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ABSTRACT
Anefficient algorithm for computing the terms appearing in theGen-
eralised Kolmogorov Equation (GKE) written for the indefinite plane
channel flow is presented. The algorithm, which features three dis-
tinct strategies for parallel computing, is designed such that CPU
and memory requirements are kept to a minimum, so that high-
Re wall-bounded flows can be afforded. Computational efficiency is
mainly achieved by leveraging the Parseval’s theorem for the two
homogeneous directions available in the plane channel geometry.
A speedup of 3-4 orders of magnitude, depending on the problem
size, is reported in comparison to a key implementation used in the
literature. Validation of the code is demonstrated by computing the
residual of the GKE, and example results are presented for channel
flows at Reτ = 200 and Reτ = 1000, where for the first time they are
observed in the whole four-dimensional domain. It is shown that
the space and scale properties of the scale-energy fluxes change for
increasing values of the Reynolds number. Among all scale-energy
fluxes, the wall-normal flux is found to show the richest behaviour
for increasing streamwise scales.
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1. Introduction

Characterising a turbulent flow from the energetic standpoint has always been an impor-
tant endeavour in turbulence research: laminar and turbulent flow regimes possess differ-
ent energy requirements, and such distinction often becomes of paramount importance in
applications.

The seminal contributions by Richardson [1] and Kolmogorov [2] described how, in
the idealised setting of an homogeneous and isotropic flow, turbulent energy is distributed
within a hierarchy of eddies, characterised by different length scales; the concept of energy
cascade was introduced, which is understood as a flux of energy across scales. Such a
description also applies to inhomogeneous flows, but in this case an additional spatial
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redistribution of energy occurs, giving rise to a spatial energy flux. In the geometrically
simple setting of an indefinite plane channel, where the wall-parallel directions are statis-
tically homogeneous, the spatial flux takes place in the wall-normal direction only. Hence,
in wall turbulence two types of energy fluxes coexist: one is best described in the space of
scales (eddy size), while the other is naturally observed in physical space (wall distance).

In the last 30 years, also thanks to the comprehensive information available fromDirect
Numerical Simulations (DNS) of turbulent wall flows in canonical geometries, the struc-
ture of a wall-bounded flow in the wall-normal direction has been thoroughly studied;
the flow domain is subdivided into several regions where different phenomena con-
tribute to the energy budget with different relative importance. Such analysis is nowadays
the accepted way of describing energy exchanges in wall-bounded turbulent flows [3,4],
although it does not provide yet an entirely satisfactory description; one of the reasons lies
in the missing link with the energy cascade concept.

A complementary approach capable to provide an unified view of the energetics of
turbulent flows, is progressively gaining acceptance in the recent years. It hinges upon a
differential equation that, in its original form valid for homogeneous and isotropic turbu-
lence, can be traced back toKolmogorov himself [2,5]. The so-calledKolmogorov equation,
counterpart of the Kármán-Howarth equation for the correlation function, is an exact
transport equation for the second-order structure function, i.e. the variance of velocity
differences between two points x and x′ in the fluid domain. The Kolmogorov equation
has been generalised to inhomogeneous anisotropic flows by Hill [6,7], thus paving the
way towards a unified description of energetically relevant phenomena in both physical
and scale spaces.

This extended form, known as the generalised Kolmogorov equation (GKE), has been
used in several papers to study the energetics of inhomogeneous flows in the complete
space of scales and positions. For the sake of brevity, we mention here only few of them. A
generalised form of the Kolmogorov equation was studied in Danaila et al. [8] to address
the influence of the spatial inhomogeneity of the large scales on the energy budget of a
turbulent channel. In the same geometry and exploiting DNS data, Marati et al. [9] used
the GKE to systematically characterise for the first time the spatial flux and energy cascade
processes of the different flow regions of wall turbulence. This approach was further devel-
oped byCimarelli et al. [10,11]who also discussed turbulencemodelling issues [12,13]. The
GKE terms have been computed also in [14] by using particle image velocimetry measure-
ments, and in [15] by using DNS data, to study the most inhomogeneous and anisotropic
regions in the wake of a grid-generated turbulence and of a square prism, respectively.
The inhomogeneous development of the scale-by-scale budgets in a turbulent round jet
was studied in Burattini et al. [16], while [17] addressed the intermediate wake of two-
dimensional wake generators. Finally, the Kolmogorov equation has been also studied in
thermally-driven turbulent flows together with its counterpart equation for the scalar field,
the so-called Yaglom equation, in Danaila et al. [18] and Gauding et al. [19]; Togni et al.
[20] for the first time employed the exact equations to study Rayleigh–Bénard convection.

A seldomdiscussed but key feature of theGKE is the extent of its computational require-
ments. The GKE is an equation for the second-order structure function, which in the
most general case depends upon six independent variables, the coordinates of the two
points x and x′. This is the fundamental reason why computing the GKE terms is so chal-
lenging. From an experimental point of view, it is difficult to simultaneously access the
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three-dimensional velocity and pressure fields at two points while spanning the whole flow
domain. When such information is available, e.g. when processing a DNS dataset, the size
of the computational problem associated with the evaluation of the GKE terms becomes
huge, with obvious consequences in terms of both computing time and memory require-
ments. Indeed, the number of operations required to compute every term of the GKE is
of the order of NtN2 where Nt is the number of flow snapshots available for time average,
andN is the total number of points used to discretise the flow domain. SinceN is in excess
of one million even for a basic DNS in a plane channel flow at low values of the Reynolds
number, and quickly increases as Re increases, one must be aware that computing the GKE
terms may require way more computational effort than creating the DNS database itself.
The availability of an efficient and memory-friendly GKE computer code is essential to
address high-Re flows, which bring about computational problems of rapidly growing size.

A further difficulty posed by the GKE lies in the graphical representation of the six-
dimensional compound space of scales and positions. Even for the simplified case of the
plane channel, which possesses two homogeneous directions, the independent variables
are four (the separations in the three spatial directions, and the wall-normal position),
and dealing with variables defined in a four-dimensional space remains quite complex.
Indeed, in the first paper where the terms of the GKE were actually computed for a chan-
nel flow [9], further assumptions had to be made, and the GKE was integrated over a
square plane of edge r in a wall-parallel plane, under the assumption of zero wall-normal
separation. The simplifications made in [9] reduced the independent variables down to
two (the square edge r and the wall-normal coordinate). Over the years, the analysis of
the GKE was further developed and refined: Cimarelli et al. in [10] and, more recently,
in [11] extended the analysis to two different three-dimensional subspaces, whereas [34]
considered different two-dimensional subspaces of the five-dimensional GKE defined for
a streamwise-developing turbulent flow with separation.

