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The numerical simulation of a flow through a duct requires an externally specified
forcing that makes the fluid flow against viscous friction. To this end, it is customary
to enforce a constant value for either the flow rate (CFR) or the pressure gradient
(CPG). When comparing a laminar duct flow before and after a geometrical
modification that induces a change of the viscous drag, both approaches lead to
a change of the power input across the comparison. Similarly, when carrying out
direct numerical simulation or large-eddy simulation of unsteady turbulent flows,
the power input is not constant over time. Carrying out a simulation at constant
power input (CPI) is thus a further physically sound option, that becomes particularly
appealing in the context of flow control, where a comparison between control-on
and control-off conditions has to be made. We describe how to carry out a CPI
simulation, and start with defining a new power-related Reynolds number, whose
velocity scale is the bulk flow that can be attained with a given pumping power in
the laminar regime. Under the CPI condition, we derive a relation that is equivalent
to the Fukagata–Iwamoto–Kasagi relation valid for CFR (and to its extension valid
for CPG), that presents the additional advantage of naturally including the required
control power. The implementation of the CPI approach is then exemplified in
the standard case of a plane turbulent channel flow, and then further applied to a
flow control case, where a spanwise-oscillating wall is used for skin-friction drag
reduction. For this low-Reynolds-number flow, using 90 % of the available power for
the pumping system and the remaining 10 % for the control system is found to be
the optimum share that yields the largest increase of the flow rate above the reference
case where 100 % of the power goes to the pump.
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1. Introduction
Fluids flow through a duct upon external actions (pressure differences, forces). For

the numerical simulation of a duct flow, one needs to mimic these physical effects by
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supplementing the governing equations with a forcing that drives the flow through the
duct against viscous drag, which in the case of a straight duct only arises from friction.
In practice, unless the wall moves and produces a shear-driven flow, this forcing is
imposed by selecting a constant (in time) value for either the pressure gradient or the
flow rate. We define the former the constant pressure gradient (CPG) and the latter
the constant flow rate (CFR) approach. The two approaches are trivially identical in
the laminar flow regime, where flow rate and pressure gradient are uniquely related.

For steady laminar flows, however, the difference between CFR and CPG becomes
visible whenever a comparison between two flows is done. If, for example, an obstacle
is placed in a duct flow (like an orifice in a hydraulic pipeline system or a stenosis
growing in an artery), the changed flow state can be compared to the original one
under the assumption that both possess the same flow rate or the same pressure
gradient. The corresponding result would of course differ, since the additional flow
resistance would lead to an increase of required pressure gradient in the case of CFR
or to a decrease of achieved flow rate in the case of CPG. A consequence of this
difference is sketched in figure 1, where it is schematically shown how the length
of the recirculation bubble after the obstacle obtained by CFR is larger than that
obtained by CPG.

When direct numerical simulation (DNS) of the Navier–Stokes equations, or
large-eddy simulation (LES), is used to numerically simulate an unsteady turbulent
flow even in a simple straight duct, CPG results in a flow rate that fluctuates in
time, with a well-defined time average under equilibrium conditions. Similarly, CFR
leads to temporal fluctuations of the space-averaged pressure gradient which, after
appropriate time averaging, becomes constant under equilibrium conditions. Such
temporal fluctuations are known to depend on the computational domain size, and
become smaller for larger domains (Lozano-Durán & Jiménez 2014). In any case,
CFR and CPG result in the same time-averaged values for pressure gradient and
flow rate respectively, provided the integration time is long enough. However, an
important difference between the two approaches exists in terms of power input.
The power input into the system (which physically might come from the action of
a pump) is given by the product of pressure gradient and flow rate. When either
pressure gradient or flow rate change in time, the power input is not instantaneously
constant. Although this can be regarded as a minor issue in DNS, the instantaneous
fluctuations of the power input under CFR and CPG are larger in LES owing to the
larger time step size, and might be of some concern if a constant filter width is used
in the definition of the subgrid model. Indeed, the fluctuations in the energy flux are
reflected in corresponding fluctuations of the filter length scale expressed in viscous
(Kolmogorov) units, while the filter width is usually set statically, once and for all,
in relation to the mesh size.

In the context of flow control, where changes in the flow resistance are introduced
by design, CFR has been more often employed than CPG, since evaluating control
performance with the resultant drag reduction is more intuitive and the initial transient
period to reach an equilibrium state after the onset of control is shorter for CFR than
for CPG. From a fundamental viewpoint, the choice between CFR and CPG becomes
interesting when the question arises of how to meaningfully compare the controlled
flow field to the reference flow without control. Owing to the action of control,
one of the several Reynolds numbers by which the flow can be characterized is
modified: using for example a skin-friction drag-reduction technique under CFR has
the effect of reducing drag (hence reducing the value of the friction-based Reynolds
number, Reτ , at constant bulk velocity Reynolds number, Reb); however, using the
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FIGURE 1. Example sketch of the difference between CFR and CPG when comparing
the steady laminar flow in a straight reference pipe to the flow in the same pipe with an
obstacle. This might be for example the study of a stenotic flow in an artery. Depending
on whether the mass flow or the pressure gradient of the reference flow is kept constant,
the details of the recirculating bubble after the obstacle are different; in particular the
recirculating bubble is longer with CFR.

