On the forcing term in the DNS of a turbulent channel flow

Maurizio Quadrio1, Bettina Frohnapfel2, Yosuke Hasegawa3

1Politecnico di Milano
2Karlsruhe Institute of Technology
3University of Tokyo

Rome, Sept 20, 2014
My best wishes to P.O.!
The need for a forcing term in DNS

- NS equations alone cannot push fluid through the duct
- Forcing term must be added to mimic pump / gravity / etc
Forcing term is "arbitrary"

- Popular choices are constant flow rate (CFR) and constant pressure gradient (CPG)
- Often equivalent on physical grounds
- Known difference on practical grounds
- Different realizations, statistics are the same
Important when comparing two different flows

Example: turbulent drag reduction by spanwise oscillating walls

"Turbulence intensity is destroyed"
Important when comparing two different flows

Example: turbulent drag reduction by spanwise oscillating walls

"Turbulence intensity is destroyed"
Important when comparing two different flows

Example: turbulent drag reduction by spanwise oscillating walls

"Turbulence intensity is destroyed"
Important when comparing two different flows

Example: turbulent drag reduction by spanwise oscillating walls

"Turbulence intensity is destroyed"
CFR or CPG?

Pre-determines the global energy budget for drag reduction

- Potential source of confusion
- Concerns both DNS and experiments
- CFR: pumping power is *reduced* with drag reduction
- CPG: pumping power is *increased* with drag reduction
A further option: CPI
The Money-vs-Time plane (JFM 2012, 2014)

\[E_p = \frac{\tau_w V}{A} = \frac{M U_b^2 C_f}{2A} \]

Turbulent (uncontrolled)
\[E_p \propto \left(U_b \right)^{7/4} \]

CPI line
(Constant Power Input)

CPG line

laminar (uncontrolled)
\[E_p \propto U_b \]

CFR line

\[U_b^{-1} \]

\[C_f \propto U_b^{-1} : \text{laminar} \]
\[C_f \propto U_b^{-1/4} : \text{turbulent} \]
Does the choice of the forcing term affect the statistics of the same flow?
Finding the answer

- Large spatio-temporal DNS channel databases for CFR, CPG, CPI
- DNS code: mixed-discretization solver
- Channel flow at $Re_\tau \approx 200$
- $L_x \times L_y \times L_z = 4\pi h \times 2h \times 2\pi h$
- $\Delta x^+ = 9.6 \ \Delta z^+ = 4.8 \ \Delta y^+ = 0.8 - 4.9$
- Sample size: $T^+ = 100,000$ at $\Delta t^+ = 1$
No obvious changes (obviously!)

<table>
<thead>
<tr>
<th>forcing term</th>
<th>flow driven with</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFR</td>
<td>$Re_b = 3173$</td>
<td>$Re_\tau = 199.01$</td>
</tr>
<tr>
<td>CPG</td>
<td>$Re_\tau = 200$</td>
<td>$Re_\tau = 199.89$</td>
</tr>
<tr>
<td>CPI</td>
<td>$Re_\Pi = 6500$</td>
<td>$Re_\tau = 199.49$</td>
</tr>
</tbody>
</table>

![Graphs showing \(y^+ \) vs. \(y \) for different flow conditions.](image-url)
Focus on wall friction
Comparison with Lenaers et al, PoF 2012
An in-depth look
Space-time autocorrelation of wall friction

Red: CFR; black: CPG; green: CPI
Differences appear in Lagrangian frame only!
One-dimensional space or time correlations are mostly unaffected
Statistical significance?
Link to vortical structures?

Integral timescale of "lagrangian" correlation: lifetime of near-wall structures
Conclusions

- Choice of forcing term does leave a statistical footprint
- Most evident (so far) in lagrangian frame
- Relevance?
A 18-years-old pair of skies
Gratefully remembering my first workshop in Aussois (1997), organized by P.O.