Aim of the present paper is to describe an implementation of a new code for computing
the terms of the GKE equation. The code, that is made available to the community with an
open-source license, is tailored to the plane channel flow and is designed from scratch to
be fast and efficient, both in terms of CPU and memory requirements. In fact, efficiency
is key if one plans to observe how energy dynamics is modified as the Reynolds number
increases. The implementation is properly tested and validated by using DNS databases
produced ad hoc; the budget residual is examined to assess both the correctness of the
implementation and the quality of the statistical convergence. The main design choices
that make our implementation so much faster than the existing one(s) are discussed and
motivated, and computing times are measured to report a speedup that, for the problems
tested, reached four orders of magnitude with respect to current implementations. Two
channel flow cases at Reτ = 200 and at Reτ = 1000 are used to present example results
and to analyse the effects of the Reynolds number in the multidimensional space of scales
and positions; for the first time, theGKE terms are observed in the four-dimensional space.

The structure of the paper is as follows. First in Section 2 the second-order structure
function and the GKE in its specialised form tailored to a plane channel flow are briefly
introduced. Then in Section 3 the implementation of our code is described in detail,
together with the main design choices and the parallel strategies. Finally, in Section 4 the
performance of the new implementation is discussed, and in Section 4.3 for the first time
an analysis of the GKE in the complete four-dimensional space is provided.



460 D. GATTI ET AL.

2. The generalised Kolmogorov equation

We consider an indefinite plane channel flow, with a Cartesian coordinate system in which
x and z denote the homogeneous streamwise and spanwise directions respectively, whereas
y is the wall-normal direction. The corresponding velocity components are ũ, w̃ and ṽ.
The index notation xi, ũi is also used, with i=1,3 identifying the homogeneous directions
and i=2 the wall-normal one. The Reynolds decomposition is used in such a way that
upper- and lower-case symbols denote mean and fluctuating quantities, i.e. ũi = Ui + ui
and p̃ = P + p. The two parallel walls are separated by a gap of width 2h, and the Reynolds
number for the problem is defined by using h as the reference length scale. If the friction
velocityuτ is used as the velocity scale, the Reynolds number becomes the so-called friction
Reynolds number:

Reτ = uτh
ν

,

with ν the kinematic viscosity of the fluid.
Let x = X − r/2 and x′ = X + r/2 be two points inside the fluid domain, separated by

a separation vector r as exemplified in Figure 1, and let X be the mid-point. The quantity
δu = u′ − u is the difference between the two velocity vectors evaluated at x′ and x.

The GKE is a budget equation in conservative form for the second-order structure
function

〈
δu2

〉
, defined as the variance of the velocity difference

〈δu2〉 = 〈δuiδui〉 , (1)

where repeated indices imply summation, and angular brackets denote ensemble average
as well as averaging along homogeneous directions, if available, and over time, if the flow
is statistically stationary.

〈
δu2

〉
is considered [21] to represent the energy associated with

the scales of motion up to r, and for that reason is here referred simply to as scale energy.

Figure 1. Definition of the structure function
〈
δu2

〉
, variance of the velocity difference between the two

points x and x′ with separation vector r, in the geometry of the plane channel.
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Such interpretation is phenomenologically consistent with the observation that any eddy
of size L � |r| induce a negligible velocity different at a separation r. Literally, the GKE
provides an exact balance equation between second- and third-order moments of a central
quantity in turbulence studies, that is the velocity increment δui [22]. Furthermore, the
GKE is also an exact equation for the rate of dissipation of turbulent kinetic energy, ε,
which is associated with third-order moments of the velocity increment at every scale and
position. Only in this context, the second- and third-order moments assume their physical
interpretation of scale energy and scale-energy fluxes.

In general,
〈
δu2

〉
is function of the separation vector r and the mid-point X, i.e. function

of 6 independent variables. An exact equation for
〈
δu2

〉
was derived first by Kolmogorov in

[5] for isotropic turbulence, and has been later generalised to inhomogeneous flows. We
follow Cimarelli et al. [11] and write below the GKE in the specialised form valid for the
indefinite plane channel flow. This form of the GKE was previously introduced in [9], and
later refined with the addition of a couple missing terms. In the case of the plane channel
flow, the number of independent variables reduces to 4, as for themid-pointX only its wall-
normal coordinate Y = X2 matters. Moreover, the mean flow possesses only one non-zero
component with the present choice of coordinate system; this component only varies along
the wall-normal coordinate, i.e. 〈U〉= (U(y), 0, 0). Thus, the GKE for plane channel flow
reads:

∂
〈
δu2δui

〉
∂ri

+ ∂
〈
δu2δU

〉
∂rx

− 2ν
∂2

〈
δu2

〉
∂ri∂ri

+ ∂
〈
v∗δu2

〉
∂Y

+ 2
ρ

∂
〈
δpδv

〉
∂Y

− ν

2
∂2

〈
δu2

〉
∂Y2

= −2〈δuδv〉
(
dU
dy

)∗
− 2

〈
δuv∗〉δ (

dU
dy

)
− 4

〈
ε∗〉. (2)

In this expression, the asterisk denotes the arithmetic average of a variable evaluated at x
and x′, ν is the kinematic viscosity and ε = ν(∂ui/∂xj)(∂ui/∂xj) is the pseudo-dissipation
rate of turbulent kinetic energy. The GKE contains source terms, written at the r.h.s., which
act as production or dissipation depending on their sign. Since the l.h.s. can be written as
divergence of fluxes, the equation written in conservative form becomes:

∇r · � (Y , r) + ∂φ (Y , r)
∂Y

= ξ (Y , r) . (3)

In Equation (3),� andφ are the flux in the space of scales and the flux in the physical space,
whereas ξ is the source term. The operator ∇r is the gradient operator in the r space. By
comparing Equation (3) with Equation (2) one easily arrives at the definitions of the fluxes
and of the source term. The scale-energy flux vector � is

� (Y , r) = 〈
δu2δu

〉− 2ν∇r
〈
δu2

〉+〈
δu2δU

〉
ex, (4)

where ex is the unit vector in the streamwise direction. The spatial flux of scale energy φ is

φ (Y , r) = 〈
v∗δu2

〉+ 2
ρ

〈
δpδv

〉− ν

2
∂
〈
δu2

〉
∂Y

. (5)

In both fluxes, viscous terms are recognised, which quantify viscous transport of scale
energy, and turbulent terms, which quantify turbulent transport of scale energy. In the lat-
ter, the second-order structure function is coupled with turbulent fluctuations. Moreover,
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one term in φ accounts for pressure-velocity coupling, and another one in � accounts for
the coupling with the mean flow. Finally, the scale-energy source is

ξ (Y , r) = −2〈δuδv〉
(
dU
dy

)∗
− 2

〈
δuv∗〉δ (

dU
dy

)
− 4

〈
ε∗〉, (6)

and the flow regions with ξ > 0 (production larger than dissipation) are those where the
scale energy is produced.