same technique under CPG cannot result in drag reduction, since the drag is constant
by definition and the drag-reducing effect manifests itself in an increased flow rate
(larger value of Reb at constant Reτ ). In this case the energy flux (power input) is
not constant even in the time-averaged sense: for the controlled flow under CFR
the energy flux decreases (pressure gradient decreases and flow rate is unchanged),
whereas under CPG the energy flux increases (pressure gradient is unchanged and
flow rate increases). It therefore becomes difficult to make any definite statement
about the behaviour of energy dissipation, i.e. the mechanism by which we lose
energy, since the sign of the global change of dissipation is simply prescribed by
the simulation strategy (Ricco et al. 2012). In the end, the physical interpretation of
results can be quite different depending on which numerical condition is employed
to run the simulation. One example is given in figure 2, which shows how the
drag-reduction technique known as the spanwise-oscillating wall (Jung, Mangiavacchi
& Akhavan 1992) affects the root-mean-square (r.m.s.) intensity of the streamwise
velocity fluctuations in a turbulent channel flow. It can be seen that, depending on
whether the simulation is run under CPG or CFR (and, in the latter case, depending
on whether the friction velocity of the controlled or uncontrolled flow is used to
plot the data in viscous units), the global picture of how the oscillations of the wall
affect turbulence near the wall can be significantly different: one might correctly
conclude that turbulence intensity is strongly suppressed by the oscillating wall, or
that it is essentially unchanged, with perhaps only the profile being slightly shifted
outwards.

In this paper we propose a strategy to carry out the numerical simulation of duct
flow with the power input, i.e. the energy flux through the system, kept constant. We
call this strategy the constant power input (CPI) approach, an alternative to CFR and
CPG. This alternative strategy naturally arises from the money-versus-time plane, a
methodology for assessing flow control techniques for skin-friction drag reduction,
which we have recently proposed (Frohnapfel, Hasegawa & Quadrio 2012). In the
money-versus-time plane, the drag reduction problem is generally formulated as
finding a compromise between energy consumption and the time required to transport
a given amount of fluid over a unit distance, i.e. the inverse of the flow rate. These
two essential quantities are plotted on the vertical and horizontal axes of the plane
as shown in figure 3. The goal of flow control is to modify a flow state towards the
origin of the plane (less energy consumption and more convenience) by manipulating
turbulence. By plotting first in figure 3(a) the pumping energy versus the inverse of
the bulk velocity, an uncontrolled fully turbulent flow state is shown to be shifted by
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FIGURE 2. Wall-normal distribution of the r.m.s. value of the streamwise velocity
fluctuations: effect of a spanwise-oscillating wall. Data from a turbulent channel flow at
Reτ = 200 (Reb = 3173) taken from Quadrio & Ricco (2011). Continuous line is the
reference flow, and symbols correspond to the spanwise-oscillating wall operating with
oscillation amplitude W+0 = 12 and nearly optimal oscillating period T+ = 100: triangles,
CPG calculation; circles, CFR calculation (for filled circles the friction velocity of the
reference flow has been used for non-dimensionalization, while for open circles the actual
friction velocity in the drag-reduced state was used).

successful control to two different end points (both somewhat nearer to the laminar
state) under CFR and CPG. Note that the pumping energy per unit fluid volume is
proportional to the pressure gradient (Frohnapfel et al. 2012), and consequently the
flow states under CPG move along a horizontal line as shown in figure 3(a). Since
in this plane any straight line starting from the origin connects points with the same
pumping power input, control under CPI would therefore move from the uncontrolled
flow state along a straight line towards the origin into a third, different final state. In
a next step, sketched in figure 3(b), the pumping energy is replaced by the sum of
pumping and control energy on the vertical axis, in order to account for the energetic
cost of active flow control techniques. Again, it is shown how flow control applied
under CFR and CPG shifts the operating point. The straight line between a turbulent
reference point and the origin now connects all points with constant total power
input (CtPI). In order to account for the difference of these two planes represented
in figure 3 we distinguish between constant pumping power input (CpPI) and CtPI
in the following. The latter (CtPI) is a specific approach for the evaluation of active
flow control techniques; it can be further generalized to account for costs that are
related to introducing changes into the fluid system, like geometry or roughness
changes. The former approach (CpPI) does not consider active flow control. It is an
alternative simulation strategy to the conventional CFR and CPG approaches, which
might be considered more adequate for specific problem formulations. For example,
a flow state realized with a certain pump is described by a characteristic curve
which depends on the principles of the pump employed and also its control scheme.
Therefore, the possible trace of the flow state satisfies neither CFR, CPG nor CPI
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FIGURE 3. Pumping energy, E∗p (a), and total energy, E∗t = E∗p + E∗c (b), plotted versus
the inverse of the dimensional bulk mean velocity, U∗b , for fully developed turbulent flow
(solid line) and laminar flow (dashed line). If flow control for skin-friction drag reduction
is applied at a turbulent reference point, N, the resulting shift in the depicted plane
depends on the operating condition of the numerical simulation. The shift to A or A′
corresponds to CFR and the one to B or B′ to CPG. The vertical distances between A and
A′ or B and B′ in (b) correspond to the energy consumption, E∗c , of the control technique.
The dash-dot lines connecting N with the origin of the coordinate system represents states
of CpPI in (a) and CtPI in (b), respectively. Adapted from Frohnapfel et al. (2012).

in general. The characteristic curves of most existing turbopumps typically show a
decreasing pressure head with increasing flow rate, while the change in the shaft
power is quite small in a wide range of flow conditions. For such a case, CPI might
be considered the most reasonable numerical representation.

