Politecnico di Milano

Numerical simulation of human nasal cavity flow with particle

V. Covello [‡], C. Pipolo [†], G. Felisati [†], M. Quadrio [‡]

[‡] Department of Aerospace Science and Technology, Politecnico di Milano, Italy
 [†] Otorhinolaryngology Unit, S.Paolo Hospital, Università di Milano, Italy

June 20, 2017

Introduction	Methodologies	Numerical Results	Conclusion
00000			
General Aspects			

CFD of human nasal cavity flow Challenging and modern topics

Human nasal cavity flow

- complex physical phenomena
 - strong unsteadiness
 - transitional flow
 - complex geometry

▶ ∢ ⊒

Introduction	Methodologies	Numerical Results	Conclusion
•00000			
General Aspects			

CFD of human nasal cavity flow Challenging and modern topics

Human nasal cavity flow

- complex physical phenomena
 - strong unsteadiness
 - transitional flow
 - complex geometry

State of Art

- numerical simulation mainly based on the RANS approach
 - favourable computational cost/accuracy ratio for many applications, but wrong results in our context

Introduction	Methodologies	Numerical Results	Conclusion
00000			
Objectives and Motivation			

Objectives From writing journal papers to improving surgeries

Long term

Improving our understanding on the behaviour of the nasal airflow to assist surgeons on their everyday practice

patient-specific surgery planning, and post-surgery analysis
 ⇒ increasing demand for accuracy to capture fine details of the flow

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion
00000			
Objectives and Motivation			

Objectives From writing journal papers to improving surgeries

Long term

Improving our understanding on the behaviour of the nasal airflow to assist surgeons on their everyday practice

- patient-specific surgery planning, and post-surgery analysis
 ⇒ increasing demand for accuracy to capture fine details of the flow
 - High-fidelity Large Eddy and Direct Numerical Simulations

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion
00000			
Objectives and Motivation			

Objectives From writing journal papers to improving surgeries

Long term

Improving our understanding on the behaviour of the nasal airflow to assist surgeons on their everyday practice

- patient-specific surgery planning, and post-surgery analysis
 ⇒ increasing demand for accuracy to capture fine details of the flow
 - High-fidelity Large Eddy and Direct Numerical Simulations
 - development of a robust CFD procedure fully based on open source tools

Politecnico di Milano

Specific

Numerical simulation of thermal water particle delivery for the treatment of inflammatory disorder

Introduction	Methodologies	Numerical Results	Conclusion
00000			
Nose functionality			

Nose anatomy and functionality Sagittal view

vanessa.covello@polimi.it

Politecnico di Milano

Introduction	Methodologies	Numerical Results	Conclusion
000000			
Name formationality			

Nose anatomy and functionality Paranasal sinuses

Frontal, sphenoid, ethmoidal and maxillary sinuses

Politecnico di Milano

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion
000000			
Nose functionality			

Nasal diseases pathologies and surgical treatment

- Huge prevalence of
 - rhinosinusitis
 - nasal obstruction
 - nasal polyposis
 - nasal septal deviation \Rightarrow can only be addressed by surgery

FESS Functional endoscopic sinus surgery

- minimally invasive
- carried out endoscopically
- may involve inferior and/or turbinoplasty and opening the paranasal sinuses
- depend on anatomy, specifical clinical condition and surgeon's judgment

Introduction	Methodologies	Numerical Results	Conclusion
00000			
Nose functionality			

Flow field Velocity magnitude

vanessa.covello@polimi.it

Politecnico di Milano

∃ 𝒫𝔅

イロト イヨト イヨト イヨト

Introduction	Methodologies	Numerical Results	Conclusion
	000		
Mathematical model			

Mathematical model Particles equation - Lagrangian approach

 $\frac{d\mathbf{x}_p}{dt} = u_p,$ $m_p \frac{d\mathbf{u}_p}{dt} = \Sigma \mathbf{F}_i$