As for every conservation law, also in the GKE fluxes are defined up to an arbitrary
solenoidal field, as demonstrated for example by Jiménez [23]. In other words, the fluxes
of scale energy as in the above definitions are not uniquely defined, since they are obtained
from amanipulation of the governing equations which leads to a specific form of the GKE.
The present form is selected as it carries a direct correspondence with the more familiar
form of the single-point turbulent kinetic energy equation.

3. Structure of the GKE computer code

In this section, the implementation of an efficient strategy for computing the budget of the
GKE tailored to the indefinite plane channel flow, i.e. Equation(2), is discussed. The code
only inherits a small set of design choices from the accompanying DNS code, described
in [24], mainly the programming language and the type of spatial discretisation. Hence,
its organisation, designed to minimise CPU and memory requirements, carries a general
interest. The source code, which is entirely self-contained, is freely available via GitHub at
this link. The source code is quite short (about 100 lines for the core part) and having it at
hand can be helpful to understand the code structure described below.

Computing the budget of the GKE is typically a post-processing step which operates
on a database previously created by a DNS code. Irrespective of the discretisation strat-
egy adopted in the DNS one can generally assume that the database is composed of (or
can be translated into) a number Nt of temporal snapshots of velocity fields. Every snap-
shot obeys the set of boundary conditions of the differential problem (periodicity at the
inflow/outflow, no-slip and no-penetration at the solid walls) and is available with veloc-
ity values known in a collocated form at every point of a Cartesian grid. In particular,
we assume data are available on a finite set of wall-normal positions, denoted as yi, with
−1 ≤ i ≤ ny + 1. The two walls are located at y=0 and y=2h, corresponding to i=0 and
i = ny. The values i=−1 and i = ny + 1 denote ghost nodes used to compute y-derivatives
at the walls (see Figure 2). The specific structure of the databases produced and used in this
paper is further discussed in Section 4, where results are presented.

The main characteristics of the code are: (i) all the GKE terms, i.e. 
rx , 
ry , 
rz , φ, ξ
and

〈
δu2

〉
, are rewritten in a form that involves multiple but simpler correlations: for the

homogeneous directions, the Parseval theorem is then used to compute them in Fourier
space, with huge computational advantage (see §3.1); (ii) the GKE terms, computed in a
four-dimensional domain, depend on the two independent variables Y and ry; however,
in computing them we switch to the equivalent variables Y1 and Y2, defined as Y1 = Y −
ry/2 and Y2 = Y + ry/2. This simplifies taking advantage of their symmetries (see §3.3) to
further reduce the computational effort and the amount of memory required by the code.

https://github.com/davecats/gke
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Figure 2. Sketch of the grid points in the wall-normal direction: the indices i= 0 and i = ny identify
the grid points at the two walls, y= 0 and y= 2h. The grid possesses two ghost nodes for i=−1 and
i = ny + 1.

3.1. Products instead of correlations

When homogeneous directions are available, as in the present case of the indefinite plane
channel, the GKE terms can be rewritten in a different form, which allows computing them
in a simpler and computationally efficient way. As an example, we focus in the following
on a specific term, i.e. 〈δuδv〉 appearing in the definition (6) of the source ξ , but the same
reasoning holds true in general for all terms appearing in the definition of the GKE. With
simple algebra the term 〈δuδv〉 can be rewritten in terms of the two-point correlation

〈uv〉(rx, rz;Y1,Y2) =〈u(x,Y1, z)v(x + rx,Y2, z + rz)〉,
as follows

〈δuδv〉(rx, ry, rz,Y) = −〈uv〉(rx, rz;Y1,Y2) −〈vu〉(rx, rz;Y1,Y2)

+〈uv〉(0, 0;Y1,Y1) +〈uv〉(0, 0;Y2,Y2). (7)

The notation emphasises that we are concerned with the homogeneous directions only.
Equation (7) above transforms 〈δuδv〉 into a sum of four correlations. As the present

problem enjoys two homogeneous directions, for which a representation in Fourier space is
always possible and indeed very popular in the DNS practice, correlations in Fourier space
can be advantageously computed by resorting to the Parseval theorem, thus achieving the
same computational efficiency that lies at the root of the pseudo-spectral method for the
DNS of incompressible channel flow.

The GKE terms are thus not computed directly, but assembled after computing in
Fourier space the required set of cross-correlations. If again the term 〈uv〉(rx, rz;Y1,Y2)

in Equation ((7)) is taken as an example, this two-points correlation is defined as (omitting
for simplicity the temporal average):

〈uv〉(rx, rz;Y1,Y2) =
∫ +∞

−∞

∫ +∞

−∞
u(x,Y1, z)v(x + rx,Y2, z + rz) dxdz (8)

and can be efficiently computed with a single product in Fourier space via the Parse-
val theorem. If û(Y1) and v̂(Y2) are the two-dimensional Fourier transforms of u(x, z)
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and v(x, z) respectively at planes Y1 and Y2, the Parseval theorem provides the following
identity: ∫ +∞

−∞

∫ +∞

−∞
u(x,Y1, z)v(x + rx,Y2, z + rz) dxdz = F−1(û∗(Y1)v̂(Y2)), (9)

where the∗ superscript denotes the complex conjugate, and the operatorF−1 is the inverse
Fourier transform.

It must be mentioned that a few terms of Eq.(2) contain triple correlations; one such
example is

〈uuv〉(rx, rz;Y1,Y2) =〈u(x,Y1, z)u(x,Y1, z)v(x + rx,Y2, z + rz)〉
related to the scale flux vector �. This term is computed as:

〈uuv〉(rx, rz;Y1,Y2) = F−1(ûu∗(Y1)v̂(Y2)),

where ûu(Y1) denotes an in-plane convolution in the Fourier space that can be efficiently
computed as a product in the direct space:

ûu(Y1) = F (u(x,Y1, z)u(x,Y1, z)).

3.2. General structure of the programme

The algorithm computes the terms of the GKE by analysing a DNS database composed of
Nt temporal snapshots.

