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A fundamental problem in the field of turbulent skin-friction drag reduction is to
determine the performance of the available control techniques at high values of the
Reynolds number Re. We consider active, predetermined strategies based on spanwise
forcing (oscillating wall and streamwise-traveling waves applied to a plane channel
flow), and explore via Direct Numerical Simulations (DNS) up to Reτ = 2100 the
rate at which their performance deteriorates as Re is increased. To be able to carry out
a comprehensive parameter study, we limit the computational cost of the simulations
by adjusting the size of the computational domain in the homogeneous directions,
compromising between faster computations and the increased need of time-averaging
the fluctuating space-mean wall shear-stress. Our results, corroborated by a few
full-scale DNS, suggest a scenario where drag reduction degrades with Re at a
rate that varies according to the parameters of the wall forcing. In agreement with
already available information, keeping them at their low-Re optimal value produces
a relatively quick decrease of drag reduction. However, at higher Re the optimal
parameters shift towards other regions of the parameter space, and these regions turn
out to be much less sensitive to Re. Once this shift is accounted for, drag reduction
decreases with Re at a markedly slower rate. If the slightly favorable trend of the
energy required to create the forcing is considered, a chance emerges for positive net
energy savings also at large values of the Reynolds number. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4849537]

I. INTRODUCTION

The increase of friction drag above the laminar value is one of the fundamental manifestations
of turbulence in the simplest wall-bounded flows, prompting the study of techniques aimed at skin-
friction drag reduction in the turbulent regime. The control strategies currently under development
range from passive techniques (a classic example being riblets1) that yield up 8%–10% reduction
of skin friction in well controlled, low-Reynolds laboratory conditions, to reactive techniques that
exploit linear control theory2 and promise much better performances, especially in terms of net
energy savings, but are highly complex and so far have been studied mostly through high-fidelity
Direct Numerical Simulations (DNS), where the actuator is introduced via a boundary condition
and friction drag can be easily measured by a space-time averaging procedure. Between these two
extrema, active predetermined techniques represent a compromise between energy expenditure and
energy gain, and yield sizable net energy savings with the advantage of moderate complexity, as
they do not need sensors and only require relatively large-scale actuators. One recently proposed
strategy, that looks promising in terms of net energy saving potential, is the streamwise-traveling
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wave concept,3 that has been shown to provide at least 20% net energy savings. It has been already
given experimental verification,4 and studies are ongoing for promising actuator technologies.5, 6

The review paper by Karniadakis and Choi7 focuses on spanwise-forcing techniques, and a more
recent volume8 contains several papers illustrating the long-term prospects of these (and other) drag
reduction techniques.

Riblets have already undergone flight tests,25 and they have been estimated to yield reductions of
total aerodynamic drag of at least 2% in flight conditions. Despite the fact that most of the anticipated
applications are characterized by high values of the Reynolds number Re, active techniques are still
lacking a comparable, thorough evaluation in high-Re flows.26 Since the active forcing is applied at
the wall, it is easy to show27 that the percentage benefits measured at low Re are expected to decrease
at least as (square root of) the baseline friction coefficient does. Indeed, the available data witness a
much faster decrease of the maximum drag reduction. However, only few higher-Re data exist, and
they cover one Re decade only, owing to the enormous increase of the computational cost of DNS,
paralleled by a shrinking of the physical size and timescale of the required sensors and actuators to
be employed in a laboratory experiment.

In this work, we focus on one (although rather general) class of predetermined control strategies
for drag reduction: the streamwise-traveling waves of spanwise wall velocity defined by

W (x, t) = A cos (κx x − ω t) , (1)

where W (x, t) is the spanwise velocity forcing at the wall, varying with the streamwise coordinate
x and time t. The parameters of the forcing are its amplitude A, the wavenumber κx and frequency
ω, which define the wavelength λ = 2π /κx, and the period T = 2π /ω. The forcing law (1) contains
the two limit cases of the spanwise-oscillating wall when κx = 0, and the stationary wave when
ω = 0. Particular combinations of parameters may lead to a reduction of the skin-friction drag that
we quantify, following Kasagi et al.28 in terms of the drag reduction rate R, i.e., the relative reduction
in skin-friction coefficient with respect to the uncontrolled flow. How the performance of the forcing
depends upon the value of the Reynolds number is typically9, 12, 15, 29, 30 quantified in the literature
through the exponent γ of a power law Rm ∼ Reγ