Our paper begins by first showing in § 2 how the CPI approach can be introduced
by identifying a velocity scale, and thus a related Reynolds number, based on
the power consumption. The CPI approach is then discussed in the context of the
so-called FIK identity (Fukagata, Iwamoto & Kasagi 2002) in § 3, where it is shown
how an insightful exact relationship between wall friction (or flow rate) and the
turbulent shear stresses can be obtained under CFR, CPG and CPI, and how the
latter approach allows a natural consideration of the energetic cost of the control.
Next, in § 4 it is shown how to carry out a numerical simulation under CpPI, whose
implementation in a computer code is briefly summarized. Last, the implementation
of the CtPI concept is shown in § 5 to be able to identify, for the simple example
of the spanwise-oscillating wall, which percentage of the available power should be
used to run the control in order to achieve the maximum flow rate.

In this paper, all dimensional quantities are indicated with an asterisk. Non-
dimensionalization is always based on the velocity scale used in the definition of
the relevant Reynolds number. In some instances, viscous (inner) scaling is explicitly
denoted with the conventional ‘+’ superscript. The geometrically simple setup of
plane channel flow that will be considered in the following is sketched in figure 4;
the streamwise, wall-normal and spanwise directions are indicated with x, y and z,
with u, v and w being the respective velocity components. The static pressure is
p. Instantaneous wall-parallel averages of fluid quantities are denoted, for example,
by [u], [p] and so forth, which are in general a function of y. The volume average
is denoted by {·}, so that {u} corresponds to the instantaneous bulk velocity. The
time average is applied to statistically steady flows. The combination of spatial and
temporal averaging is indicated by angular brackets: 〈u〉.
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FIGURE 4. Sketch of the plane channel flow geometry. The two walls are located at y∗=0
and y∗= 2δ∗. The sketch shows the power P∗p that enters the system through pumping and
the power P∗c required by a flow control device, if present.

2. The concept of CPI
We consider one of the simplest canonical flows, namely the fully developed plane

channel flow, sketched in figure 4, bounded by two infinite parallel walls, located
2δ∗ apart. The fluid has density ρ∗, dynamic viscosity µ∗ and kinematic viscosity ν∗.
In the laminar regime, a given pumping power P∗p produces a parabolic streamwise
velocity profile with a well-defined corresponding mass flow rate. The pumping power
per unit wetted area is given by

P∗p =−
dp∗

dx∗
δ∗U∗b , (2.1)

where −dp∗/dx∗ is the streamwise pressure gradient and U∗b is the bulk velocity, i.e.
the volume-averaged streamwise velocity {u∗}. The value of the bulk velocity can
be easily deduced by integrating in the wall-normal direction the expression for the
laminar parabolic velocity profile:

U∗b =
1

2δ∗

∫ 2δ∗

0
u∗(y∗) dy∗ = 1

3µ∗

(
−dp∗

dx∗

)
δ∗2
. (2.2)

In a fully developed flow, the power input to the flow balances the dissipation rate ε∗
of the kinetic energy of the flow. The parabolic form of the velocity profile allows ε∗
per unit wetted area to be computed as:

ε∗ =
∫ δ∗

0
µ∗
(

du∗

dy∗

)2

dy∗ = 3µ∗U∗b
2

δ∗
. (2.3)

By equating the dissipation rate (2.3) with the pumping power P∗p, the following
relation between the flow rate and the pumping power is found:

U∗b =
√

P∗pδ∗

3µ∗
. (2.4)

This equation identifies a velocity scale, that we indicate with the symbol U∗Π
in the following, which represents the flow rate (per unit width) achieved by a
given pumping power P∗p in the laminar regime. The flow rate achieved by the same
pumping power is of course less in the turbulent regime, where U∗Π becomes an upper
bound. Moreover, theoretical arguments exist (Bewley 2009; Fukagata, Sugiyama &
Kasagi 2009) showing that U∗Π is the maximum achievable flow rate for controlled
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flows if the power consumption of control is considered. The velocity scale U∗Π ,
defined as

U∗Π =
√

P∗pδ∗

3µ∗
(2.5)

is therefore the appropriate reference velocity for the CPI approach.
Once the velocity scale U∗Π is identified, it is straightforward to normalize all

quantities by U∗Π and the channel half-width δ∗ in order to obtain governing equations
for the CPI concept. In this dimensionless form the incompressible continuity and
Navier–Stokes equations read:

∂ui

∂xi
= 0, (2.6)

∂ui

∂t
+ ∂(ujui)

∂xj
= − ∂p

∂xi
+ 1

ReΠ

∂2xi

∂xj∂xj
, (2.7)

where the Reynolds number is defined as:

ReΠ = U∗Πδ
∗

ν∗
. (2.8)

Accordingly, by using (2.5) the dimensionless power input is given by:

Pp =
P∗p

ρ∗U∗Π
3 =

3
ReΠ

. (2.9)

Therefore, ReΠ defines the power input to the system and is the natural choice for
a CPI simulation, just as Reb defines the flow rate and is conveniently used in CFR,
and Reτ defines the pressure gradient and is used in CPG. The relation between
the different Reynolds numbers and corresponding velocity scales is summarized in
appendix A.