It consists in three steps (see Figure 3) that are sequentially carried out to obtain the
full set of GKE terms. In Step 1, all the required (e.g. mean) quantities are derived from
the velocity fields. Then, in Step 2 the GKE terms are computed, by scanning the database
once again and progressively averaging the contributions of every snapshot. Computing
terms that require wall-normal derivatives, i.e. the viscous parts of the fluxes φ and 
ry , is
deferred to Step 3, exploiting the commutative property of derivative and average opera-
tors to increase efficiency. On the contrary, the viscous parts of 
rx and 
rz are separately
computed for each snapshot and then averaged at the end of Step 2. Indeed, during Step
2 the algorithm allows under-sampling in the rx and rz directions, a feature that becomes
progressively interesting as Re increases. Since for maximum accuracy the derivatives of〈
δu2

〉
in the rx and rz directions are computed spectrally in the Fourier space, which would

be unpractical when
〈
δu2

〉
is known on a reduced grid, it is in general preferable to compute

these fluxes in Step 2. Clearly, if undersampling is not used, computing the viscous parts of

rx and 
rz too can be deferred to Step 3, thus increasing further the overall efficiency.

Hereafter the three steps of the algorithm are described in more detail.

3.2.1. Step 1
During Step 1, the instantaneous and mean quantities needed for the computations of the
GKE terms are derived from the velocity fields. The pressure p, for example, is often neither
required nor computed by the DNS solver, when the Navier–Stokes equations are solved
in their velocity-vorticity form [3]. Hence Step 1 is where the Poisson equation is solved
to obtain the pressure field corresponding to each velocity field. Similarly, if the database
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Figure 3. Steps leading from the DNS database to the GKE terms. The core calculations take place in
Step 2.

only contains the wall-normal components of velocity and vorticity, this is where the full
velocity field is explicitly computed.Moreover, while scanning thewhole set of Nt temporal
snapshots, the mean velocity profile U, the mean shear dU/dy, the mean pressure P and
the pseudo-dissipation ε profiles are computed.

3.2.2. Step 2
Step 2 is the core of the algorithm,wheremost of theGKE terms are computed. Its structure
is illustrated by the flowchart in Figure 4, where for simplicity the average over the differ-
ent snapshots is omitted. Within this Step, the data structure �(Y1) resides on disk and
contains the full set of the GKE terms at position Y1, and the structure �(Y1) is a memory
array where � is stored. Finally, γ (Y1,Y2) contains contribution to the GKE terms from
the pair (Y1,Y2).

Step 2 is made by two main nested loops. At the outer level, the code loops on Y1; at the
inner level, on Y2. Since all the GKE terms are either symmetric or anti-symmetric with
respect to an inversion of the wall-normal axis, one half of the channel is used to increase
the size of the statistical sample. Hence, Y1 scans through half the grid points in the wall-
normal direction, i.e. loops from y−1 to yny/2, but for each (Y1,Y2) also the terms from
the pair (2h − Y1, 2h − Y2) are computed to contribute to the statistics, with the sign of
each term properly set according to the relevant symmetry. For each Y1, the GKE terms
are computed for Y2 ranging from Y1 to 2h − Y1. As shown below in Section 3.3, when
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Figure 4. Structure of the core part of Step 2. The outer loop on j1 spans half the set of wall-normal posi-
tions to double the statistical sample. The inner loop on j2 exploits symmetries to minimise computing
requirements.
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Y2 < Y1 orY2 > 2h − Y1 the GKE terms for the pair (Y1,Y2) are computed from available
information by exploiting symmetries.

In the flowchart of Figure 4, the indices i1 and j1 are used to select the wall-normal
position Y1, and the indices i2 and j2 to select Y2. The index i identifies the pair (Y1 = yi1 ,
Y2 = yi2) at which the GKE terms are actually evaluated; the index j identifies the corre-
sponding pair (Y1 = yj1 ,Y2 = yj2) at which those terms are actually used. It is i= j when
yi1 < h, and i = ny − j when yi1 > h.

The sequence of operations performed by Step 2 for each snapshot is as follows. First,
the entire snapshot is read and copied in memory. In the outer loop, for each yj1 the GKE
terms for this position, i.e. �(j1), already computed and stored on disk while processing
the previous velocity field, are read and copied into the memory array �. Then, in-plane
Fourier convolutions terms at yi1 , as for example ûu(yi1), are computed in physical space.
Now, in the inner loop on j2, for each pair (yi1 , yi2) the contribution γ to the GKE terms at
(yj1 , yj2) is computed; first, the in-plane Fourier convolutions at yi2 are evaluated in physical
space; and then the required cross-plane correlations, as for example 〈uv〉(rx, rz; yi1 , yi2), are
computed in Fourier space; lastly, the correlations are assembled and added to�. To double
the size of the statistical sample, this set of computations is performed twice: for i= j and
i = ny − j

After the inner j2 loop is complete, � is eventually written to disk as the updated �(j1).
At the very end, i.e. when the last temporal snapshot is reached, before updating data on
disk the actual time average is obtained by dividing for the total number of samples.

3.2.3. Step 3
Step 3 of the algorithm is the last one, and involves computing the wall-normal derivatives
of

〈
δu2

〉
, which appear in the viscous parts of 
ry and φ: the viscous contributions to 
ry

and φ contain derivatives with respect to ry and Y respectively. The native space where the
GKE terms are computed involvesY1 andY2 as independent variables, hence the following
relations are used to convert derivatives between the two pairs of coordinates:

∂

∂ry

〈
δu2

〉= 1
2

(
∂

∂Y2
− ∂

∂Y1

)〈
δu2

〉
(10)

∂

∂Y
〈
δu2

〉= (
∂

∂Y2
+ ∂

∂Y1

)〈
δu2

〉
. (11)

The Y1- and Y2-derivatives are discretised via finite-differences, albeit not compact, with
a five-points computational stencil that for the sake of consistency is identical to the one
employed in the DNS code used to produce the database. Symmetries are invoked also
within this step when values of

〈
δu2

〉
to fill the stencil are needed in correspondence of

non-available wall-normal positions (Y1,Y2) (see Sec. 3.3).

3.3. Exploiting symmetries

In Ref. [10] all the symmetries that characterise the terms of the GKE are comprehensively
described.We take advantage of these symmetries to avoid computing the GKE terms with
Y2 < Y1, Y2 > 2h − Y1, or Y1 > h.
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Figure 5. Graphical representation of the symmetries used to recover the GKE terms in the planes of
the four-dimensional domain (rx , rz , Y1, Y2)with Y1 < h and Y2 > 2h − Y1. The dashed line denotes the
centreline of the channel, i.e. Yi = h. From the left panel to the central one we use the inversion of y,
whereas from the central one to the left one the inversion of r.