τ that links the maximum drag reduction rate Rm,
achieved at a fixed forcing amplitude A+, to the value of Reτ , the Reynolds number based on the
friction velocity uτ . Choi and Graham14 were first to take measurements at two different values of
Re in a oscillating cylindrical pipe. Their data, yielding γ = −0.06, are unfortunately of little use
since the setup was enforcing a constant azimuthal displacement, thus rendering the two datasets not
easily comparable owing to the variable A+. Choi et al.12 used turbulent channel flow simulations
to find that, at T+ = 100 and A+ = 10 (i.e., at optimal period and intermediate amplitude, as for
the majority of available data), the oscillating wall produces a drag reduction of 41.1%, 29.9%, and
22.4% at Reτ = 100, 200, and 400. They fitted several available results to infer that drag reduction
is predicted by a quadratic function of a scaling parameter proportional to Re−0.2

τ , thus implying γ

= −0.4. Ricco and Quadrio9 reported that the spanwise-oscillating wall at T+ = 125 and A+ = 12
yields 32.5% drag reduction at Reτ = 200 and 28.1% at Reτ = 400, which corresponds to the smaller
value γ = −0.2. Quadrio, Ricco and Viotti3 determined the best-performing traveling wave at Reτ

= 200 and forcing intensity of A+ = 12, and verified that at Reτ = 400 maximum drag reduction
decreases from 48% to 42%, thus supporting γ = −0.19. Touber and Leschziner15 presented DNS
data at Reτ = 200, 500 as well as LES and one DNS datapoint at Reτ = 1000 to suggest that drag
reduction values obtained under similar values of a scaling parameter support γ = −0.2.

The rather large values of γ observed by the aforementioned DNS studies imply a rapid decrease
of the drag reduction effect. This message is conveyed by Figure 1, where maximum drag reduction
rate Rm is plotted versus Reτ for the low-Re numerical and laboratory experiments available in
the literature concerning spanwise-forcing techniques. Extrapolation at higher Re, however, is not
obvious, and alternative attempts to gather high-Re information under simplifying assumptions have
been reported.

The picture that emerges from the few available theoretical studies is not entirely in agreement
with the empirical information. Duque-Daza et al.31 presented a linear stability study to link turbulent
drag reduction to the growth of near-wall turbulent streaks in a laminar flow where the prescribed
base flow is the mean streamwise velocity profile plus the spanwise Generalized Stokes Layer
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FIG. 1. Literature data for maximum drag reduction rate Rm versus Reτ for spanwise-forcing techniques. Black (white)
symbols indicate results from DNS (experimental) studies. We explicitly note that the forcing amplitude is not always
identical among different datasets. Circles: oscillating wall;9–20 triangles: streamwise-traveling waves;3, 4 squares: spanwise-
traveling waves;21, 22 and diamonds: Lorentz force.23, 24 The solid line is Rm ∼ Re−0.2

τ .

(GSL)32 generated by the traveling waves; although streak amplification turns out to depend on the
parameters of the forcing very much like drag reduction does, small or negligible change of streak
amplification is found over a wide range of Re. Moarref and Jovanović29 developed a model-based
approach that feeds the linearized Navier–Stokes equations with DNS-computed energy statistics,
and applied it to the oscillating wall. Although the Re-effect could be studied up to Reτ = 934 only
(because of the need of DNS information), they found that the maximum drag reduction decreases
with γ = −0.15. Belan and Quadrio30 developed a perturbation analysis to predict drag reduction
within an eddy-viscosity-based approach to turbulence modeling, and found γ ≈ 0.04 for a bulk
Reynolds number up to one million. Iwamoto et al.33 employed both analytic developments and
DNS experiments to show that a virtual drag reduction technique capable of completely removing
near-wall turbulent fluctuations in a turbulent plane channel flow within the layer y+ < 10 would
still yield 35% drag reduction at the relatively large value of Reτ = 105. Although Iwamoto et al.
suggested a logarithmic decay of drag reduction with Reτ , a power-law fits their results equally well
over several decades of Reτ and yields the value γ = 0.045.

