concept of
laminar kinetic energy kL is useful to describe their development
till transition. For this reason, a third model equation for kL is
adopted in addition to the equations for x and the turbulent kinetic
energy kT. The fluctuations in the pretransitional region are sub-
ject to amplification when the dynamics of turbulence production
is sufficiently fast in comparison to that of molecular diffusion.
Therefore, the transition process is started when the ratio between

the temporal scales of turbulence production and molecular diffu-
sion reaches a critical value. The three model equations are
reported below:

DkT

Dt
¼ PkT

þRB þRN � xkT �DT þ
@

@xj
� þ aT

ak

� �
@kT

@xj

" #

(12a)

DkL

Dt
¼ PkL

�RB �RN �DL þ
@

@xj
�
@kL

@xj

� �
(12b)

Dx
Dt
¼ Cx1

x
kT

PkT
þ CxR

fW
� 1

� �
x
kT

RB þRNð Þ

�Cx2x
2 þ Cx3fxaTf 2

W

ffiffiffiffiffi
kT

p

d3

þ @

@xj
� þ aT

ax

� �
@x
@xj

" #
(12c)

In the equation for x, the production, dissipation, and diffusion
terms (respectively the first, third and fifth terms on the right side
of Eq. (12c)) are in parallel with the analogous terms of the equa-
tion for kT and kL. The turbulent kinetic energy is now

k ¼ kT þ kL (13)

The transition process is modeled through a transfer of energy
from kL to kT. The terms RB and RN have opposite sign in Eqs.
(12a) and (12b) and represent the bypass transition and natural
transition phenomena, respectively. Further information about the
terms in Eq. (12) and values of the constants can be found in the
above mentioned paper [53].

5 Direct Numerical Simulation Results

The results of the q-DNS need to be interpreted in a statistical
sense if a comparison with time-averaged RANS results has to be
made. Hence, the phase-averaging operator is introduced to carry
out an ensemble average over the available cardiac cycles; it is
defined for the generic quantity / at a point x in the computational
domain as follows:

h/i x; sð Þ ¼
1

N

XN�1

n¼0

/ x; sþ nTð Þ

where N¼ 7 is the number of cycles used for estimating the mean,
T¼ 0.9 s is the period of the cycle, and 0 	 s 	 0:9 s.

The standard deviation of / at each point in space x is defined
as

r x; sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1

n¼0

/ x; sþ nTð Þ � h/i x; sð Þ
� �2

vuut

Figure 5 plots the fields of the phase-averaged velocity magni-
tude at s¼ 0.1 s (corresponding to the systolic peak, see Fig. 3)
and its variance r2, on the midplane of the carotid bifurcation. On
the right panel, the difference in the phase-averaged mean field is
plotted when computed with N¼ 7 cycles and with N¼ 6; this dif-
ference is instrumental to appreciating the level of convergence of
the estimate of the mean, when only 7 samples are available.

The mean field (Fig. 5 left) emphasizes the strong jet exiting
the stenotic section, with a magnitude of the local velocity up to
2.8 m/s. The jet impacts the vessel wall shortly downstream of the
stenosis, where a vast low-momentum region can be appreciated.
The region where the mean velocity shows irregular features is
limited to the portion of the ICA downstream of the stenosis,

Table 3 Values of the constants in the k–e model, after Ref. [50]

C1e C2e Cl rk re

1.44 1.92 0.09 1.0 1.3

Table 4 Values of the constants in the k–x model, after
Ref. [52]

b� b a ak ax

0.09 0.072 0.52 0.50 0.50
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pointing at the presence of a turbulent and highly fluctuating flow,
together with a possible residual statistical error in the estimate of
the mean due to the small number of samples.