In the case of active control where the total power input to the fluid system consists
of pumping and control power,

P∗t = P∗p + P∗c, (2.10)

(2.9) becomes

Pt = 3
ReΠ

(2.11)

and states that the numerical value of ReΠ sets the total power input. Depending on
the particular control, the relative importance of the terms P∗p and P∗c , i.e. the amount
of the available power that is actually used for pumping and that which goes into the
flow control device, is described by the quantity

γ = P∗c
P∗t
= 1− Pp

Pt
(2.12)

which reflects the percentage of the total power that is used for control. Accordingly,

Pp = Pt (1− γ )= 3 (1− γ )
ReΠ

. (2.13)

3. Flow control under CFR, CPG and CPI
A few years ago Fukagata et al. (2002) derived the so-called FIK identity, which

relates the skin-friction coefficient in a fully developed channel flow to its dynamical
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contributions under CFR. Since it nicely shows how the wall-normal distribution of the
Reynolds shear stress contributes to the wall friction quantitatively, the FIK identity
has been widely used for analysing different drag-reduction mechanisms and also for
developing novel control strategies. This idea was later been extended to CPG by
Marusic, Joseph & Mahesh (2007). After briefly recalling these two results, we present
the corresponding formulation for the CPI case for which we also obtain the result that
the success of a flow control technique in a turbulent channel flow can be quantified
by the achieved reduction of the Reynolds shear stress.

3.1. CFR
The original FIK identity is valid under CFR, hence the relevant Reynolds number is
Reb ≡U∗bδ

∗/ν∗, and velocities are scaled with the bulk velocity U∗b . It reads:

Cf = 6
Reb
+ 3

∫ 2

0
(1− y)

〈−u′v′
〉

dy. (3.1)

The first term on the right-hand side corresponds to the laminar drag at the same flow
rate, whereas the second term represents the turbulence contribution. Typically, since
〈−u′v′〉> 0, the turbulent shear stress enhances the friction coefficient Cf .

3.2. CPG
The corresponding relationship for CPG has been derived by Marusic et al. (2007).
The relevant Reynolds number is Reτ ≡ u∗τδ

∗/ν∗, and velocities are scaled with friction
velocity u∗τ . It reads:

Ub = Reτ
3
− Reτ

2

∫ 2

0
(1− y)

〈−u′v′
〉

dy. (3.2)

In analogy with (3.1), the bulk mean velocity under CPG is composed of two terms,
i.e. laminar and turbulence contributions. The first term on the right-hand side is equal
to the laminar flow rate under the same pressure gradient. The second term represents
the momentum loss due to the turbulent shear stress leading to a lower flow rate in
turbulent flows. This trend is enhanced at higher Reynolds number.

3.3. CPI
Under CPI conditions the relevant Reynolds number is ReΠ ≡U∗Πδ

∗/ν∗, and velocities
are scaled with velocity U∗Π . The averaged streamwise component of the momentum
equation can be written as:

0=−d 〈u′v′〉
dy

−
〈

dp
dx

〉
+ 1

ReΠ

d2 〈u〉
dy2

. (3.3)

Triple integration yields:

Ub =−
〈

dp
dx

〉
ReΠ

3
− ReΠ

2

∫ 2

0
(1− y)

〈−u′v′
〉

dy. (3.4)

This expression for the bulk mean velocity again consists of two terms on the right-
hand side: a laminar contribution and a turbulence contribution. However, in contrast
to (3.1) and (3.2) the first term on the right-hand side is not defined solely by the
prescribed Reynolds number but also by the resulting mean pressure gradient term.
Hence, it needs to be considered further in order to obtain an expression that only
contains the relevant Reynolds number and the Reynolds shear stress.
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The mean pressure gradient is given by the pumping power per unit wetted area
divided by the bulk velocity; using (2.13) it reads:

−
〈

dp
dx

〉
= Pp

Ub
= 3(1− γ )

ReΠUb
. (3.5)

Notice how γ has already been introduced into the equation at this stage, since one
of the CPI advantages is to be able to discriminate between pumping power and total
power. Using this relationship to replace the mean pressure gradient term in (3.4) and
multiplying by Ub (for Ub 6= 0) results in a quadratic equation for Ub:

U2
b + TUb − (1− γ )= 0, (3.6)

where the coefficient T is defined as

T = ReΠ
2

∫ 2

0
(1− y)

〈−u′v′
〉

dy (3.7)

and represents the contribution of turbulence to the resulting flow rate. The solution
to (3.6) is given by

Ub = −T ±√T2 + 4(1− γ )
2

(3.8)

and can be regarded as the FIK identity for the CPI condition.
It should be noted that, in the CPI condition, once 0<γ < 1 is given, the pumping

power is fixed, whereas the flow direction is not prescribed. The pumping power being,
from (2.1), the product of pressure gradient and bulk mean velocity explains why
two solutions appear in (3.8): one corresponds to the case where both the bulk mean
velocity and the pressure gradient, are positive, and the other to the case where they
are both negative. However, choosing the x axis such that the mean flow is oriented
in its positive direction, as figure 4 suggests, implies that one of the two solutions in
(3.8) is selected, namely that with the positive sign, to satisfy (3.6).

