

1

Skin-friction drag reduction described via the Anisotropic Generalised Kolmogorov Equations

Alessandro Chiarini¹, Davide Gatti², Maurizio Quadrio¹

European Drag Reduction and Flow Control Meeting, 26-29 March 2019, Bad Herrenalb, Germany

¹Politecnico di Milano, ²Karlsruhe Institute of Technology-KIT

How do DR techniques affect

the production, transport and dissipation

of turbulent stresses

among scales and in space?

Turbulent channel flow forced via spanwise oscillating walls

Controlled channel vs Reference channel

At Constant Power Input

Constant Power Input: an alternative to CFR and CPG

The input power is kept constant

Gatti et al. JFM 2018

Starting point: OW effect on the global energy fluxes

Starting point: OW effect on the global energy fluxes

Controlled channel via OW with $A^+ = 4.5$ and $T^+ = 125$ $\Delta \phi = +0.009$ $\phi = 0.598$ MKE TKE $egin{aligned} \Pi_{
ho} &= 1 \ \Delta \Pi_{
ho} &= 0 \end{aligned}$ $\epsilon = 0.499$ $\Delta \epsilon = +0.089$ P = 0.403 $\Delta P = -0.008$ $\Pi_{c} = 0.098$ $\Delta \Pi_{c} = +0.098$

Starting point: OW effect on the global energy fluxes

Controlled channel via OW with $A^+ = 4.5$ and $T^+ = 125$ $\Delta \phi = +0.009$. $\phi = 0.598$ MKE TKE $\Pi_p = 1$ $\epsilon = 0.499$ $\Delta \epsilon = +0.089$ $\Delta \Pi_{p} = 0$ P = 0.403 $\Delta P = -0.008$ $\Pi_{c} = 0.098$ $\Delta \Pi_{c} = +0.098$

Global variations \rightarrow detailed changes

Anisotropic Generalised Kolmogorov Equations

AGKE: Exact budget equation for $\langle \delta u_i \delta u_i \rangle$ $\delta u_i = (u_i (\mathbf{X} + \mathbf{r}/2, t) - u_i (\mathbf{X} - \mathbf{r}/2, t))$ X1 $u_i({\bf X} - {\bf r}/2)$ $u_i(\mathbf{X} + \mathbf{r}/2)$ r_k ri $\begin{cases} \mathbf{X} = (\mathbf{x}_1 + \mathbf{x}_2)/2 \\ \mathbf{r} = \mathbf{x}_2 - \mathbf{x}_1 \end{cases}$

Dependent on:

AGKE: extension of the Generalised Kolmogorov Equation to anisotropy

GKE: Exact budget equation for the scale energy

$$\langle \delta u_i \delta u_i \rangle = tr \begin{bmatrix} \langle \delta u \delta u \rangle & \langle \delta u \delta v \rangle & \langle \delta u \delta w \rangle \\ & \langle \delta v \delta v \rangle & \langle \delta v \delta w \rangle \\ sym & \langle \delta w \delta w \rangle \end{bmatrix} = \langle \delta u \delta u \rangle + \langle \delta v \delta v \rangle + \langle \delta w \delta w \rangle$$

AGKE: extension of the Generalised Kolmogorov Equation to anisotropy

GKE: Exact budget equation for the scale energy

$$\langle \delta u_i \delta u_i \rangle = tr \begin{bmatrix} \langle \delta u \delta u \rangle & \langle \delta u \delta v \rangle & \langle \delta u \delta w \rangle \\ & \langle \delta v \delta v \rangle & \langle \delta v \delta w \rangle \\ sym & \langle \delta w \delta w \rangle \end{bmatrix} = \langle \delta u \delta u \rangle + \langle \delta v \delta v \rangle + \langle \delta w \delta w \rangle$$

What if $\langle \delta u \delta u \rangle \gg \langle \delta v \delta v \rangle, \langle \delta w \delta w \rangle$? The GKE does not account for anisotropy...but the AGKE do! Amount of turbulent stresses at location **X** and scale (up to) **r**

JFM, in preparation

Production, transport and dissipation of turbulent stresses in both the Space of scales & Physical space