However, these terms may be needed when wall-normal derivatives near the Y1 and Y2
boundaries have to be computed, and the stencil includes missing terms. These terms can
be recovered by resorting to their symmetric or anti-symmetric behaviour with respect to
an inversion of both y (statistical symmetry) and r (analytical symmetry). Here we show
how symmetries can be exploited to obtain the missing GKE terms in the (Y1,Y2) planes
with Y2 < Y1, or Y1 < h and Y2 > 2h − Y1, which is the most general case.

We deal first with the case Y2 < Y1. As shown in the two rightmost panels of Figure 5,
a GKE term at a given (rx, rz,Y1,Y2) with Y2 < Y1 is related to an available one via the
inversion of the separation vector r. For example, for the scale energy we have:〈

δu2
〉
(rx, rz,Y1,Y2) = 〈

δu2
〉
(−rx,−rz,Y2,Y1).

Of course the sign of a specific term must be changed according to its symmetric or anti-
symmetric behaviour with respect to an inversion of r. These symmetries are listed in
Ref. [10].

In the case where Y1 < h and Y2 > 2h − Y1, as shown in Figure 5, the missing GKE
terms can be obtained by combining two symmetries. First the inversion of y is used, arriv-
ing at an intermediate point, where the GKE terms are again not computed: taking again〈
δu2

〉
as example: 〈

δu2
〉
(rx, rz,Y1,Y2) = 〈

δu2
〉
(rx, rz, 2h − Y1, 2h − Y2).

At this point, the term although still unavailable qualifies for the previous case. Hence, as
above the inversion of the separation vector can be used, arriving at available GKE terms:〈

δu2
〉
(rx, rz,Y1,Y2) = 〈

δu2
〉
(−rx,−rz, 2h − Y2, 2h − Y1).

Again, the signs of GKE terms must be properly changed by combining the two steps. The
sign of 
rx , 
rz and φ changes, whereas the sign of 
ry , ξ and

〈
δu2

〉
is preserved.

3.4. Undersampling and parallelisation

In Step 2 the code allows for undersampling along the rx and rz directions, in order to
reduce the memory requirement that would otherwise become excessive at high Re. Cor-
relations are always computed on the full grid to exploit the Fourier representation, but
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when the structure γ is assembled a smaller grid can optionally be used, which modu-
lates the spatial resolution. The code provides for the specification of two thresholds for
each of the separations rx and rz. When the separation is below the first threshold, full
resolution is retained; between the two thresholds a level of undersampling can be cho-
sen, and above the second threshold an higher level of undersampling can be selected.
Since undersampling is performed a posteriori, i.e. at the time of storing the computed
statistics to disk, it causes no loss of accuracy. This applies also to the accuracy of all differ-
ential operators, which are applied to the full-resolution data and are thus not altered by
undersampling.

In terms of parallel computing, the code for the GKE analysis can be run serially, as it is
optimised for RAM and CPU and provides for arbitrary undersampling of the data. Obvi-
ously, though, it is often convenient to exploit parallel computing. The code is equipped
with three distinct parallel strategies, which can be combined at will depending upon the
available computing hardware, the size of the database, and its access pattern. Note that the
present implementation does not address parallelisation of the I/O operations.

First of all, a shared-memory (be it multi-core and/or multi-CPU) parallelisation is
available: the user can select the number of threads to be spawned. This is particularly
convenient on standard computing machines equipped with a low number of cores, for
which the scaling properties in reducing the computing time for the convolutions is very
good.

In addition, the possibility exists of a domain decomposition in the wall-normal direc-
tion, so that the result space is subdivided into slices, and each slice is assigned to a different
computing machine (distributed memory), inheriting what is implemented in the DNS
solver [24]. This possibility rests upon the local character of the finite-differences discreti-
sation in the wall-normal direction. Each machine carries out independent calculations,
so the parallel efficiency is the highest, although the entire velocity field must reside in the
RAM of each process. Moreover, this strategy contributes to improving I/O, by employing
more than one motherboard/controller/hard disk at the same time.

Lastly, the key Step 2 of the algorithm can be carried out via independent jobs, each
of them dealing with only a fraction of the database. The jobs are fully independent and
this strategy too trivially achieves linear scaling. There is a caveat, however: to achieve
the best performance, the database must be stored in a distributed fashion. If this is not
the case, there is potential for input/output contention, and the scalability of this strat-
egy largely depends on the specific storage hardware available. Another minor drawback
of this strategy is that between Step 2 and Step 3 an additional merging operation is
required to bring together the various partial statistics and to carry out the final ensemble
average.

Scaling results for the first strategy will be presented in the next Section. It is noteworthy
that the other two strategies have basically 100% efficiency. Which combination of parallel
strategies is best largely depends on the specific situation, the problem size and hardware
availability.

In closing, we mention that by commenting out a single line of code the user can easily
switch between the version described above, where the entire snapshot is read at once and
resides in RAM, and an alternate version where, for a given snapshot and a given i1 plane,
the i2 planes are read one at a time. The first version obviously achieves a smaller I/O load,
at the price of a larger RAM occupation.



470 D. GATTI ET AL.

4. Results

We describe in this Section a typical GKE analysis, with emphasis on the computa-
tional performance of the code. We also provide some example results to highlight the
novel features made possible by an efficient code, like the simultaneous access to the
four-dimensional space.

4.1. Computational details

TwoDNS databases are created for an indefinite turbulent plane channel flow atReτ = 200
and Reτ = 1000. The DNS code is described in [24], and is a classic pseudo-spectral code
with a compact, fourth-order finite-differences discretisation for the wall-normal direction
and Fourier discretisation for the homogeneous directions.

The case atReτ = 200 has Lx = 4πh and Lz = 2πh, with 384 Fouriermodes (256 before
dealiasing) in the homogeneous directions, and 256 points in the wall-normal direction.
The size of the computational domain remains unchanged for the case atReτ = 1000, while
the number of modes increases to 1536, and the number of wall-normal points to 500.

For the low-Re case, the database is made by 200 snapshots, collected at well separated
times over the total duration of the simulation, i.e. about 25,000 viscous time units. The
database contains the wall-normal component of the velocity and vorticity vectors, in the
form of Fourier coefficients for the expansion of the variables along the homogeneous
directions. The other velocity components as well as the pressure field are computed dur-
ing Step 1 of the GKE analysis, as previously described in Section 3.2. The total database
size is about 79 GBytes. The higher-Re database is made by 35 snapshots only, but the size
of the single field is larger, such that the total database size increases to 276 GBytes.