It is evident that for a standard laminar flow, where the power input for control and
the turbulence contribution vanish, namely γ = 0 and T = 0, (3.8) reduces to Ub = 1
or U∗b = U∗Π , which is the upper limit for the bulk velocity under the CPI condition.
When the flow is turbulent, the Reynolds shear stresses are typically negative, i.e.
〈−u′v′〉 > 0 so that T > 0, thus leading to Ub < 1. In the limiting case where the
turbulence contribution becomes infinitely large, i.e. T→∞, Ub tends to zero. Another
limiting behaviour is the case with γ = 1, i.e. all available power goes into the control
system. In this case, the quadratic equation (3.6) becomes singular, so that it reduces
to the original linear equation (3.4), which possesses the unique solution Ub = −T .
Depending on the particular control strategy, some flow rate may be produced by
control through T 6= 0, like for example the forcing scheme devised by Min et al.
(2006), where a viscous streaming mechanism provides the equivalent of a pumping
action.

4. Implementing CPI into a DNS code: CpPI
We consider first the no-control case, where the power input to the system is

entirely given by the pumping power, i.e. γ = 0, and describe how to implement the
CpPI concept into a DNS or LES code in the simple geometry of plane channel flow.
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In a CPI simulation the pumping power P∗p is prescribed, and set by the value
of ReΠ . Compared to a laminar simulation, both the space-averaged instantaneous
streamwise pressure gradient −[∂p/∂x] and the instantaneous flow rate {u} may
fluctuate around their mean values G and Ub, but their product sets the instantaneous
value of the pumping power and must consequently remain constant to satisfy (2.9).
Both −[∂p/∂x] and {u} are thus computed as time-dependent quantities during the
simulation.

However, it is not easy to satisfy the CpPI condition exactly at every time step,
since the flow state is obtained as a result of the computation. Hence, we follow
the simplest approach in a time-discrete setting, where the equations of motion are
advanced by a typically very small computational time step. To advance the solution
from time step n to time step n+ 1, the pressure gradient is determined as:

−
[
∂p
∂x

](n+1)

= Pp

{u}n =
3

ReΠ {u}n (4.1)

and this enables advancing the solution by one time step to compute {u}n+1. Note
that the above scheme is first-order accurate in time. In the present study, this is
sufficient, since the estimation error of {u}n+1 is commonly of the order of 10−8.
This indicates that the CPI condition is satisfied within the same order. The order
of accuracy can be increased in a straightforward way by using past variables. For
second-order accuracy, un+1≈ 2un− un−1 can be used. We confirmed that the increased
accuracy of the numerical scheme does not affect the present results.

When the flow reaches an equilibrium state, the mean pressure gradient and the wall
friction must balance:

−
〈

dp
dx

〉
=G= 1

ReΠ

d 〈u〉
dy

∣∣∣∣
y=0

. (4.2)

This leads to

Pp =GUb = Ub

ReΠ

d 〈u〉
dy

∣∣∣∣
y=0

. (4.3)

Here, it is assumed that the temporal correlation between G and Ub is negligibly
small. This is generally valid in a sufficiently large computational domain except for
the special case where the pressure gradient is actively varied in time, so that the
correlation between G and Ub becomes significant.

Since Pp = 3/ReΠ from (2.9), the following relationship is obtained:

Ub
d 〈u〉
dy

∣∣∣∣
y=0

= 3 (4.4)

which is exact and can be used to verify that the time averaging is sufficient.
The friction coefficient Cf can be defined in terms of pumping power by:

Cf =
P∗p

1
2ρ
∗U∗3b

(4.5)

and by using (2.4) it can be expressed as:

Cf = 6µ∗U∗2Π
ρ∗δ∗U∗3b

= 6
ReΠ

(
U∗Π
U∗b

)3

. (4.6)
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When the flow is laminar, U∗b = U∗Π and thus Reb = ReΠ ; in this case the above
expression reduces to the conventional laminar formula Cf = 6/Reb.

Example
We now present the results of a sample CpPI calculation of (uncontrolled) turbulent
channel flow. The statistics are the result of a DNS, carried out by adapting an
existing DNS code to the CPI procedure. The code (Luchini & Quadrio 2006) solves
the incompressible Navier–Stokes equations, written in terms of wall-normal velocity
and wall-normal vorticity components, by a pseudo-spectral method, where Fourier
expansions are employed in the streamwise and spanwise directions, and compact
fourth-order explicit finite-difference schemes are used in the wall-normal direction.
Full details can be found in the original paper. The code changes that we had to
implement in order to enable the simulation to run under CPI are extremely limited
(five lines of source code).

The streamwise and spanwise dimensions of the computational domain are set
at the standard values of L∗x = 4πδ∗ and L∗z = 2πδ∗, as in Kim, Moin & Moser
(1987). We set the value of the Reynolds number based on the total power input
at ReΠ = 6500, which yields Reτ ≈ 200. The number of modes employed in the
streamwise, wall-normal and spanwise directions are (Nx, Ny, Nz) = (256, 128, 256),
respectively. If expressed in wall units, the spatial resolution of 1x+= 9.8, 1z+= 4.9
and 1y+ = 0.9–4.9 is within the usually accepted values (Hoyas & Jiménez
2008). Time integration is carried out via a classic partially implicit three-stage
Crank–Nicholson Runge–Kutta scheme; integration time is 2000δ/UΠ , corresponding
to more than 12 000 viscous time units.