AGKE

$$\frac{\partial \phi_{k,ij}}{\partial r_k} + \frac{\partial \psi_{k,ij}}{\partial X_k} = \xi_{ij}$$

$$\frac{\partial \phi_{k,ij}}{\partial r_k} + \frac{\partial \psi_{k,ij}}{\partial X_k} = \xi_{ij}$$

$$\phi_{k,ij} = \underbrace{\langle \delta U_k \delta u_i \delta u_j \rangle}_{\text{mean transport}} + \underbrace{\langle \delta u_k \delta u_i \delta u_j \rangle}_{\text{turbulent transport}} - \underbrace{2\nu \frac{\partial}{\partial r_k} \langle \delta u_i \delta u_j \rangle}_{\text{viscous diffusion}}$$

flux of $\langle \delta u_i \delta u_j \rangle$ throughout scales **r**

$$\boxed{\frac{\partial \phi_{k,ij}}{\partial r_k} + \frac{\partial \psi_{k,ij}}{\partial X_k} = \xi_{ij}}$$

$$\psi_{k,ij} = \underbrace{\langle U_k^* \delta u_i \delta u_j \rangle}_{\text{mean transport}} + \underbrace{\langle u_k^* \delta u_i \delta u_j \rangle}_{\text{turbulent transport}} + \underbrace{\frac{1}{\rho} \langle \delta \rho \delta u_i \rangle \delta_{kj}}_{pressure transport} + \underbrace{\frac{1}{\rho} \langle \delta \rho \delta u_j \rangle \delta_{kj}}_{pressure transport} - \underbrace{\frac{\nu}{2} \frac{\partial}{\partial X_k} \langle \delta u_i \delta u_j \rangle}_{\text{viscous diffusion}}$$

flux of $\langle \delta u_i \delta u_j \rangle$ in space **X**

$$\frac{\partial \phi_{k,ij}}{\partial r_k} + \frac{\partial \psi_{k,ij}}{\partial X_k} = \xi_{ij}$$

source/sink of $\langle \delta u_i \delta u_j \rangle$ at scale ${\bf r}$ and location ${\bf X}$

$$\boldsymbol{\xi_{ij}} = \underbrace{-\langle u_k^* \delta u_j \rangle \delta \left(\frac{\partial U_i}{\partial x_k}\right) - \langle u_k^* \delta u_i \rangle \delta \left(\frac{\partial U_j}{\partial x_k}\right) - \langle \delta u_k \delta u_j \rangle \left(\frac{\partial U_i}{\partial x_k}\right)^* - \langle \delta u_k \delta u_i \rangle \left(\frac{\partial U_j}{\partial x_k}\right) + \frac{1}{\rho} \left\langle \delta p \frac{\partial \delta u_i}{\partial X_j} \right\rangle + \frac{1}{\rho} \left\langle \delta p \frac{\partial \delta u_j}{\partial X_i} \right\rangle \underbrace{-4\epsilon_{ij}^*}_{\text{dissipation}}$$

AGKE

$$\begin{split} \boxed{\frac{\partial \phi_{k,ij}}{\partial r_k} + \frac{\partial \psi_{k,ij}}{\partial X_k} = \xi_{ij}} \\ \phi_{k,ij} &= \underbrace{\langle \delta U_k \delta u_i \delta u_j \rangle}_{\text{mean transport}} + \underbrace{\langle \delta u_k \delta u_i \delta u_j \rangle}_{\text{turbulent transport}} - \underbrace{2\nu \frac{\partial}{\partial r_k} \langle \delta u_i \delta u_j \rangle}_{\text{viscous diffusion}} \\ \psi_{k,ij} &= \underbrace{\langle U_k^* \delta u_i \delta u_j \rangle}_{\text{mean transport}} + \underbrace{\langle u_k^* \delta u_i \delta u_j \rangle}_{\text{turbulent transport}} + \frac{1}{\rho} \langle \delta p \delta u_i \rangle \delta_{kj} + \frac{1}{\rho} \langle \delta p \delta u_j \rangle \delta_{ki}}_{\text{pressure transport}} - \underbrace{\frac{\nu}{2} \frac{\partial}{\partial X_k} \langle \delta u_i \delta u_j \rangle}_{\text{viscous diffusion}} \\ \xi_{ij} &= \underbrace{-\langle u_k^* \delta u_j \rangle \delta \left(\frac{\partial U_i}{\partial x_k} \right) - \langle u_k^* \delta u_i \rangle \delta \left(\frac{\partial U_j}{\partial x_k} \right) - \langle \delta u_k \delta u_j \rangle \left(\frac{\partial U_i}{\partial x_k} \right)^* - \langle \delta u_k \delta u_i \rangle \left(\frac{\partial U_j}{\partial x_k} \right) + \underbrace{\frac{1}{\rho} \langle \delta p \frac{\partial \delta u_i}{\partial X_j} \rangle}_{\text{production}} + \underbrace{\frac{1}{\rho} \langle \delta p \frac{\partial \delta u_i}{\partial X_j} \rangle}_{\text{pressure strain}} \underbrace{-4\epsilon_{ij}^*}_{\text{dissipation}} \\ \end{bmatrix}$$

9

AGKE tailored to channel flow

$$\langle \delta u_i \delta u_j \rangle (\mathbf{X}, \mathbf{r}) \rightarrow \langle \delta u_i \delta u_j \rangle (\mathbf{Y}, \mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{y}}, \mathbf{r}_{\mathbf{z}})$$

$$\frac{\partial \phi_{k,ij}}{\partial r_k} + \frac{\partial \psi_{ij}}{\partial Y} = \xi_{ij}$$

How do DR techniques affect

the production, transport and dissipation

of turbulent stresses

among scales and in space?