 $\mathbf{x}_{\mathbf{p}}$ = position vector, \mathbf{u}_{p} = particles velocity, m_{p} = particles mass

Politecnico di Milano

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion
	000		
Mathematical model			

Mathematical model Particles equation - Lagrangian approach

 $\frac{d\mathbf{x}_{p}}{dt} = u_{p},$ $m_{p}\frac{d\mathbf{u}_{p}}{dt} = \Sigma \mathbf{F}_{i}$

 \mathbf{x}_{p} = position vector, \mathbf{u}_{p} = particles velocity, m_{p} = particles mass

Drag force

$$\mathbf{F}_{D} = \frac{3}{4} \frac{\rho}{\rho_{p}} \frac{m_{p}}{d_{p}} C_{D} \left(\mathbf{u} - \mathbf{u}_{p} \right) \left| \mathbf{u} - \mathbf{u}_{p} \right|$$

Drag coefficient ®

$$C_D = \begin{cases} \frac{24}{Re_p} \left(1 + \frac{1}{6} Re_p^{2/3} \right); & Re_p \le 1000\\ 0.424; & Re_p \ge 1000 \end{cases}$$

イロト イ押ト イヨト イヨト

э

Politecnico di Milano

 $\operatorname{Re}_{p} = \rho d_{p} \left(\mathbf{u}_{p} - \mathbf{u} \right) / \mu$. particle Reynolds number

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion
	000		
Mathematical model			

Mathematical model Particles equation - Lagrangian approach

 $\frac{d\mathbf{x}_p}{dt} = u_p,$ $m_p \frac{d\mathbf{u}_p}{dt} = \Sigma \mathbf{F}_i$

 \mathbf{x}_{p} = position vector, \mathbf{u}_{p} = particles velocity, m_{p} = particles mass

Drag force

$$\mathbf{F}_{D} = \frac{3}{4} \frac{\rho}{\rho_{p}} \frac{m_{p}}{d_{p}} C_{D} \left(\mathbf{u} - \mathbf{u}_{p} \right) \left| \mathbf{u} - \mathbf{u}_{p} \right|$$

$$C_D = \begin{cases} \frac{24}{Re_p} \left(1 + \frac{1}{6} Re_p^{2/3} \right); & Re_p \le 1000\\ 0.424; & Re_p \ge 1000 \end{cases}$$

 $\operatorname{Re}_{p} = \rho d_{p} \left(\mathbf{u}_{p} - \mathbf{u} \right) / \mu$. particle Reynolds number

[®] C.T. Crowe et al. Multiphase flows with droplets and particles. CRC press 2011.

vanessa.covello@polimi.it

Politecnico di Milano

Methodologies

Numerical Results

Conclusion

Geometric human nasal cavity model

Geometric human nasal cavity model From the CT scan to the final surface

CT scan data

Reconstruction via the open source software 3DSlicer

「日本・御を・ 御を、 御、 と うんの

Politecnico di Milano

vanessa.covello@polimi.it

Methodologies

Numerical Results

Conclusion

Geometric human nasal cavity model

Geometric human nasal cavity model From the CT scan to the final surface

CT scan data

Reconstruction via the open source software 3DSlicer

 $HU = \frac{\mu_x - \mu_{water}}{\mu_{water} - \mu_{air}} * 1000$ $HU_{tissue} \approx -220$ $HU_{bones} \approx 400$

イロト 不同 トイヨト イヨト

3

Politecnico di Milano

vanessa.covello@polimi.it

Methodologies 000

Numerical Results

Conclusion

Geometric human nasal cavity model From the CT scan to the final surface

CT scan data

Reconstruction via the open source software 3DSlicer

$$HU = \frac{\mu_x - \mu_{water}}{\mu_{water} - \mu_{air}} * 1000$$
$$HU_{tissue} \approx -220$$
$$HU_{hones} \approx 400$$

vanessa.covello@polimi.it

Numerical simulation of human nasal cavity flow with particle

э Politecnico di Milano

-∢ ≣ ▶

Numerical Results

Conclusion

Introduction

Geometric human nasal cavity model From the surface to the final geometry

Stl model

Introduction	Methodologies	Numerical Results ●○○	Conclusion
Steady inspiration with water particles			