Figure 5 demonstrates the temporal behaviour of the flow rate and the pressure
gradient. They are normalized with their time-averaged values Ub and G. The figure
clearly shows that the product of the two quantities is actually kept constant at every
time instant during the simulation. The product of the corresponding bulk velocity
and wall shear stress is 2.99914, which indicates that (4.4) is satisfied to a very high
degree. Additionally, it can be also appreciated that the time scale of variations of both
quantities is O(100) and thus far larger than the time step of the simulation, which is
of the order of 10−2.

The resultant bulk and friction Reynolds numbers are found to be Reb = 3176 and
Reτ = 199.7, respectively. The mean velocity and r.m.s. values of velocity fluctuations
obtained, normalized by U∗Π , are shown in figure 6. The right-hand vertical axis shows
the same quantities made dimensionless with the conventional viscous wall units, to
highlight the scale factor involved.

5. Constant total power input (CtPI)
Active flow control techniques require power to operate. As described in § 2, the

additional control power P∗c is a further contribution to the total power input P∗t
besides the pumping power P∗p.

The procedure previously sketched in § 4 to adjust flow rate and pressure gradient
during the simulation must be adapted as follows. Once the bulk velocity {u}n and the
control power Pn

c are known at the time step n, the pumping power at time step n+ 1
is determined as Pn+1

p =Pt −Pn
c , and using (2.13), the pressure gradient is determined

as

−
[
∂p
∂x

](n+1)

= Pn+1
p

{u}n =
Pt − Pn

c

{u}n =
3 (1− γ )
ReΠ {u}n . (5.1)
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FIGURE 5. Temporal behaviour of the space-mean instantaneous bulk velocity {u} (thick
solid line) and the space-mean instantaneous pressure gradient −[∂p/∂x] (dashed line),
normalized with their time-average values Ub and G. The thin horizontal line is the
product of the two quantities, proportional to the instantaneous power input, which remains
constant during the simulation.
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FIGURE 6. (a) Mean velocity profile 〈u〉 and (b) wall-normal distribution of the r.m.s.
values of velocity fluctuations ui,rms for the DNS of a turbulent channel flow under CpPI.
In each plot, the left-hand axis is ‘power’ units, and the right-hand axis is the conventional
viscous (plus) units. In (a), the thin lines are the linear and logarithmic laws given
by 〈u〉+ = y+ and 〈u〉+ = 2.5 ln y+ + 5.5. In (b), the streamwise component is plotted
with a continuous line, the wall-normal component with a dashed line, and the spanwise
component with a dash-dotted line.

Equation (4.3) is still valid (in equilibrium conditions). Hence,

Pt (1− γ )= Ub

ReΠ

d 〈u〉
dy

∣∣∣∣
y=0

. (5.2)
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By using (2.11) one obtains

Ub
d 〈u〉
dy

∣∣∣∣
y=0

= 3 (1− γ ) (5.3)

which is an exact relation, like (4.4).
The friction coefficient is still defined in terms of P∗p:

Cf =
P∗p

1
2ρ
∗U∗3b
= 2P∗t (1− γ )

ρ∗U∗3b
= 6

ReΠ

(
U∗Π
U∗b

)3

(1− γ ). (5.4)

When no control is applied, i.e. γ = 0, and the flow is laminar, the conventional
laminar relationship Cf = 6/Reb is recovered. Frohnapfel et al. (2012) introduced the
notion of an effective wall friction τ e∗

w (and an effective friction coefficient Ce
f ) to

account for the total power consumption:

τ e∗
w =

P∗t
U∗b
= τ ∗w +

P∗c
U∗b
. (5.5)

By writing it as τ ∗w
e = τ ∗w/(1− γ ), we obtain:

Ce
f =

Cf

1− γ =
6

ReΠ

(
U∗Π
U∗b

)3

, (5.6)

indicating that achieving U∗b =U∗Π is equivalent to reducing Ce
f to the laminar value.

Example
To exemplify the application of the CPI concept in the context of flow control, we
consider the problem of reducing the turbulent friction drag, and employ to this
purpose the well-known spanwise-oscillating-wall technique (Jung et al. 1992). The
choice of this particular technique is motivated by the amount of information already
available, as well as by the limited number of control parameters involved. The
forcing scheme consists of harmonically moving the wall in the spanwise direction
according to:

w(x, y= 0, z, t)=W0 sin (ωt) (5.7)

where the only two parameters are W0, the oscillation amplitude, and ω = 2π/T , its
frequency (T is the oscillation period). The oscillating wall obviously requires power
for its actuation, and thus the question we are asking in the CPI setting is: for a given
available total power, what is the optimal share of power between the pump and the
control device that maximizes the flow rate? In other words, for a given value of ReΠ ,
we seek the optimal value of γ for which the oscillating-wall technique provides the
largest increase of the flow rate Ub above the value Ub,0 corresponding to γ = 0, the
uncontrolled flow where all of the power is used for pumping. It is known (Baron &
Quadrio 1996) that, for relatively small values of the forcing amplitude, the oscillating-
wall technique can achieve small positive net savings, i.e. combinations of parameters
exist where control power is smaller than pumping power saved thanks to the control
action. We thus expect Ub to be maximized by some optimal non-zero value of γ > 0.