We investigate the changes of the AGKE terms

• Two Direct Numerical Simulations (with and without wall oscillation) at CPI

 ${\it Re}_{ au}=$ 200 for the uncontrolled case

Wall oscillation parameters: $A^+ = 4.5$, $T^+ = 125.5$

Quadrio & Ricco JFM 2004

• Six smaller Direct Numerical Simulations at CPI

 $A^+ \in (0, 30), \ T^+ \in (100, 125)$

Source of $\langle \delta u \delta u \rangle$ in the $r_x = 0$ space

Production of $\langle \delta u \delta u \rangle$

Production of $\langle \delta u \delta u \rangle$

Shift of $P_{11,m}$ ($\Delta Y^+_{P_m} \sim 3$)

Production of $\langle \delta u \delta u \rangle$

What if A^+ is incremented?

 $\Delta Y^+_{P_m}$ increases with A^+ (%DR)

What if A^+ is incremented?

 ΔK^+ increases with A^+ (%DR)

Links with well-known results?

Vertical shift Δy of the maximum of $P_{\langle uu \rangle}$

Links with well-known results?

Vertical shift Δy of $\phi_{\langle uu \rangle} = 0$

Single-point statistics

- Shift of $\langle uu \rangle_m$
- Shift of $P_{\langle uu \rangle,m}$
- Shift of $\phi_{\langle uu \rangle} = 0$

Two-points statistics

- Shift of $\langle \delta u \delta u \rangle_m$
- Shift of $P_{\langle \delta u \delta u \rangle, m}$
- Shift of the attached to the wall plane

$\text{OW} \rightarrow \text{Virtual shift of the wall}$

AGKE terms in turbulent channel forced via spanwise oscillating walls

For the streamwise normal stress..

- Shift of the production activity of $\langle \delta u \delta u \rangle$ towards larger wall-distances
- Shift of the main transport of $\langle \delta u \delta u \rangle$ towards larger wall-distances
- Both shifts increase with A

Outlook: source of $\langle -\delta u \delta v \rangle$

15

Thanks for your kind attention!

For questions or suggestions:

alessandro.chiarini@polimi.it davide.gatti@kit.edu maurizio.quadrio@polimi.it

$\langle \delta u \delta u \rangle$ in the $r_x = 0$ space

$\langle \delta u \delta u \rangle$ in the $r_x = 0$ space

$\langle \delta u \delta u \rangle$ in the $r_x = 0$ space

What if A^+ is incremented?

 ΔY_m^+ increases with A^+ (%DR)

 $\langle uu \rangle$

Vertical shift Δy of $\phi = 0$

Source of $\langle -\delta u \delta v \rangle$

20

 $P_{12} > 0$ in all the domain

 $\Pi_{12} < 0$ in (almost) all the domain

 ϵ_{12} is negligible in all the domain

Production of $\langle -\delta u \delta v \rangle$

20

How does P_{max} changes with A^+ ?

Pressure strain of $\langle -\delta u \delta v \rangle$

Pressure strain of $\langle -\delta u \delta v \rangle$

How does Π_{min} changes with A^+ ?

Source of $\langle -\delta u \delta v \rangle$

20

How do DR techniques affect

the production, transport and dissipation

of turbulent stresses among scales and in space?

Conclusion

•
$$\langle \delta u \delta u \rangle$$

- The maximum production occurs at larger wall-distances
- The largest transports are shifted towards larger wall-distances

•
$$\langle -\delta u \delta v \rangle$$

- The maximum of the production increases and occurs at larger wall-distances
- The negative minimum of the pressure strain decreases

AGKE: unifies two Classic approaches to turbulence

Gain

Loss

150

AGKE: unifies two Classic approaches to turbulence

The AGKE consider together the space of scales (\mathbf{r}) and the physical space (\mathbf{X})

Generalised Kolmogorov Equation

Amount of turbulent energy at location ${\bf X}$ and scale (up to) ${\bf r}$

Davidson et al. JFM 2006

Production, transport and dissipation of turbulent energy in both the

Space of scales & Physical space

• GKE