The statistical error associated with the averaging procedure is
hinted at by the examination of the variance field, which will be
used later in Sec. 6 to assess the validity of the comparison
between the DNS and the RANS simulations discussed in the next
section. The variance of the magnitude of the mean velocity vec-
tor is shown in Fig. 5 (center), and allows us to compute the stand-
ard error (SE) of our estimate of the mean value. The SE of the
mean is the standard deviation of the sample mean, which is an
estimate of the population mean. The standard error is usually
estimated by the sample estimate of the population standard devi-
ation (sample standard deviation) divided by the square root of the
sample size (for further information see Ref. [56]). At s¼ 0.1 s,
the largest variance is r2

max ¼ 0:5746 m2=s2, and the largest SE
associated with the mean velocity can be estimated as

SE ¼ rmaxffiffiffiffi
N
p ¼ 0:286

m

s
(14)

where N¼ 7 is the number of samples.
It is interesting to observe that this numerical value is quite

close to the value of the largest difference in the mean velocity
field that is obtained by removing the last sample. In fact, Fig. 5
(right) plots the spatial distribution of the difference between the
magnitude of the phase-averaged velocity field at s¼ 0.1 s

obtained averaging over seven cardiac cycles, i.e., jhuið7Þj and the

same quantity obtained with six cycles, i.e., jhuið6Þj. Differences
can be appreciated only in the poststenotic region, with a maxi-
mum value of 0.203 m/s. This is a relatively small value, consider-
ing that at this phase of the cycle, the mean velocity magnitude
can be larger than 2.8 m/s. Moreover, the prestenotic region and
the flow in the ECA are almost unaffected by the limited sample
size. Hence, in line with Ref. [36], the use of seven actual cycles
is considered as a good compromise between the need for an accu-
rate statistical description of the flow and the requirement of an
affordable computational cost.

We further present in Fig. 6 the behavior of the oscillatory shear
index (OSI), a quantity often used in the literature to quantify the
importance of the unsteady WSS. The OSI describes the cyclic
departure of the WSS vector from its predominant axial alignment
[57,58]. The OSI is a wall-based and time-independent scalar

quantity defined as follows (using phase-averaged values in the
case of DNS)

OSI ¼ 1

2
1�

			 ðT

0

hWSSi dt
			ðT

0

jhWSSij dt

0
BBB@

1
CCCA

The WSS vector is calculated as

WSS ¼ �ru � n

where n is the direction perpendicular to the vessel surface. By its
definition, the OSI ranges from 0 to 0.5, where a value of 0 means
that the instantaneous WSS vector is always aligned with the
time-averaged vector throughout the entire pulse and, thus, does
not oscillate at all. On the other hand, 0.5 means that the instanta-
neous vector is never aligned with the time-averaged vector, thus
indicating an extremely oscillating behavior. The importance of
the OSI and the ability of its correct prediction via numerical sim-
ulations reside in the direct link between OSI and the process of
rupture of the atherosclerotic plaque [59].

The OSI can be easily calculated as a postprocessing of DNS
results, and it is shown in Fig. 6. The DNS results produce large
values of the OSI in a few patches of the poststenotic region, as
well as in a few areas just upstream of the carotid bifurcation.
Oscillations of the WSS vector are also present in a small area
located in the final part of the ECA.

Finally, we use the fluctuating velocity field u0 to compute the
quantity k2, which is often employed [60] to visualize vortical
regions in the flow, identified by regions where k2 is negative. We
seek further evidence to the fact that the flow is not turbulent
everywhere and at every time, something that has profound impli-
cations on turbulence modeling.

The scalar quantity k2 is defined as the second eigenvalue of
the symmetric tensor S2 þ A2 where

S ¼ 1

2
ru0 þ ru0ð ÞT

 �

and

A ¼ 1

2
ru0 � ru0ð ÞT

 �

Fig. 5 Phase-averaged magnitude of the velocity vector (left)
and its temporal variance (center) at s 5 0.1 s. The ensemble
average is performed over seven cycles, and the temporal var-
iance gives a hint of the statistical error associated with the esti-
mate of the expected value of the mean. On the right, difference

between the mean velocity field jhui(7)j obtained averaging over
seven cycles, and the same quantity obtained over six cycles.

