European Drag Reduction and Flow Control Meeting Rome, Apr. 3-6, 2017

## Direct Numerical Simulation of Drag Reduction with Uniform Blowing over a Two-dimensional Roughness

#### **Eisuke Mori<sup>1</sup>**, Maurizio Quadrio<sup>2</sup> and Koji Fukagata<sup>1</sup>

Keio University



<sup>1</sup> Keio University, Japan
 <sup>2</sup> Politecnico di Milano, Italy



## **Uniform blowing (UB)**

Drag contribution in a channel flow with UB(/US)

$$C_{f} = \frac{12}{\text{Re}_{b}} + 12 \int_{0}^{2} (1 - y)(-\overline{u'v'}) dy - 12V_{w} \int_{0}^{2} (1 - y)\overline{u} dy$$

$$V_{w}: \text{Blowing velocity}$$

$$V_{w}: \text{Blowing velocity}$$

$$V_{w}: \text{Blowing velocity}$$

$$C_{0}(1 - y)\overline{u} dy$$

$$V_{w}: \text{Blowing velocity}$$

$$V_{w}: \text{Blowing velocity}$$

$$C_{0}(1 - y)\overline{u} dy$$

- Excellent performance (about 45% by  $V_w = 0.5\% U_{\infty}$ )
- Unknown over a rough wall



(Kametani & Fukagata, J. Fluid Mech., 2011)



On a boundary layer, White: vortex core, Colors: wall shear stress

E.Mori, M.Quadrio, K.Fukagata

(=

#### **UB over a rough wall**

**Experimental results so far** 

- Similar to the smooth-wall cases
  - Schetz and Nerney, AIAA J., 1977
  - Voisinet, 1979
- Opposite behavior

(drag increased, turbulent intensity suppressed)

- Miller et al., Exp. Fluids, 2014

### **Contradicting remarks exist**

# Investigate the interaction between roughness and UB for drag reduction using numerical simulation

- DNS of turbulent channel flow
- Drag reduction **performance** and **mechanism**
- Combined effect of UB and roughness

#### **Numerical procedure**

- Based on FD code (for wall deformation) (Nakanishi et al., Int. J. Heat Fluid Fl., 2012)
- Constant flow rate,  $\operatorname{Re}_b = 2U_b \delta / \nu = 5600$ 
  - so that  $Re_{\tau} \approx 180$  in a plane channel (K.M.M.)
- $\Delta x^+ = 4.4, 0.93 < \Delta y^+ < 6, \Delta z^+ = 5.9$
- UB magnitude:  $V_w/U_b = 0, 0.1\%, 0.5\%, 1\%$



### Model of rough wall

#### **Roughness displacement**

$$d(x) = \delta \sum_{i=1}^{8} A_i \sin\left(\frac{2i\pi x}{L_x/2}\right)$$
(E. Napoli et al., *J. Fluid Mech.*, 2008)  
*L<sub>x</sub>*: Channel length,  $4\pi\delta$   
*L<sub>x</sub>*: Channel length,  $4\pi\delta$   
*L<sub>i</sub>*: Amplitude of each sinusoid  

$$A_i = \begin{cases} 1, \text{ for } i = 1 \\ (Defined randomly) \\ (Defined randomly) \\ \vdots = 0.05\delta \end{cases} \qquad \begin{pmatrix} 0.1 \\ \vdots = 0.1 \\ 0 \\ z/\delta \end{bmatrix} \qquad y = 0$$

