Drag reduction of a wing-body configuration via spanwise forcing

Andrea Gadda, Jacopo Banchetti, Giulio Romanelli, Maurizio Quadrio

Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano

Jacopo Banchetti

Motivation

Effectiveness of skin-friction drag reduction techniques in aeronautical applications

Drag components of Transport Aircraft in Cruise:

Skin-friction Pressure

Mele et al., J. of Aircraft, 2016

Jacopo Banchetti

Quadrio, Ricco & Viotti, *JFM*09 Potential for large energy savings

Low-Re, incompressible flows in simple geometry.

What about an airplane?

Jacopo Banchetti

Background (Gatti & Quadrio, JFM16) Waves can be assimilated to drag-reducing roughness

- Streamwise travelling waves produce a vertical shift ΔB of the logarithmic portion of the mean velocity profile
- Drag reduction rate R is linked to ΔB

• ΔB^+ at non-low *Re* becomes Reynolds independent

$$U^+ = rac{1}{\kappa}\log(y^+) + B + \Delta B^+$$

DLR-F6 is a modern transport aircraft, with a transonic design

- Wing-body configuration
- RANS
- Spalart-Allmaras Turbulence model
- Fully turbulent boundary layer
- $Re = 3 \cdot 10^6$ based on reference chord
- *M* = 0.75
- Flight lift coefficient 0.5

• Forcing is introduced by a modified wall function

$$U^+ = rac{1}{\kappa} log(y^+) + B + \Delta B^+$$

• Coarse mesh available in Drag Prediction Workshop website

• Forcing applied over the entire aircraft

AeroX

A GPU-CPU compressible RANS solver

- Finite volumes
- Compressible (transonic)
- Speedup by GPU:

	AMD 380X	FURY X
(2015)	\sim 230 <i>USD</i>	\sim 650 <i>USD</i>
i7 5930k-6	4.3 <i>x</i>	8.7 <i>x</i>
\sim 600 <i>USD</i>		

In the present work:

- GPU: AMD 380X
- $\bullet~2\cdot 10^6$ elements: convergence in ~ 45 min

Validation DLR-F6 Polar curve

Jacopo Banchetti

Drag Reduction Friction and Pressure drag decomposition

Drag Reduction Friction and Pressure drag decomposition Expected

- Friction drag reduces by 23%
- Pressure drag is unchanged
- $\bullet\,$ Total drag reduces by at most 14%

Jacopo Banchetti

Drag Reduction

Friction and Pressure drag decomposition

Expected

- Friction drag reduces by 23%
- Pressure drag is unchanged
- Total drag reduces by at most 14% 22%

Actual

Jacopo Banchetti

Drag Reduction

Friction and Pressure drag decomposition

Expected

- Friction drag reduces by 23%
- Pressure drag is unchanged
- $\bullet\,$ Total drag reduces by at most 14%

- $\bullet \sim 23\%$
- changed

• 22%

Jacopo Banchetti

Local Friction Reduction

Upper view

- Local Friction Reduction close to 23% where the configuration is clean
- Strong variations on the upper wing surface

Local Friction Reduction

Frontal view

Local Friction Reduction unexpectedly high in the front fuselage

Local Pressure

Upper view

- Fuselage and lower wing surface unchanged
- Changes on upper wing surface

Local Pressure Pressure coefficient distribution

Secondary effect: Shock delay

Jacopo Banchetti

Lift Coefficient $CL - \alpha$ curve

Secondary effect: Lift increase

Jacopo Banchetti

Drag reduction at constant lift

Jacopo Banchetti

Drag reduction at constant lift

- Drag reduction is always higher than expected
- Lift increase Stall begins at higher CL

Jacopo Banchetti

Net power saving at constant lift

- Active techniques require input power
- Input power is estimated via known trends in channel flow

Net power saving at constant lift

- Active techniques require input power
- Input power is estimated via known trends in channel flow

Jacopo Banchetti

Net power saving at constant lift

Net power saving S higher than 10%

Jacopo Banchetti

Comparison with MTC 2016

Despite the differences

	MTC16	Actual
Solver	UZEN / FLOWer	AeroX
Aircraft	CRM	DLR-F6
Re	$5\cdot 10^6$	$3\cdot 10^6$
М	0.85	0.75
Turbulence model	SST	Spalart-Allmaras
DR technique	Riblets	Spanwise forcing
Forcing formulation	ω at wall	Wall function

Same qualitative results:

- Direct effects: *R* close to the expected value
- Indirect effects: Shock delay Lift increase

Further investigations needed:

- Transition?
- Log Law?

Further investigations needed:

- Transition?
- Log Law?

"One coincidence is just a coincidence. Two coincidences are a clue. Three coincidences are a proof." (A. Christie)

Thank you for your attention

Questions?

Jacopo Banchetti

Jacopo Banchetti

$S(A^+)$

How does S changes with forcing amplitude?

S at low-Re incompressible channel flow rapidly decreases after $\sim A^+ = 7$

How does S changes with forcing amplitude?

Shock delay increase with A^+

Jacopo Banchetti

How does S changes with forcing amplitude?

S at low-Re incompressible channel flow rapidly decreases after $\sim A^+=7$

Actual S slightly increases until $A^+ = 12$

Jacopo Banchetti

$\Delta LFR \& -\nabla p?$

Local Friction Reduction

Frontal view

Local Friction Reduction unexpectedly high in the front fuselage

Local Friction Reduction

Pressure gradient and Local Friction Reduction

$$(LFR - LFR_{expected}) \propto -\nabla p$$
?

Jacopo Banchetti