Fig. 6 Spatial distribution of the OSI index, as computed from
DNS, viewed from three different angles. Significant oscilla-
tions of the WSS vector are observed in localized portions of
the poststenotic region, in areas just upstream of the carotid
bifurcation, and in a small area in the final part of the ECA.
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are the symmetric and anti-symmetric part of the tensor ru0 [61].
Figure 7 shows isosurfaces of k2 at three different phases of a
cycle, i.e., s¼ 0.1 s, s¼ 0.2 s, and s¼ 0.3 s. It is evident that turbu-
lent structures appear quite downstream of the stenosis, especially
in the time interval between the systolic peak (Fig. 7 left) and the
end of the deceleration phase (Fig. 7 center), while in the remain-
ing parts of the domain, no structures can be seen. At s¼ 0.3 s
(Fig. 7 right), the vortical structures begin to disappear and after
that time the flow appears to be nearly laminar even in the ICA.
This confirms that, in a real carotid artery affected by stenosis, tur-
bulence is present only at certain phases of the cardiac cycle, and
only in the poststenotic region. For this reason, a turbulence
model capable to describe the transition (both in space and time)
from the laminar to the turbulent regime is expected to possess
particularly good predictive characteristics for the flow under
consideration.

6 Comparison Between Direct Numerical Simulation

and Reynolds-Averaged Navier–Stokes

Once the DNS database is available, the phase averaging proce-
dure allows isolating the background turbulent velocity fluctua-
tions from the mean velocity field. The latter is used to carry out a
first comparison between RANS and DNS calculations. Figure 8
shows the magnitude of the mean velocity field, plotted in the
midplane of the carotid bifurcation, predicted by the RANS mod-
els at s¼ 0.1 s. Although at first glance the three plots may seem
qualitatively similar, a comparison with Fig. 5 (left) reveals that
the transitional model better predicts the complex flow pattern
present in the poststenotic region after the strong jet exits the
restriction and impacts the vessel walls. The two classic RANS
models are unable to correctly reproduce the region with rela-
tively large velocity close to the wall on the right, clearly underes-
timating the value of the mean velocity.

The phase averaging procedure of the DNS results also allows
to compute the turbulent kinetic energy

k ¼ 1

2
hu02i þ hv02i þ hw02i
h i

(15)

for which every considered RANS model provides an explicit pre-
diction. A simple comparison then brings to light the error
incurred by the models. Figure 9 plots, for every turbulence
model, the difference between the RANS-predicted k and the
DNS-computed k. The comparison is carried out in the mid plane
of the artery bifurcation for two different phases of the cardiac
cycle. It emerges that, at both the considered phases, the transi-
tional turbulence model provides significantly better results, with

the whole field of k predicted with small error or no error at all, if
exception is made for a few small spots at s¼ 0.1 s in the postste-
notic impingement region. On the other hand, the classic RANS
models lead both to an incorrect prediction of k right at the steno-
sis and downstream, significantly overestimating the level of tur-
bulent fluctuations.

At s¼ 0.1 s, the region of the ICA downstream of the stenosis,
and in particular the impingement region, appears to be difficult to
deal with for both classic and transitional models. In fact, in this
area, the value of k is underestimated in small spots near the right
wall. The value of the standard error at s¼ 0.1 s as calculated
in Eq. (14) is important in interpreting this aspect. In fact, the
square of the SE associated with k can be quantified as
SE2 ¼ 0:082 m2=s2, a small value in comparison with the typical
differences observed in Figs. 9(b), 9(c), and 9(a). This observation
is essential to confirm that the differences visible in Fig. 9 are
related to actual differences in the k fields, and not just to the sta-
tistical error associated with finite-time averaging.