In this paper, we use DNS to obtain information on the higher-Re performance of the spanwise-
oscillating wall and the streamwise-traveling waves. One important distinguishing feature of this
study is that we aim to carry out a comprehensive parametric survey at higher Re. In fact, we
notice that most of the available studies, besides being limited to the oscillating wall, only track
the neighborhood of the forcing parameters that deliver maximum drag reduction at low-Re, thus
implicitly assuming that the optimal forcing conditions do not change with Re when properly scaled
in wall units. Since the computational cost may rapidly become overwhelming, our strategy to make
this parametric study possible consists in carefully adjusting the size of the computational domain
while monitoring the effect of this crucial discretization parameter on the reliability of the obtained
drag reduction information.

The structure of the paper is as follows. In Sec. II, the numerical strategy and simulation
parameters are described in detail, focusing on the choice of the size of the computational domain,
and on the strategy adopted to quantify the error related to finite averaging time on the skin-friction
coefficient. In Sec. III, drag reduction properties for oscillating wall and traveling waves up to
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TABLE I. Computational domain size, spatial resolution, and friction Reynolds number Reτ for the 3 sets of simulations
carried out at different values of ReP.

Rep Lx/h Lz/h L+
x L+

z Nx × Ny × Nz Reτ

4760 6.28 3.14 1250 625 128 × 100 × 128 199
29 500 1.32 0.66 1255 627 128 × 500 × 128 951
73 000 1.193 0.596 2514 1257 192 × 1000 × 192 2108

Reτ = 2100 are discussed and the effect of Re quantified. Section IV addresses power consumption
and power budget, and Sec. V contains a discussion of the results, followed by some conclusions in
Sec. VI.

II. METHOD

A. Code and simulation parameters

The analysis takes advantage of a newly created DNS dataset for a turbulent plane channel
flow modified by either spanwise wall oscillations or streamwise-traveling waves, Eq. (1). The DNS
computer code, its parallel algorithm and the architecture of the computing system used for many of
the calculations presented in this study and hosted at the University of Salerno, have been described
elsewhere.34 The code is a mixed-discretization parallel solver of the incompressible Navier–Stokes
equations, based on Fourier expansions in the homogeneous directions and high-order explicit
compact finite-difference schemes in the wall-normal direction. If exception is made for the domain
size, discussed below, the present set of calculations is quite standard. The governing equations are
integrated forward in time, starting from an initial condition of fully developed uncontrolled channel
flow, generated specifically for each Reynolds number, while the flow rate is kept constant. The
Reynolds number is defined as ReP = UPh/ν where h is half the distance between the channel walls
and UP is the centerline velocity of a laminar Poiseuille flow with the same flow rate. Parametric
DNS studies have been carried out at ReP = 4760 and 23 500, corresponding to Reτ = uτ h/ν ≈ 200
and 1000, respectively, where uτ is the friction velocity of the non-manipulated flow. A more limited
dataset is produced at ReP = 73 000, corresponding to Reτ ≈ 2100. The spatial resolution (number of
Fourier modes Nx and Nz in the homogeneous streamwise and spanwise directions before expansion
for dealiasing, and number of points Ny in the wall-normal direction) is set according to current
practice; the resolution improves further in flows with drag reduction. Discretization parameters for
the 3 considered values of Re are shown in Table I.

The parameters defining the forcing expressed by Eq. (1) are chosen to facilitate comparison of
the results with those already available: in particular, a constant forcing amplitude at A+ = 12
is considered throughout this study. Figure 2 plots the available dataset3 at Reτ = 200 and
A+ = 12 along with five dashed lines that mark the regions where we concentrated our analy-
sis at Reτ = 200 and Reτ = 1000. Two scans of the parameter space have been made at constant
wavenumber, one for the oscillating wall case at κ+

x = 0 (line 1) and one at κ+
x = 0.005 (line 2),

where at low Re the maximum drag reduction is achieved. One more scan along the locus of largest
drag reductions (line 3), as well as two scans at constant frequency ω+ = 0.012 (line 4) and ω+

= −0.2 (line 5), complete the dataset. We notice that for κ+
x = 0.005, the wavelength λ+

x = 1250 of
the forcing and the streamwise length of the computational domain coincide. This is of no concern,
since previous studies3 have verified the absence of subharmonic effects.