The size of the GKE database is 112 GBytes for the low-Re case, where full resolution is
used. For the high-Re case, the two threshold values for both the streamwise and spanwise
separations are set at 200 and 500 inwall units. Full resolution is used below the first thresh-
old, one every four points is retained between the thresholds, and one every eight points
is retained above the second threshold. With these choices the size of the GKE database
becomes 209 GBytes at Reτ = 1000.

4.2. Code performance

First, we report the outcome of a one-to-one comparison in terms of computational
requirements between our code and an existing implementation, used for example by [11]
to carry out one of the most computationally demanding GKE analysis reported so far.
The two codes have been re-compiled for the target machines, and tested on the same
database at Reτ = 200, with (384,256,384) points (no undersampling). A case with twice
the number of points in every direction is also run to assess how the performance of the
present solver varies with problem size. The computer where performance metrics have
been measured is equipped with four AMD 6376 processors, with 16 cores each for a
total of 64 cores. Clock frequency is 2.3 GHz. The I/O configuration is one of the most
unfavourable, with the snapshots residing on a remote hard disk accessed via the slow NFS
protocol, while output is written locally to aWestern Digital 3 TBytes hard drive rotating at
5400 rpm.
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Figure 6. Computational performance of the present GKE implementation. Left: wall-clock time
required for Step 2 and Step 3, computed in serial mode and for a single flow field. Computing time
is further divided in CPU work (dark) and input/output operations (bright). The left bar refers to the
smaller case corresponding to the Reτ = 200 database; the right bar refers to the larger case, with twice
the number of points in each spatial direction. Right: total wall-clock time required for Step 2 on a single
flow field, versus the number of symmetric multiprocessing (SMP) threads nsmp. The circles refers to the
smaller database, the squares to the larger one.

By using a single core of one CPU, i.e. in strictly scalar mode, the present code requires
239 minutes to complete the most expensive Step2 of the GKE analysis on a single flow
field of the Reτ = 200 database, including both I/O and CPU time. The same operation,
attemptedwith the alternate code, takes too long for an actualmeasure.However, by extrap-
olating the time required to process a single Y1 − Y2 pair, the execution time turns out to
be 3,289 times longer, i.e. about 1.5 years. Such speedup by three order of magnitudes is
indeed not inconsistent with the expected speed gain when one resorts to the pseudo-
spectral approach and two homogeneous directions are available on this problem size. The
same test is repeated on a problem with twice the number of points in every spatial direc-
tion: the observed speedup becomes of 24,305 times, consistent with the increased size of
the computational problem. Note that speedup is here defined as the ratio between the
time-to-solution of the reference literature implementation and the present open-source
implementation. In terms of memory requirements, our code is quite optimised, at the
price of an increased I/O load. It requires 2 GBytes of RAM for the smaller case, and 18.2
GBytes for the larger case.

Figure 6 (left) further splits the computing requirements by discriminating the time
needed to carry out Step 2 and Step 3. Of course, one should bear in mind that Step 2
not only is the most CPU-intensive, but also needs to be executed for as many flow fields
the database is made of, whereas Step 3 needs to be executed only once. At both problem
sizes, the plot shows that the programme is not I/O limited, despite our architectural choice
of increasing I/O load in order to alleviate memory requirements. This is remarkable, in
view of the fact that I/O is quite slow on our system, and has received no optimisation at
all. Moreover, thanks to undersampling I/O is expected to only marginally increase with
problem size in real use cases. I/O becomes significant only for Step 3, but this is largely
expected and of no major concern, as Step 3 is a sort of post-processing step that runs only
once (analogously, Step 1 is run only once at the pre-processing stage).
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The right panel of Figure 6 shows how the computing requirements are alleviated by
the shared-memory parallel strategy. We report figures for Step 2 only, but the I/O contri-
butions are included, and I/O is not expected to scale particularly well. Despite I/O, one
observes very good speedup also on the smaller problem size andwith relatively large num-
ber of cores: a single field of the Reτ = 200 database can be processed by the 16 cores of
a single CPU in about half an hour. This figure becomes about 13 hours for the larger test
problem. It should be recalled that the other two parallel strategies mentioned earlier in
Section 3 possess ideal scaling properties, and that all the three available strategies can be
used together to shorten the computing time. The availability of computing and storage
hardware, as well as the problem size, dictate the best overall strategy on a case-by-case
basis.

4.3. GKE and turbulence physics

First, the GKE algorithm is validated by computing the residual of the budget Equation
(2) in the whole four-dimensional space, and by verifying that it is negligible everywhere
in comparison to the dissipation and production terms. In doing this we verify also the
statistical convergence of the data. The residual is computed with same accuracy of the
GKE analysis; i.e. when computing the divergence of fluxes. The required derivatives in the
homogeneous directions are performed spectrally, and those inwall-normal directionwith
the same high-order finite-differences scheme used elsewhere. From a quantitative point of
view, the absolutemaximumof the residual in the entire volume for theReτ = 200 database
is 0.0104, which is negligible when compared to the maximum and minimum of the pro-
duction and dissipation terms, 1.24 and −0.78 respectively. Figure 7 plots the residual of
the GKE equation in the r+x = 5, r+y = 0 plane, chosen as a generic representative planar
cut of the computational domain. The spatial distribution of the residual does not show
any structure but one that can be attributed to remaining statistical noise, with the largest
values occurring in the near-wall region where the GKE terms are also larger. In this plane,
the maximum of the residual is 0.0027; to put this figure in perspective, the maximum and
minimum of the production and dissipation terms in the same plane are 1.24 and −0.725.
The residual has been also verified to decrease with a larger size of the dataset available for
computing statistics.

A brief analysis of the two comprehensive newly generated and publicly accessible GKE
datasets is now presented. They illustrate the spatial and scale features of turbulent wall-
bounded flows, as well as their Reynolds-number dependence. In fact, the dynamics of
wall turbulence becomes richer as the Reynolds number increases; some features, absent at
Reτ = 200, begin to emerge atReτ = 1000. This underlines the importance of investigating
high-Re turbulent flows, and emphasises the need for highly efficient numerical tools.

The GKE terms are first observed in the ry = 0 space. The top panels of Figure 8 feature
the source term ξ and the fluxes (
rx ,
rz ,φ) in this three-dimensional space, comparing
the Reτ = 200 case on the left to the Reτ = 1000 case on the right; the bottom panels plot
a two-dimensional section of the volume taken at rx = 0. The figures use the same scale on
the axes, so that the effects of increasing the Reynolds number can be easily appreciated.