A further comparison based on the OSI is shown in Figs. 10
and 11. The first provides an overall view of the OSI surface field,
and conveys the idea that the transitional model is vastly superior
to the classic RANS models in predicting a spatial distribution of
OSI that closely resembles the DNS one, both in terms of absolute
values and location of the regions where the flow deviates from a
nonoscillatory behavior. The distribution in the area just upstream
the stenosis is well approximated by the transitional model, while
the classic RANS models clearly underestimate the oscillations of
the WSS vector. The same happens in the poststenotic region,
where the transitional model performs better than the classic
RANS, although it does not fully succeed in accurately describing
the complex pattern predicted by the DNS.

Figure 11 provides a detailed, zoomed view of the stenotic
region, and confirms that the distribution in the ICA is well
approximated only by the transitional model, that is able to cap-
ture the localized ridged peak of the OSI along the ascending
branch.

As a final comparison, we examine the temporal behavior of
pressure, spatially averaged over the sections B–B and C–C intro-
duced in Fig. 1. Plotted in the graphs is the difference between the
section-averaged pressure pav and the external reference pressure
pext outside the vessel walls. Obviously, in the DNS, case pressure
is also phase-averaged over the available cardiac cycles. The evo-
lution over time, and in particular its minimum values, are impor-
tant because, as recalled in the Introduction, negative pressure

Fig. 7 Isosurfaces for k2 5 2250; 000 s21, colored by the vortic-
ity magnitude, in an instantaneous flow field at different phases
of the cycle: s 5 0.1, left; s 5 0.2, center; s 5 0.3, right. The color
scale is expressed in 1/s. Turbulent structures are present
downstream of the stenosis mainly between t 5 0.1 s and
t 5 0.2 s.

Fig. 8 Magnitude of the mean velocity vector as computed by
the RANS models at s 5 0.1 s: k2kL2x model (left), k–e model
(center), k–x model (right). Quantities are plotted in the mid-
plane of the carotid bifurcation. By comparison with Fig. 5 (left),
the transitional model is seen to be much better at reproducing
the complex flow pattern in the poststenotic region after the jet
impacts the vessel wall.
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could lead to a collapse of the vessel in correspondence of the
stenosis.

None of the turbulence model provides entirely satisfactory pre-
dictions. The transitional model, however, consistently shows
improved predictions compared to the standard two-equations
models. In section B–B (Fig. 12), slightly downstream of the ste-
nosis, all the turbulence models underestimate the minimum value
of pressure during the systolic phase (s¼ 0.1 s), although the clas-
sic nontransitional models are off by more than twice the error
observed for the transitional model. The difference between the
DNS value and the RANS-computed values remains visible at
later stages of the cycle, where pressure remains negative but
decreases toward zero: RANS values are consistently lower than
the DNS one, and the transitional model is the nearest to DNS.

In section C–C (Fig. 13), located after the stenosis but also after
the impingement region, the absolute values of pressure are lower,
but the improvement brought about by the use of the transitional
model is more evident. In fact, after s¼ 0.2 s, the kT � kL � x
points practically lie on the DNS curve. Substantial differences
are visible not only at the systolic phase and immediately

Fig. 9 Difference kRANS2kDNS between the turbulent kinetic
energy kRANS predicted by the RANS models and the same
quantity kDNS computed by the DNS, shown at the midplane of
the artery bifurcation. Top: s 5 0.1 s; bottom: s 5 0.2 s. The tran-
sitional model (left) provides significantly better results overall,
especially in the important region immediately downstream of
the stenosis, where the two-equation models significantly over-
estimate the level of turbulent fluctuations. (a) kT 2kL2x, (b)
k–e, (c) k–x, (d) kT 2kL2x, (e) k–e, and (f) k–x.

Fig. 10 OSI as computed from transitional (left), k–e (center)
and k–x (right) RANS models. If compared with Fig. 6 (right),
the transitional model is seen to much better reproduce the
DNS results. Two-equations RANS model predict nearly zero
OSI (nonoscillatory WSS) except for small regions upstream
the carotid bifurcation.