B. Performance indicators

The control performance is evaluated, according to the notation introduced by Kasagi et al.28

in terms of three dimensionless indicators (R, Pin, S). R is the drag reduction rate, equivalent to the
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FIG. 2. Map of the drag reduction rate 100 R versus the wavenumber κ+
x and frequency ω+ of the traveling waves at A+

= 12 and Reτ = 200, after Quadrio et al.3 As in the original paper, the DNS datapoints (small dots) are first linearly
interpolated onto a finer regular grid that is used for contouring. The contour level is indicated on the isolines, spaced by 5.
The dashed lines highlight the portions of the parameter space investigated in this work.

relative reduction of pumping power P per unit channel area

R = P0 − P

P0
, (2)

where the subscript 0 refers to the uncontrolled flow. The time-averaged pumping power per unit
channel area is computed as

P = Ub

Tav Lx Lz

∫ t f

ti

∫ Lx

0

∫ Lz

0
τx dx dz dt,

where τ x is the streamwise component of the wall shear-stress, Ub is the bulk velocity, held con-
stant in the simulations, and Tav = t f − ti is the interval for time average. For the present sim-
ulations where Ub is constant, the drag reduction rate R equals the reduction of the skin-friction
coefficient Cf.

The power required to create the wall forcing is computed by neglecting the mechanical losses
of the actuation devices, and expressed as a fraction of the pumping power P0 in the uncontrolled
case:

Pin = 1

P0 Tav Lx Lz

∫ t f

ti

∫ Lx

0

∫ Lz

0
Wτzdx dz dt, (3)

where τ z is the spanwise component of the wall-shear stress and W the imposed spanwise wall
velocity. Finally, a net energy saving rate, i.e., the balance between the benefits and costs of the
control, can be easily defined as S = R − Pin. The symbols Rm and Sm are used to denote the
maximum of R and over the forcing parameters, at fixed forcing amplitude.

C. Effects of the size of the computational domain

The size (in the homogeneous directions) of the computational domains employed in the present
study, shown by Table I, is smaller than the one usually thought to yield size-independent results,
although it is several times larger than the Minimal Flow Unit35 described by Jiménez and Moin
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as the minimal computational domain capable of sustaining the near-wall turbulence cycle. The
rationale for choosing small domains is quite simple: making the domain smaller for a given small-
scale spatial resolution reduces the number of unknowns in the calculation and thus makes the
simulation run faster. This is only an apparent saving, though, since the averaging time required to
get converged statistics correspondingly increases. Simple math36 shows that, when the DNS code
in the wall-parallel directions uses Fourier discretization and fast Fourier transforms for computing
the non-linear terms pseudo-spectrally, the computational cost for one timestep is proportional to
NxNzlog (NxNz). The quantity of primary interest in this work is the mean skin-friction coefficient
Cf, defined as C f = 2〈τx 〉/ρ U 2

b , where 〈 · 〉 is the expected value operator. Its standard deviation
σC f is proportional to

σC f ∼ σC f (t)√
Tav

, (4)

where Tav is the averaging time, Cf(t) is the instantaneous space-averaged skin-friction coefficient,
and σC f (t) its standard deviation, proportional to (Lx × Lz)−1/2. It is thus evident that the smaller
computational cost per timestep and the larger number of timesteps required to obtain statistics of the
same quality tend to compensate each other. In the present kind of simulations, however, an initial
transient37 exists where the friction starts from the reference value of the unforced velocity field used
as initial condition, and progressively reduces under the action of the drag-reducing technique. A
significant amount of computing time is thus wasted for computing the initial transient after which a
meaningful time averaging can be started. Using a smaller domain allows us to considerably reduce
the cost of computing this initial part.

This significant computational advantage notwithstanding, the obtained mean values may still
be size-dependent. More important, since as stated above we want statistics “of the same quality”,
such quality must be somehow quantified, for example in terms of confidence interval of the mean.
A strategy is thus needed to estimate the uncertainty due to the finite averaging time on the measured
skin-friction and consequently on the drag reduction rate R.