A general optimization procedure would of course involve looping over different
values of γ in order to identify the best. Moreover, a single value of γ corresponds to



204 Y. Hasegawa, M. Quadrio and B. Frohnapfel

0.2 0.4 0.6 0.81.0
0.8

0.9

1.0

FIGURE 7. Ratio between the actual flow rate Ub and the flow rate Ub,0 of the
uncontrolled case, as a function of the share γ of the available power between pumping
power and control power provided to the oscillating walls.

several different combinations of the control parameters, the optimal set of which has
to be identified. An additional difficulty is that, given a set of control parameters, the
value of γ , i.e. the power cost of the control technique in that particular configuration,
is in general unknown beforehand, thus calling for an iterative procedure.

However, in the particular case of the oscillating wall, previous knowledge can be
exploited, and available information (Quadrio & Ricco 2004) allows us to determine
the range of parameters where best performance in terms of net saved power is
expected. Moreover, it is known (Quadrio & Sibilla 2000) that the oscillating
spanwise boundary layer created by the oscillations obeys the laminar solution
of the Stokes second problem in the range of forcing conditions of interest: it can
thus be anticipated that the control power increases with the square of the oscillation
amplitude and with the square root of the oscillation frequency. The values of γ
corresponding to a given pair of W0 and ω can thus be first-guessed a priori, and
then simply verified or slightly adjusted a posteriori.

Figure 7 summarizes the small parametric study carried out for the oscillating wall
in the present work. In these simulations, we have chosen the same value ReΠ = 6500
previously used in § 4, as it corresponds to the uncontrolled flow at Reτ = 200 which
is the case for most of the available drag-reduction data for the oscillating wall. The
same computational parameters mentioned before are employed here. In calculating
time-average quantities, the initial transient is carefully excluded. We note, in passing,
that the duration of this transient is one of the outcomes that is most affected by the
simulation strategy, with CFR presenting the shortest transient. However, as discussed
by Ricco et al. (2012), the longer transient shown by CPG is roughly compensated
by the smaller fluctuation of the quantity to be averaged in time (flow rate in CPG
and wall friction in CFR), so that the two approaches are roughly equivalent in terms
of computational cost. CPI presents an intermediate behaviour in this respect.

The figure shows how the ratio Ub/Ub,0 changes with γ . The oscillating wall is
confirmed to possess a parameters range where the optimal share of power between
pumping and control power yields an increase in the flow rate. Best performances
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are observed near γ ≈ 0.1, indicating that the optimal use of the available power (for
the investigated Reynolds number) is to employ 90 % for the pumping system and
the remaining 10 % for the control system. The maximum control-induced increase
of the flow rate is rather small, of the order of 3 %, and this is in agreement with
previous information (Quadrio & Ricco 2004) that the maximum net power saving is
only 7 %. Of course better-performing drag-reduction techniques are expected to yield
larger increase of the flow rate.

The calculations at γ > 0.25 do not provide a positive yield for the oscillating
wall. When such a control input is applied in CFR or CPG simulation, the resultant
drag-reduction rate (CFR) or flow rate (CPG) is enhanced. However, the control
power input increases more rapidly. This important point is directly visible for the
CPI condition, where fixed total power input results in a decrease of the flow rate.

In the limit γ → 1, all the energy is used up by the control system, and in the
present case the flow rate decreases to zero. As mentioned in § 3.3, however, this is
not necessarily true in general.

6. Conclusion

An original approach to carry out numerical simulations of duct flows, that is
different from the well-established options of keeping constant the flow rate (CFR) or
the pressure gradient (CPG), is introduced. The approach, that we name CPI, consists
of keeping the power input to the system strictly constant in time, thus ensuring a
constant energy flux. CPI represents a third alternative to the well-established CFR
and CPG techniques.

The paper describes in some detail how to implement the CPI concept into a DNS
or LES computer code, using the simple case of a plane channel flow. The idea
is general though, as it is based on the identification of a velocity scale UΠ that
expresses the flow rate achievable in the laminar regime with a given power input, and
leads to the definition of a new power-based type of Reynolds number ReΠ , which is
naturally suited for CPI calculations, much as Reb is flow-rate based and suited for
CFR, and Reτ is wall-friction based and suited for CPG.

The application example of CPI given in the paper concerns the problem of
turbulent skin-friction drag reduction through the spanwise-oscillating wall. Drag
reduction is often motivated by the need to save power. The CPI concept naturally
leads to setting up a power-constrained problem where the optimal management of the
power budget is identified by finding the optimal share of power between the pump
and the flow control device that provides the largest flow rate. A plot of the gain
(the flow rate) against the share of the available power between pumping and control
provides a simple and effective tool to assess different drag-reduction techniques and
thus determine which ones should be studied and developed further.

We believe that the potential of the CPI concept goes beyond the applications
presented in the paper. For turbulent drag reduction, the CPI concept has the potential
to highlight general properties of flows with drag reduction. It might be expected that
drag-reduced turbulent flows with different control strategies share some particular and
yet universal feature, which must possess a statistical footprint. However, identifying
such a footprint requires comparing flows with and without drag reduction, and
the terms of such comparison must be clearly defined. We believe that the CPI
concept is a key property of this definition. In the Richardson–Kolmogorov theory
of homogeneous isotropic turbulence it is well known that what happens in the
inertial range of scales is determined, at statistical equilibrium, by the rate at which
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energy enters the system. This corresponds to the rate at which, on average, energy
is transferred to smaller scales, and to the mean dissipation rate of turbulent kinetic
energy that takes place at the Kolmogorov scale. In the more complicated setting of
inhomogeneous, anisotropic turbulence, the CPI approach will allow us to analyse
and compare controlled flows where the rate at which energy enters the system is
fixed, thus allowing a meaningful analysis of how energy is distributed in the system.