Fig. 11 OSI as computed from transitional (left), k–e (center)
and k–x (right) RANS models: zoom on the poststenotic region.
If compared with Fig. 6 (left), the transitional model predicts
oscillations in the poststenotic region in accordance with the
DNS result, but the complex pattern is not correctly repro-
duced. Two-equations RANS models significantly underesti-
mate the extent of WSS vector oscillation in the poststenotic
region.

Fig. 12 Temporal evolution of the difference pav2pext between
the section-averaged pressure pav over the section B–B, as
identified in Fig. 1, and the external pressure pext. The negative
pressure peak at s 5 0.1 s is overestimated by all models, but
the transitional model is significantly more accurate.
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thereafter (s¼ 0.1 s and s¼ 0.15 s) but also at these phases, and
the transitional model better approximates the results of the DNS.

7 Conclusions

The blood flow in a stenosed, patient-specific, carotid bifurca-
tion has been numerically simulated by solving the unsteady
RANS equations. The aim of the study is to ascertain whether
transitional RANS models, that consider the transition process
from the laminar to the turbulent regime, are well suited in such
an application, by providing significant improvements in solution
accuracy at negligible additional computing cost. To quantify the
improvements objectively, a companion DNS has been carried out
on the same anatomy, thus providing for the first time a direct
comparison of the outcome of standard and transitional RANS
model in a patient-specific setting.

The DNS has been effective at describing the complexity of the
flow, indicating that turbulent motions only exist at the beginning
of the cardiac cycle near the systolic peak, and only downstream
of the stenosed section. Hence, turbulence is confirmed, in this
specific flow, to be a localized phenomenon, both in space and
time.

A comparison between DNS and RANS with different models
has proved that the three-equation transitional model is definitely
more accurate in describing the solution in terms of turbulence
kinetic energy (which is severely overestimated by classic models,
especially when and where the flow is nearly laminar), OSI, and
temporal evolution of the pressure. It is noteworthy that the classic
models provide results, which are in very good mutual agreement,
while differing from those of the transitional model significantly.
Hence, the role of the accompanying DNS study on the same
patient-specific anatomy is essential to identify and interpret such
differences.

It should be remembered that transitional models bring along a
(limited) computational overhead when compared to the classic
models. Although a comparison at the same computational cost
has not been carried out, the present mesh is such that all models
provide essentially mesh-independent results. Hence, the superior-
ity of the transitional model is assessed, at least when reasonable
mesh sizes are employed.

Even if the kT � kL � x model used in this work is still not
accurate enough to achieve a perfect description of the flow

statistics as observed by the DNS, the class of transitional RANS
models appears to be the correct choice for the type of simulations
considered in the present work, where the flow is not fully turbu-
lent. In order to improve the description of the flow in such simu-
lations, more recent transitional models could be used. For
example, the new k � x� v2 model recently developed [62] pro-
poses an alternative to the laminar kinetic energy approach
involved in the present work, and was proved to have more capa-
bilities, especially for free shear flows.

The boost in solution accuracy envisaged by the use of transi-
tional model, together with additional developments that have not
been employed in the present work but are already or are becom-
ing available (more accurate reconstruction of geometry, nonNew-
tonian rheological models, deformable walls, more physically
consistent outlet boundary conditions), will pave the way for the
use of patient-specific RANS simulations as a valuable tool in the
clinical practice.

A certain amount of idealization clearly exists in the present
study, as in the simplified anatomy, the assumption of rigid walls,
some of the boundary conditions, and the rheological model.
However, its focus is on the potential advantages of transitional
RANS models versus the classic ones, which are often used in the
literature but cannot capture the transitional nature of the flow.
Our work demonstrates that classic RANS models may provide
incorrect estimates of important fluid dynamics quantities,
whereas transitional models possess much better predictive capa-
bilities at a comparable computational cost.
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