The emerging picture, already described for example in Ref. [10], is that in both cases
near the wall a region with large positive ξ is present, where energy production largely
overcomes its dissipation rate; see the red isosurfaces (corresponding to ξ+ = 0.45) visible
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Figure 7. Residual of the GKE equation applied to the channel flow (Reτ = 200) in the Y , rz plane with
r+x = 5 and r+y = 0. All quantities are expressed in viscous units.

at small scales and wall distances in the top panels of Figure 8 and the near-wall peak of
the contour in the bottom panels. This is where wall turbulence is mainly produced. The
extent of this region scales in wall units, hence it shrinks in absolute terms with increasing
Re. The scales 0 < r+x < 200, 25 < r+z < 70 and Y+ ∼ 13 shown by the red isosurface,
suggest a strong connectionwith themain coherent structures in the wall region: the quasi-
streamwise vortices and the streaks of streamwise velocity [25,26]. On the other hand, large
negative values of the source term are observed at Y → 0 for any scale, and at rx → 0
and rz → 0 for any wall distance. Accordingly, the immediate vicinity of the wall and the
smallest scales of motion in the whole flow are recognised to be the sink regions of wall
turbulence, where viscous dissipation dominates.

Only in the high-Re case, a further large region of positive ξ is additionally seen quite
far from the wall, in correspondence of larger streamwise and spanwise scales, separated
from the near-wall peak by a (sink) region with ξ < 0. This is in agreement with the results
shown in [27] using different DNS databases at Reτ = 550, 1000, 1500. This region, absent
in the low-Re case, presents rather low values of ξ , about one order of magnitude smaller
than the values of the near-wall production region, with the peak of value ξ+ = 0.0095
placed at r+x = 0, r+z ∼ 350 and Y+ ∼ 160 (same findings of Ref. [27]). This secondary
peak of the source term is related to an outer self-sustained mechanism of turbulence well
separated from the near-wall dynamics, as discussed in Refs. [28–30] and several others.
The scales and wall distances at which it occurs are in agreement with the findings of
Ref. [28]. Of course, at Reτ = 1000 the outer peak is only beginning to appear, and the
two peaks do not show yet a complete separation: see the contours of the source term in
the bottom right panel. Refs. [28] and [30], by observing one-dimensional premultiplied
power spectra of

〈
u2

〉
at progressively higher Reynolds numbers, suggest that Reτ approx-

imately larger than 1700 is required before the outer site can be clearly noticed. Since our
data show an outer peak already at Reτ = 1000, it is possible that the GKE provides an
earlier and/or sharper detection of the outer cycle compared to the premultiplied spectra,
as already hypothesised by [31] and, more recently, by [32], where the differences in the
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Figure 8. Top: three-dimensional view of the source term ξ and the vector field of fluxes (
rx ,
rz ,φ)

in the space ry = 0: comparative view for Reτ = 200 (left) and Reτ = 1000 (right). The source field is
plotted via a small isosurface corresponding to ξ+ = 0.45, located at small scales and in the vicinity of
thewall, a larger isosurface corresponding to ξ+ = 0.005, and via the two contour planes at r+x = 0 and
r+z = 0. The field lines are tangent to the flux vector, and are coloured according to the flux vector mag-
nitude. Bottom: two-dimensional view of the source term ξ+ in the space r+x = r+y = 0: comparative
view for Reτ = 200 (left) and Reτ = 1000 (right). Thick lines indicate ξ+ = 0.

detection of the k−1 spectral law and of the real-space analogue logarithmic dependence
on rx of the streamwise structure function are discussed.

The GKE also provides us with the knowledge of the field of energy fluxes. This can be
exploited, along the lines of Refs. [10] and [11], to follow scale energy as it moves from
the source regions to the sink regions, tracking the involved scales and wall distances.
This is visualised in the ry = 0 space of Figure 8 by field lines tangent to the flux vector
(
rx ,
rz ,φ). In both the low-Re and high-Re cases, the flux lines origin from a singular-
ity point located close to the peak of the source term in the near-wall region, i.e. r+x = 0,
r+z ∼ 60 andY+ ∼ 14, and are attracted by the two sink regionsmentioned above (the wall
plane, and the rx = rz = 0 axis at larger wall distances). From a topological viewpoint, the
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lines fulfil the requirement [10] of vanishing perpendicularly to the sinks. In accordance
with the outcome of the single-point budget for the turbulent kinetic energy, these lines
reveal that the excess of turbulent energy production in the buffer layer feeds both the upper
and the lower regions. However, the GKE provides important additional information con-
cerning the scales involved in these spatial transfers. For example, following the lines of the
branch vanishing at largeY, the coexistence of reverse and direct cascades is observedwhile
turbulent energy ascends from the wall. In detail, as shown in Figure 8, the lines emanating
from the singularity point show first an inverse cascade of energy moving towards increas-
ing rx and rz. Later a mixed direct/inverse cascade takes place, while Y remains constant:
an inverse cascade towards increasing rx is seen together with a direct cascade towards
decreasing rz. Finally, the lines start ascending towards larger Y and present a more clas-
sic direct cascade towards smaller rx and rz. Interestingly, in the Reτ = 1000 case some
of the lines that feed the sink at larger wall distances, are seen to cross the outer source
peak; they feed the field with the excess production associated with the large-scale outer
motions.

The efficient implementation of the GKE analysis makes it affordable to look at the
four-dimensional domain overall. Figure 9 plots six three-dimensional volumes, extracted
at different streamwise separations from a four-dimensional dataset. Moreover, the full
dataset is shown in the supplemental material to this manuscript as a movie, where rx is
used as the temporal dimension to build the animation. The GKE dataset underlying the
Figure can be freely downloaded at this link. The separations extracted to produce Figure 9
are r+x = 0, 50, 100, 150, 200, 400, whereas in the movie the separation varies continuously
from r+x = 0 to r+x = 1000. In the three-dimensional space where rx is fixed, i.e. on a frame
of the movie, the GKE terms are not defined below the Y = ry/2 plane, owing to the finite
size of the channel in the wall-normal direction.