Numerical Results Steady inspiration with water particles

Computational domain

 $\begin{array}{l} \Delta p = \textbf{20 Pa}, \\ \textbf{Q} = \textbf{20 L/min} \\ \textbf{N} = \textbf{10}^6 \text{ particles} \\ \textbf{D} = \textbf{5}, \textbf{10}, \textbf{50 } \mu \textbf{m} \\ \text{Aerosol,} \\ \text{Inhalation,} \\ \text{Atomized Nasal Douche} \end{array}$

mesh \Rightarrow 1 to 25Mil of cells

OpenFOAM one-way couplig ⇒ icoUncoupledKinematicCloud

Galileo cluster CINECA

vanessa.covello@polimi.it

Politecnico di Milano

vanessa.covello@polimi.it

Politecnico di Milano

vanessa.covello@polimi.it

Politecnico di Milano

Introduction	Methodologies	Numerical Results ○○●	Conclusion
Steady inspiration with water particles			

Numerical Results Steady inspiration with water particles

particle deposition after 0.6 sec, D= 5 μ m, Aerosol

Quantitative analysis - Particles/area

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

• Aerosol, Inhalation, Atomized Nasal Douche

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

- Aerosol, Inhalation, Atomized Nasal Douche
- LES and DNS coupled to a Lagrangian approach

vanessa.covello@polimi.it

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

- Aerosol, Inhalation, Atomized Nasal Douche
- LES and DNS coupled to a Lagrangian approach
- realistic computational domain

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

- Aerosol, Inhalation, Atomized Nasal Douche
- LES and DNS coupled to a Lagrangian approach
- realistic computational domain
- CFD procedure completely based on open-souce software

Ongoing work and Future developments

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

- Aerosol, Inhalation, Atomized Nasal Douche
- LES and DNS coupled to a Lagrangian approach
- realistic computational domain
- CFD procedure completely based on open-souce software

Ongoing work and Future developments

• quantitative evaluation of the deposition efficiency

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

- Aerosol, Inhalation, Atomized Nasal Douche
- LES and DNS coupled to a Lagrangian approach
- realistic computational domain
- CFD procedure completely based on open-souce software

Ongoing work and Future developments

- quantitative evaluation of the deposition efficiency
- mesh sensitivity

vanessa.covello@polimi.it

Politecnico di Milano

Introduction	Methodologies	Numerical Results	Conclusion

Improving our understanding on the thermal water delivery for the treatment of inflammatory disorder in the human nasal cavity.

Politecnico di Milano

- Aerosol, Inhalation, Atomized Nasal Douche
- LES and DNS coupled to a Lagrangian approach
- realistic computational domain
- CFD procedure completely based on open-souce software

Ongoing work and Future developments

- quantitative evaluation of the deposition efficiency
- mesh sensitivity
- pollutant transport

Introduction	Methodologies	Numerical Results	Conclusion

Acknowledgments

- The present research has been funded by the FoRST (Fondazione per la Ricerca Scinetifica Termale) foundation
- The authors gratefully acknowledge the support CINECA in the framework of the project
 - IscraC ONOSE-MO, P.I. Maurizio Quadrio
 - IscraC ONOSE-Pa, P.I. Vanessa Covello
 - LISA ONOSE-HF, P.I. Carlotta Pipolo

vanessa.covello@polimi.it

Politecnico di Milano

Introduction	Methodologies	Numerical Results	Conclusion

Thank you

<ロト < 回 ト < 目 ト < 目 ト ミ シ へ C^{*} Politecnico di Milano

vanessa.covello@polimi.it