The method employed here is based on the assumption that the time history of space-averaged
friction, once the initial transient has been properly discarded, contains data which are realizations,
uniformly spaced in time, of a continuous statistically stationary (ergodic) random process. Under
this hypothesis, the standard deviation σC f can be related to the temporal autocorrelation function
ρ(�t) of Cf(t) as follows:

σ 2
C f

=
2σ 2

C f (t)

Tav

∫ Tav

0
ρ (�t)

(
1 − |�t |

Tav

)
d�t, (5)

where ρ(�t) = 〈C f (t)C f (t + �t)〉/σ 2
C f (t). If |�t | � Tav , as can be safely assumed in the present

case, the above expression reduces to

σ 2
C f

= 2
σ 2

C f (t)

Tav

T , (6)

where T = ∫ Tav

0 ρ(�t)d�t is the integral timescale of the process. The variance σ 2
C f

and the auto-
covariance involved in the definitions (5) and (6) are themselves unknown and cannot be measured
directly, hence their best estimators, i.e., the sample variance and autocovariance, are used instead.

The standard uncertainty sR of the drag reduction rate R is computed by propagating the sample
standard deviations of the mean skin-friction for the uncontrolled and controlled case, respectively,
assuming they are independent variables. A confidence interval for R can be obtained thanks to the
central limit theorem, hence:

R − zα/2sR ≤ 〈R〉 ≤ R + zα/2sR,

where zα/2 is the standardized confidence interval of a normalized Gaussian PDF and depends on
the desired confidence level 1 − α. In this work, the commonly employed confidence level of 0.95
is chosen.



125109-7 D. Gatti and M. Quadrio Phys. Fluids 25, 125109 (2013)

Lx Lz / h
2

C
f

10-1 100 101 102

.002

.004

.006

.008

ReP = 4760   (Reτ≈ 200) 
ReP = 29500 (Reτ≈ 1000)
ReP = 73000 (Reτ≈ 2100)

FIG. 3. Friction coefficient Cf versus the size LxLz of the computational domain in the homogeneous directions, expressed
in outer units. Horizontal lines are the values of Cf predicted by the Dean’s correlation at ReP = 4760 (solid blue), ReP

= 29 500 (dashed red), and ReP = 73 000 (dot-dashed green). Blue circles: ReP = 4760; red squares: ReP = 29 500; and
green triangles: ReP = 73 000. Error bars at 95% confidence level.

Figure 3 shows for the uncontrolled flow at the 3 considered values of Re how Cf depends on
the domain size. This information is computed by running additional simulations with domain sizes
both smaller and larger than those listed in Table I, while the spatial resolution and aspect ratio
Lx/Lz of the computational domain are kept constant. Throughout the paper, line colors and symbols
shapes are used to encode the value of ReP: blue circles for ReP = 4760 (Reτ ≈ 200), red squares
for ReP = 27000 (Reτ ≈ 1000), and green triangles for ReP = 73000 (Reτ ≈ 2100).

It is seen that the computed values of Cf tend to the prediction by Dean’s correlation38 as the
domain size increases, and that too small domain sizes yield underestimated values of Cf. This is
consistent with previous information35 as well as with the observation39 that turbulent fluctuations
are progressively damped in smaller computational domains. At the lowest value of Reτ = 200, there
is no apparent change of Cf with the considered domain sizes, which are always relatively large in
outer units. The small difference between the numerical prediction and the Dean’s-computed value
can be attributed to the known slight inaccuracy of the latter at low Re: for example, Kim et al.40

found the Dean’s value to be higher by approximately 3%.
Although the absolute values of Cf are certainly important, even more important in this study

is the correct prediction of the drag reduction rate R. Owing to cancellation of the systematic bias
related to the domain size, R might be less affected by the domain size. Figure 4 shows the effect
of gradually reducing the domain size on the computed drag reduction achieved by wall oscillations
with A+ = 12 and T+ = 100. At both values of Re, increasing the domain size produces R that
approaches the full-domain value. The relatively large error in R for the oscillating wall at Reτ = 200
near the optimal oscillating conditions considered in Figure 3 should be regarded as a worst-case:
either far from the optimum, or by considering the traveling waves instead of the oscillating wall
leads to significantly better estimates.