The plotted quantity is the wall-normal flux φ+ as it is the one changing the most along
the rx direction. It is represented via contour planes as well as with a dark-coloured iso-
surface corresponding to the value φ+ = 0.5 and black isolines corresponding to φ+ = 0.
Note that at rx = 0, the largest values of φ are seen in the near-wall region at small ry. The
maximum of about 1.5 is observed at zero spanwise separations, namely at (r+y , r+z ,Y+) ∼
(50, 0, 30). This maximum is associated with the near-wall cycle, as these separations and
wall-normal positions are consistent with the findings of Ref. [25] concerning the domi-
nant near-wall vortical structures. At larger rx, as shown in the other panels, the near-wall
maximum is nearly unchanged, except for the portion near rz = 0, i.e. the statistical foot-
print of the near-wall cycle, which decreases. On the contrary, the largest negative values
are always for ry → 0 and Y+ < 20. Accordingly, for the budget equation of the turbu-
lent kinetic energy, which is recovered here for ry = 0, rz → Lz/2 and rx → Lx/2, the flux
shows a non-monotonic behaviour with negative values for Y+ < 17 and a positive peak
placed at Y+ = 37, in agreement with results presented in Refs. [9] at Reτ = 180 and [27]
at Reτ = 550, 1000, 1500.

Large positive values of φ are also observed in a flat region in the vicinity of the
Y+ = r+y /2 + 30 plane for r+y < 750 and r+z > 200, excluding the smallest wall-normal
and spanwise scales. In the rx = 0 volume, unlike at larger streamwise separations, this
region is observed to connect to the rz = 0 plane, but this connection is lost at larger rx.
Since along the oblique plane the wall-normal positions of the points used to compute the
velocity increments are y+

1 = 30 and y+
2 = 30 + r+y , a large positive value of the spatial flux

https://github.com/davecats/gke/tree/master/database
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Figure 9. Plot of φ in the r+x = 0 (a), r+x = 50 (b), r+x = 100 (c), r+x = 150 (d), r+x = 200 (e) and
r+x = 400 (f ) three-dimensional spaces. The dark-shaded isosurface corresponds to φ = 0.5. Solid iso-
lines at the rz = 0 and ry = 0 planes correspond to φ = 0. The accompanying movie can be found as
supplemental material to this manuscript.
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implies that attached eddies in the sense of Ref. [33] are associated with an outward flux of〈
δu2

〉
[11].

In the rx = 0 volume, negative values of φ are seen only very close to the Y = ry/2
plane and for large Y and ry (see the black contour line in the rz = 0 plane in panel (a),
denoting the zero level). At increasing rx an additional region with negative φ is found at
rz → 0, Y+ ∼ 180 and r+y ∼ 250. Interestingly, this region reaches its largest extension for
r+x = 200 before disappearing with increasing streamwise separation.

Finally, for r+x ≤ 200, large values of φ are also observed at Y+ ∼ 500, i.e. in the log-
layer. In detail, at rx = 0, φ+ is larger than 0.5 for r+z < 500 and r+y 300, excluding the
smallest scales. By increasing rx, φ decreases in the logarithmic layer. Interestingly, the
decrease rate is faster at small rz. In fact, large values of φ are still present at ry → 0 and
r+z ∼ 700 in the volumes with r+x = 150 and r+x = 200. The large values of φ observed in
the log-layer are associated with the structures of the outer self-sustained mechanism of
turbulence, as these rz and Y are in agreement with the findings of Ref. [28]. Hence, a large
positive spatial flux of

〈
δu2

〉
may be related to these large-scale motions. The region with

large φ placed near the wall is not separated from the one in the log-layer in the volumes
with r+x = 0 and r+x = 50. On the contrary, for r+x > 50, these two regions of largeφ are not
connected, as shown by the isosurface in panel (c) and (d), denoting a separation between
the phenomena traceable to the near-wall structures and those to the outer structures.

5. Conclusions and outlook

This work has described the implementation of a parallel computer programme that builds
the complete budget of the GKE starting from a DNS-produced database of a turbulent
channel flow. The source code is freely available on GitHub. The most important feature is
that the terms of theGKE,made by products of velocity andpressure differences, are rewrit-
ten as sumsof cross-correlations.Whenhomogeneous directions are present (the indefinite
plane channel flow possesses two of them), the Parseval theorem allows efficient compu-
tation of such correlations in Fourier space, with huge computational advantages. These
advantages become more and more significant as the size of the computational problem
increases, as it is expected when dealing with high-Re flows; they also remain significant
when the homogeneous direction is only one, thus providing the present approach with a
much broader scope than the indefinite plane channel flow alone consdered in the present
work.

Several optimisations are used to keep the CPU and RAM requirements to a minimum.
Extensive use of analytical and statistical symmetries reduces the number of functional
evaluations required to compute all the terms in the whole four-dimensional space of their
independent variables. As a result, in serial mode the code has been measured to provide
three- or four-orders of magnitude speedup (depending on the problem size) when com-
pared to a standard implementation. Three distinct parallel strategies are available and can
be combined freely to best match the specific hardware configuration (number and type of
machines, CPU cores, storage system, etc).

The unbalance of the GKE terms, which descends from the finite size of the statisti-
cal sample, is presented for validation; it is found to be negligible and to decrease with
sample size. For the first time the complete set of terms in the GKE has been computed
and observed in the whole four-dimensional space. Results are presented for two channel
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flow cases, at Reτ = 200 and Reτ = 1000. It is shown that the present code can handle very
large datasets with a reasonable amount of computational resources. Although the 5-fold
separation of the considered Re is limited, and Reτ = 1000 can hardly be considered suf-
ficient to achieve a turbulent flow with a well-developed outer cycle, our analysis reveals
quite clearly the distinction between the inner and outer turbulence cycles, as well as the
distinction between attached and detached turbulent structures. The possibility thus exists
that the GKE is an effective tool to put these distinctions into focus.

The present methodology takes full advantage of the double statistical homogeneity of
parallel indefinite flows (Poiseuille, Couette), but it can be readily extended to flows with
two inhomogenous direction. For such flows, the analysis of the spatial and scale transfer
phenomena becomes even more challenging and revealing, as recently demonstrated by
[34] for turbulent flows undergoing separation. The additional inhomogeneous direction
is dealt with as the wall-normal direction in the Poiseuille flow, with only straightforward
modifications to the source code.

We hope that the computational tool described in this paper will enable advancing
our understanding of turbulent flows. An extension of the GKE equation to deal with the
anisotropic case by considering every component of the Reynolds’ stress tensor is under-
way, which is deemed to bring evenmore insight into the physics of a geometrically simple
but highly anisotropic flow like the channel flow. At the same time, the GKE analysis is
being used to understand the profound modifications induced in a natural turbulent flow
by skin-friction drag reduction techniques. For both these goals, the availability of a reli-
able, efficient and compact code to carry out the GKE analysis is a crucial step towards the
understanding of the complex physical processes which regulate production, transfer and
dissipation of turbulent energy in a wall-bounded flow.
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