RANS/LES/DNS simulations of the airflow in nasal cavities

{Giacomo Lamberti, Francesco Manara, Maurizio Quadrio}
Politecnico di Milano, Department of Aerospace Science and Technology

Introduction
- Predicting flow patterns in nasal cavities by CFD can provide essential information on the relationship between patient-specific geometrical characteristics and health problems.
- Understanding must improve further for CFD to become a reliable tool in clinical use.

Objectives
Evaluate the effect of:
1. RANS/LES models
2. Boundary conditions
3. Numerical schemes

Materials & Methods
1. Geometry:
 - Carefully selected anatomy
 - Paranasal sinuses included
2. Mesh:
 - Number of cells 7M
 - 6 near-wall layers
 - y^+ first cell between 4 and 5
3. Boundary conditions at inlet/outlet:
 - External boundary moved away from the nostrils
 - Section 10 is critical: inlet during inspiration and outlet during expiration
 - Two tests: $p_{tot} = p + \frac{1}{2} \rho |U|^2$ and constant velocity realized with a fringe region with body forces.
4. Solver: OpenFOAM finite volume method
 - RANS:
 - $k-\omega$ SST turbulence model
 - SimpleFoam steady incompressible solver
 - LES:
 - Smagorinsky turbulence model
 - PimpleFoam unsteady incompressible solver
 - $U_{\text{Mean}} = \frac{1}{N} \sum_{i=1}^{N} U_i$

Results
1. General trend
 - LES, steady inspiration: Separation below larynx
 - LES, steady expiration: Strong laryngeal jet
 - Flow rate: 20 l/min (mild)
 - Main pressure drop at larynx
2. LES or DNS?
 - $\nu = 1.45 \cdot 10^{-5} \text{ m}^2/\text{s}$
 - $\nu_{\text{SGS}} < \nu$ → LES works as DNS
3. Differences
 - RANS/LES models:
 - Total pressure vs velocity:
 - Second vs first order:
4. Conclusion & Future Research
 - Once a suitable boundary condition is found its effect on the solution is small.
 - High influence of numerical schemes. Difficult to find a steady second order solution with RANS equations.
 - Large difference between RANS and LES simulations, mainly at the nasopharynx.

Conclusions & Future Research
- Future work:
 - Ongoing Particle Image Velocimetry to validate CFD.
 - Unsteady breathing cycle.

References