III. DRAG REDUCTION

This section presents the results obtained for the drag reduction rate R, by comparing our
DNS results with available literature information. In the figures, present data are shown with empty
symbols, whereas literature DNS data obtained with domains of regular size are shown with filled
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FIG. 4. Drag reduction rate 100R versus the streamwise length L+
x of the computational domain, expressed in wall units,

for the oscillating wall with A+ = 12 and T+ = 100. Horizontal lines are from Quadrio and Ricco11 at Reτ = 200 and from
Touber and Leschziner15 at Reτ = 1000. Error bars at 95% confidence level.

symbols. Error bars are computed at 95% confidence level; they are not visible when their size
becomes smaller than the symbol.

A. Oscillating wall

Figure 5 plots 100R along the horizontal line numbered (1) in Figure 2, i.e., drag reduction
rate as a function of the period T+ of the oscillating wall at A+ = 12. Additional literature data
at different Re are plotted as specified in the legend. In particular, the low-Re DNS dataset at
Reτ = 200 by Quadrio and Ricco11 is indicated with line-connected circles. Additional datapoints
are those at Reτ = 500 and Reτ = 1000 by Touber and Leschziner,15 and that at Reτ = 400 from
Ricco and Quadrio.9 Only at the lowest Re the literature DNS data span a significant part of the
parameter space, whereas at higher Re the parameter space is sampled much more sparsely.

The values of R obtained in the present study with simulations at Reτ = 200 agree quite well
with those from the full-channel simulations11 at the same Re. The agreement is almost perfect at
values of T+ much larger and much smaller than the optimum value. Near the optimum, the position
of the maximum is well captured, but a slight overestimation of the drag reduction is observed, as
already shown in Figure 4, together with an increase of the uncertainty.

At Reτ = 1000, our dataset shows that Rm drops from 0.39 to 0.29, and occurs at T+ = 90.
In spite of the non-negligible uncertainty level, we notice that the optimal parameters of the wall
forcing slightly shift towards shorter periods. The only available DNS point at this Re is Touber
and Leschziner’s one and is quite in agreement with our dataset. The changes in drag reduction
for increasing Re seems to become smaller at smaller T+. For example at T+ = 30 R decreases
from 0.22 at Reτ = 200 to 0.19 at Reτ = 1000. The DNS from Ricco and Quadrio9 carried out at
Reτ = 400 and the same value of T+ supports this observation.

This general picture is confirmed by the observation of the two datapoints available at
Reτ = 2100, which show very small decrease of performance at small T+ and more substantial
one near the optimal oscillation period, where Rm becomes 0.24.
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Figure 2). Open symbols: present DNS data at Reτ = 200, 1000, and 2100. Filled symbols: available literature data.9, 11, 15

Error bars at 95% confidence level.

B. Streamwise-traveling waves

Figure 6 plots 100R along the horizontal line numbered (2) in Figure 2, i.e., drag reduction as
a function of the forcing frequency ω+ for traveling waves with constant wavelength λ+ = 1250
and A+ = 12. The line passes near the known3 maximum drag reduction Rm = 0.48 at Reτ = 200;
here at the same Re we measure Rm = 0.49, the small difference being clearly within the confi-
dence interval. Overall, there is nearly perfect agreement between the presently computed data at
Reτ = 200 and the available results: the overestimate of drag reduction when the computational

ω+

10
0 

R

-0.2 -0.1 0 0.1 0.2 0.3
-20

0

20

40

60

Reτ = 200 (Quadrio et al.)3

Reτ = 200
Reτ = 1000
Reτ = 2100

FIG. 6. Percentage drag reduction rate 100R versus oscillating frequency ω+ for the streamwise-traveling waves at A+ = 12
and λ+ = 1250 (line 2 of Figure 2). Symbols and error bars as in Figure 5.
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FIG. 7. Percentage drag reduction rate 100R for the streamwise-traveling waves at A+ = 12 along lines (3), (4), and (5)
of Figure 2. Left: Line (3), maximum drag reduction ridge. Right: line (4) at ω+ = 0.012 (top points), and line (5) at ω+
= −0.20 (bottom points). Symbols and error bars as in Figure 5.

domain is not fully adequate is much weaker here than for the oscillating wall. Moreover, as in that
case, the effect is confined to the region near maximum drag reduction.

