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In the present work, the recently introduced [1] Anisotropic

Generalised Kolmogorov Equations, or AGKE, are used to

investigate how skin-friction drag reduction alters the inter-

component and multiscale processes of turbulence.

The AGKE are budget equations for the second-order struc-

ture function tensor 〈δuiδuj〉, where δui is the increment of

the i-th velocity component at position X and separation r,

i.e. δui = ui (X + r/2) − ui (X − r/2). In the general case,

〈δuiδuj〉depends upon time and six independent spatial vari-

ables, i.e. the six coordinates of X and r; they reduce to four

in the indefinite plane channel geometry. The AGKE read:

∂〈δuiδuj〉
∂t

+
∂φk,ij

∂rk
+
∂ψk,ij

∂Xk
= Pij + Πij +Dij (1)

where φij and ψij are fluxes of 〈δuiδuj〉 along directions of

statistical inhomogeneity and among scales respectively, and

Pij , Πij and Dij denote the production, pressure strain and

viscous dissipation. Overall, the AGKE describe the produc-

tion, transport and dissipation of the components of the scale

Reynolds stresses in the combined physical (X) and scale (r)

space and in time (t), and bring to light properties of the

turbulent flows which can not be highlighted by conventional

single-point budgets or spectra.

Figure 1 is a typical AGKE result for a statistically station-

ary turbulent channel flow. As in such flow the only statisti-

cally non-homogeneous direction is the wall-normal one, the

AGKE terms are defined in the (rx, ry , rz , Y ) four-dimensional

space; x, y and z denote the streamwise, wall-normal and

spanwise directions. Additionally, the space of wall-normal

scales is defined only for |ry |/2 < Y , owing to the finite ex-

tension of the channel in the wall-normal direction. Figure

1 shows the source term of 〈−δuδv〉, i.e. the r.h.s. of Eq.1:

ξ12 = P12 + Π12 + D12, in the rx = 0 space. Large positive

and negative values of ξ12 are found to define two distinct

regions in the buffer layer, both involving small wall-normal

scales ry . The region with positive ξ12 corresponds to inter-

mediate spanwise scales (10 ≤ r+z ≤ 50), and the other region

to very small ones (r+z ∼ 0). In the buffer layer, except at

the scales corresponding to the region of large positive values,

ξ12 is negative everywhere. On the contrary, at larger Y , ξ12
is slightly positive at all scales. The positive and negative

peaks of ξ12, respectively placed at (r+y , r
+
z , Y

+) ∼ (0, 20, 13)

and (r+y , r
+
z , Y

+) ∼ (19, 0, 12), highlight the different scales

of maximum contribution; similarly to the budget of 〈−uv〉,
as D12 is negligible in the overall four-dimensional space, the

Figure 1: Colour plot of ξ+12 in the rx = 0 space for a turbu-

lent channel flow. Contour lines increment by 0.02, with zero

indicated by a thick line.

positive contribution to ξ12 entirely comes from P12, whereas

the negative one from Π12.

Armed with this novel tool, we investigate how a well-

known skin-friction drag reduction technique, namely the

spanwise-oscillating wall [3], affects this picture. Two (with

and without wall oscillations) Direct Numerical Simulations

at Constant Power Input (CPI) [2] (carried out at a value of

the power-based Re equivalent to Reτ = 200 for the unforced

flow) are carried out, with wall oscillation amplitude and pe-

riod set at A+ = 4.5 and T+ = 125.5, i.e. near the maximum

net energy saving condition [4]. Hereafter, unless otherwise

indicated quantities are expressed in power units (see [2] for

their definition), whereas the + superscript denotes quantities

expressed in actual viscous units.

The comparison of AGKE terms in the controlled and

non-controlled cases shows that the oscillating wall modifies

production, transport and dissipation of the components of

the 〈δuiδuj〉 tensor. For example, for the 〈δuδu〉 component,

the oscillating wall shifts the main transfers towards larger

wall-distances. This is shown in figure 2. Here the main

field lines of fluxes φ11 and ψ11, representative of the trans-

fers of 〈δuδu〉 in space and among scales, are shown in the

rx = rz = 0 plane for both the controlled and non-controlled

cases. In both cases these field lines originate in the buffer

layer at ry = 0. In the first part of their path they follow
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Figure 2: Colour plot of the source term ξ11 of 〈δuδu〉 in the

rx = rz = 0 space. Gray lines are tangent to the vector of the

fluxes. Left: controlled case. Right: non-controlled case.
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Figure 3: Colour plot of ξ12 in the rx = ry = 0 plane. Top:

Non-controlled case. Bottom: Controlled case. The black

cross and white circle denote respectively the positions of the

positive maximum and negative minimum of ξ12 in the plane.

an oblique line described by Y + = r+y /2 + K+
11, parallel to

the lower boundary of the domain. This implies a transfer of

〈δuδu〉 towards larger wall-distances and towards larger wall-

normal scales. Finally, they vanish at larger wall distances

at null wall-normal scales, i.e. at the ry = 0 axis, or in cor-

respondence of the wall, i.e. in the lower boundary of the

domain; accordingly, at the smallest scales and in the near-

wall region 〈δuδu〉 is completely dissipated via viscous effects.

The effect of the oscillating wall is clearly visible as a shift of

these transfers towards larger wall-distances: K+
11 is found to

increase from 14 in the non-controlled case, to 17. Interest-

ingly, such changes are not evident for the 〈δvδv〉 component:

K+
22 = 40 in both the controlled and non-controlled cases.

On the contrary, in the off-diagonal component〈−δuδv〉the

oscillating wall changes the wall-normal location and spanwise

scale of the maximum production (P12,m) and those of the

minimum pressure strain (Π12,m), the main sink contributor.

The latter is moved slightly closer to the wall, whereas the

former away from; both occur at smaller rz . This is shown

in figure 3 where the source term ξ12, for both the controlled

and non-controlled cases, is shown in the rx = ry = 0 plane,

and the positions of its maximum and minimum shown with

symbols. The positive peak of ξ12 shifts towards larger Y and

slightly smaller rz together with P12,m, whereas its relative

minimum in this plane shifts towards smaller Y and smaller rz ,

together with Π12,m. The increased offset between the wall-
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Figure 4: Dependence of the maximum of the production of

〈δuδu〉 (P11,m) on the amplitude of the oscillating wall (A).

Blue circles: intensity (expressed in power units, left axis)

versus A+. Black asterisks: wall-normal position (expressed

in actual wall units, right axis) versus A+.

normal positions of P12,m and Π12,m results in a larger sink

for 〈−δuδv〉 in the buffer layer at r+z > 40 and Y + ∈ (7, 20),

and in a more intense source at slightly larger wall distances,

in a region characterized by r+z > 150 and Y + ∈ (25, 50).

The most important changes in the AGKE statistics are

then studied as a function on the amplitude of the oscillating

wall (hence, indirectly, of the amount of drag reduction) in a

second phase of the study. Six additional (smaller) DNSs are

conducted where the amplitude of the oscillations is varied

up to A+ = 30. The analysis highlights several interesting

trends. As an example, figure 4 shows how the maximum of

the production of 〈δuδu〉 (P11,m) and its position change with

A. The value P11,m of the maximum is found to decrease

with A+. On the contrary, its wall-normal position Y +
P11,m

increases significantly with A+ from Y + ∼ 12 to Y + ∼ 19,

seemingly approaching an asymptotic value.

At the conference, the most important changes induced by

flow control on the energy fluxes will be addressed, with a

view to isolate the key mechanism behind skin-friction drag

reduction.
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