#### The result of the base flow



#### "Transitionally-rough regime"

E.Mori, M.Quadrio, K.Fukagata

#### The result of UB



E.Mori, M.Quadrio, K.Fukagata

#### The result of UB



#### Friction drag reduction mechanism



E.Mori, M.Quadrio, K.Fukagata

DNS/Drag Reduction/Uniform blowing(UB)/Rough wall

10/18

#### How does pressure drag decrease?



E.Mori, M.Quadrio, K.Fukagata

### "Smoothing effect"



E.Mori, M.Quadrio, K.Fukagata

#### **Outer layer similarity with UB**

**Velocity defect** 



E.Mori, M.Quadrio, K.Fukagata

#### **Comparison with smooth case**





E.Mori, M.Quadrio, K.Fukagata

#### **Comparison with smooth case**





Same tendency, but quantitatively weakened

E.Mori, M.Quadrio, K.Fukagata

#### Stevenson's law of the wall



E.Mori, M.Quadrio, K.Fukagata

## Normalization by $u_{ au}^{ m nc+}$



R becomes similar when plotted with  $V_w^+$ 

nc: no control ctr: controlled

E.Mori, M.Quadrio, K.Fukagata

## **Concluding remarks**

# DNS of turbulent channel flow is performed over a rough wall with UB

- UB is effective over a rough wall
  - Almost same in drag reduction rate, but larger in drag reduction amount (when normalized by  $u_{\tau}^{+nc}$ )
- Drag reduction mechanisms are considered
  - Friction drag is reduced by wall-normal convection
  - Pressure drag is reduced by "smoothing effect"
- Combined effect (UB + roughness) slightly exists
- Modified Stevenson's law of the wall is suggested

## Thank you for your kind attention

### Background

#### Turbulence

- Huge drag
- Environmental problems
- High operation cost
- How to control?







#### Flow control classification

(M. Gad-el-Hak, J. Aircraft, 2001)



- Uniform blowing

#### **Governing equations**

(S. Kang & H. Choi, Phys. Fluids, 2000)

Incompressible Continuity and Navier-Stokes in  $\xi_i$  coordinate

$$\begin{cases} \frac{\partial u_i}{\partial \xi_i} = -\frac{S}{\partial \xi_i} \\ \frac{\partial u_i}{\partial t} = -\frac{\partial (u_i u_j)}{\partial \xi_j} - \frac{\partial p}{\partial \xi_i} + \frac{1}{\operatorname{Re}_b} \frac{\partial^2 u_i}{\partial \xi_j \xi_j} - \frac{dP}{d\xi_1} \delta_{i1} + \frac{S_i}{\delta_i} \end{cases}$$

where

E.Mori, M.Quadrio, K.Fukagata

#### **Coordinate transformation**

(S. Kang & H. Choi, Phys. Fluids, 2000)

#### Calculation grids: $\xi_i$ (Cartesian with extra force)

$$\begin{cases} x = \xi_1 \\ y = \xi_2(1 + \eta) + \eta_d \\ z = \xi_3 \end{cases}$$
  
(x, y, z: physical coordinate)  
$$\eta \equiv (\eta_u - \eta_d)/2 \qquad \Rightarrow \qquad \\ = -d(x)/2 \qquad \qquad \\ \eta_d = r(x), \eta_u = 0 \qquad \qquad \\ \end{cases}$$
  
n<sub>d</sub>, n<sub>u</sub>: displacement of

Actual grid points allocation



E.Mori, M.Quadrio, K.Fukagata

lower/upper wall

### Post processing

Drag coefficient decomposition for rough case

$$C_{Duf} = \frac{8}{\text{Re}_{b}} \frac{d\bar{u}}{dy}\Big|_{\xi_{2}=2}$$

$$C_{Dlf} = \frac{8}{\text{Re}_{b}} \overline{\left(\frac{du}{dy}\Big|_{\xi_{2}=0} + \frac{dv}{dx}\Big|_{\xi_{2}=0}\right)}$$
(Friction component)
$$C_{Dlp} = -16 \frac{dP}{d\xi_{1}} - \left(C_{Dlf} + C_{Duf}\right)$$
(Pressure component)

Drag reduction rate

$$R_{Dl} = \frac{\Delta C_D}{C_{D,M=0}} \times 100 \, [\%]$$

**Only focusing on lower side**, subscript "*l*" omitted hereafter

E.Mori, M.Quadrio, K.Fukagata

#### **Discretization methods**

- Energy-conservative second-order finite difference schemes (In space)
- Low-storage third-order Runge-Kutta / Crank-Nicolson scheme (In time)
  - + SMAC method for pressure correction

Discretized in the staggered grid system

#### **Validation & Verification**



Bulk mean streamwise velocity

Time trace of instantaneous  $C_D$ 

Less than 2% of difference from the most resolved case

#### Stevenson's law of the wall



E.Mori, M.Quadrio, K.Fukagata