From a more general standpoint, the CPI concept could play an interesting role
whenever a comparison has to be carried out between two (laminar or turbulent)
flows where a modification is introduced. If added to the comparison of two flow
fields shown in figure 1, CPI represents a third alternative (where e.g. the size of the
resulting recirculation bubble is in between those for CPG and CFR) whose meaning
must be evaluated on the basis of the specific problem. An extension of the presented
CPI concept to unsteady flow conditions, e.g. in analogy to varying flow rates in
arteries, can be considered.

As a final note, we would like to suggest that whenever fundamental studies
on laminar to turbulent transition are concerned it can be envisaged that the way
simulations are run (CFR, CPG or CPI) directly influences the result. CPI might
therefore be an interesting option to open up the parameter space in this context.
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Appendix A. Relation between ReΠ , Reb, Reτ
The relation between the newly introduced ReΠ for CPI and the existing Reynolds

numbers customarily employed for a turbulent channel flow, i.e. the friction and the
bulk Reynolds number, is discussed in the following.

For a fully developed turbulent channel flow, the friction coefficient can be
estimated by the so-called Dean’s formula (Dean 1978) as:

Cf ≡ τ ∗w
1
2ρ
∗U∗b

2 = αRe−1/4
b , (A 1)

where the coefficient α takes the value of α = 0.0614.
Based on this well-established empirical correlation, the relationship between Reτ

and Reb is given by:

Reτ =
√
α

2
Re7/8

b = 0.1752Re7/8
b . (A 2)

From (4.5), the pumping power P∗p is related to Cf by:

P∗p = 1
2ρ
∗U∗3

bCf . (A 3)
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Reτ Reb ReΠ U∗b/u
∗
τ U∗Π/u

∗
τ U∗Π/U

∗
b

100 1 413 2 171 14.4 21.7 1.54
150 2 247 4 105 15.0 27.4 1.83
200 3 121 6 451 15.6 32.3 2.07
300 4 961 12 199 16.5 40.7 2.46
450 7 885 23 070 17.5 51.3 2.93
600 10 954 36 256 18.3 60.4 3.31

TABLE 1. Relationship between different Reynolds numbers obtained by
Dean’s formula (A 1).

Substituting P∗p by (2.9) yields:

U∗Π
U∗b
= ReΠ

Reb
=
√

1
6 RebCf = 0.1012Re3/8

b , (A 4)

and therefore
ReΠ = 0.1012Re11/8

b . (A 5)

Equation (A 3) can also be written as:

P∗p = ρ∗u∗τ 2U∗b . (A 6)

Combining (A 6) and (2.9), the following relationship is obtained:

U∗Π
u∗τ
= ReΠ

Reτ
=
√

Reb

3
= 1.5621Re4/7

τ . (A 7)

Hence,
ReΠ = 1.5621Re11/7

τ . (A 8)

The relationship between the different Reynolds numbers and the corresponding
velocity scales in a fully developed turbulent channel flow at relatively low Reynolds
number, at which DNS are typically carried out, are summarized in table 1.
Comparison with the DNS described in § 4 where Reτ = 199.7, Reb = 3176 and
ReΠ = 6500 reveals the known small inaccuracy of the Dean’s correlation at low
values of Re.

The last column of the table gives the ratio between the maximum achievable
velocity U∗Π for the fixed power input (realized by the laminar flow state) and the
actual turbulent bulk velocity U∗b according to (A 4). This quantity is of particular
interest in order to illustrate an important difference between CPI and CPG. The
corresponding ratio between laminar and turbulent flow conditions at CPG is given
by:

(U∗b,lam)
CPG

U∗b
= 0.0102Re3/4

b . (A 9)

Two curves, corresponding to (A 4) (where U∗b,lam = U∗Π ) and (A 9), are plotted in
figure 8. For CPG a drastic increase in flow rate is revealed if the flow is laminarized:
for example, at the still relatively modest value of Reb≈80 000, the flow rate is almost
50 times larger for laminar flow conditions under CPG. In contrast, at the same value
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FIGURE 8. The ratio of maximum achievable bulk flow velocity (i.e. that in laminar
flow) to the actual turbulent bulk flow velocity as a function of bulk Reynolds number.
Continuous line is the CPI case, (A 4), and dashed line is the CPG case, (A 9).

of Re, CPI results in a potential flow rate increase of a factor seven only. It should be
noted that the laminar flow under CPG is driven by a power input that exceeds the one
for the turbulent flow by factor 50. Therefore, the impressive effect of relaminarization
found for CPG conditions cannot be expected in an engineering system if, as is often
the case, the system is limited by the available power. Marusic et al. (2007) note that
the CPG condition can be linked to an example given by Kolmogorov in which he
addresses the increase in flow speed if the Volga river were laminar. The river – in
contrast to most technical applications – is driven by an infinite reservoir of energy
(if we assume an infinite reservoir of water that is feeding the river) such that the
required increase in power input is not a limiting factor.
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