As the Reynolds number is increased to Reτ = 1000, Rm drops to 0.37, with a total loss of
0.12. A similar change of R, although of opposite sign, can be observed in the drag-increasing
“valley.” The drag increase almost disappears at higher Re, but a local minimum of R is still present
and the concave part of the curve seems to widen, embracing a larger range of (positive) ω+. At
this wavelength, the best wave seems to be the stationary wave at ω+ = 0, at odds with lower Re,
where the maximum drag reduction is achieved for a small positive frequency. At large positive and
negative frequencies, and in particular for |ω+| > 0.15, R appears to be almost unchanged by the
increased Re. The more limited dataset at Reτ = 2100 supports the trends discussed above. The
highest drag reduction decreases further down to 0.29. No drag increase is observed in the “valley”
where a small drag reduction rate of approx. 0.03 is achieved instead.

In Figure 7, on the left, the interest is focused on the low-Re ridge of maximum drag reduction,
indicated with line (3) in Figure 2. Again, at low Re our data confirm the available DNS information,
with only a very slight overestimate (and a large error bar) of R near the maximum. The low-
frequency low-wavenumber region of the ridge is strongly affected by an increase in Re, whereas
the higher-frequency part is much less sensitive to it. The maximum R at Reτ = 1000 is 0.42 and
significantly shifts towards higher frequencies.

Lastly, Figure 7 on the right reports the data available along the constant-frequency lines (4)
and (5) of Figure 2. Line (4) is drawn in a region of large drag reduction, corresponds to a very small
positive frequency, and passes through the low-Re point corresponding to Rm. The data confirm that
R is strongly affected by Re in the neighborhood of the low-Re maximum. At the same time, in
the region of higher wavenumbers the effect of increasing Re becomes rather mild, and the same
happens along line (5), which is quite far from the low-Re optimum. All our datapoints there show
a very modest reduction of performance.

IV. POWER BUDGET

Figure 8 illustrates the nondimensional power input Pin, defined by Eq. (3) as the power
required by the wall forcing, normalized with the pumping power. Only one case for traveling
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FIG. 8. Input power Pin normalized with pumping power P0 versus frequency ω+ for the streamwise-traveling waves at A+
= 12 and λ+ = 1250. Symbols as in Figure 5. Lines are computed from the laminar analytic solution at Reτ = 200 (solid
blue), Reτ = 1000 (dashed red), and Reτ = 2100 (dot-dashed green).

waves at κ+
x = 0.005 (i.e., line (2) in Figure 2) is shown. Results from the present DNS, indicated

by symbols, are compared with the prediction based on the analytical expression of the laminar
Generalized Stokes Layer (GSL) derived by Quadrio and Ricco.32 In fact, the wall value of the
GSL velocity profile and its wall-normal derivative completely determine Pin, provided the GSL
correctly describes the mean spanwise flow in the turbulent case. By a simple manipulation of the
GSL equation one writes:

Pin = (A+)2

2U+
b

R
{

Ceπ i/6
(
κ+

x

)1/3
}

Ai′
[
−eπ i/6

(
κ+

x

)1/3
(

ω+

κ+
x

+ iκ+
x

)]
, (7)

where R indicates the real part, Ai′ is the first derivative of the Airy function of the first kind, i is
the imaginary unit, and C = {

Ai
[
ieiπ/3(κ+

x )1/3(ω+/κ+
x + iκx )

]}−1
is a constant.

The rather good agreement between DNS data and Eq. (7) confirms that the GSL in the turbulent
flow does not differ significantly from the laminar solution even at higher values of Re, although
regions of the parameter space do exist where the laminar prediction is not perfect. This happens,
as expected,32 in the drag-increasing region where the waves travel forward with a phase speed
comparable to the convective speed of the near-wall velocity fluctuations.41

Figure 8 highlights an important characteristic of the laminar GSL: Pin generally decreases
with Re. As shown in Eq. (7), Pin varies with Reτ only because of a change of U+

b , which can be
expressed, following Pope,42 as U+

b = 7.715 Re0.136
τ . This quantitatively confirms and extends to the

traveling waves the suggestion that Pin should decrease as Pin ∼ Re−0.136
τ , already put forward for

the oscillating wall.9 This brings about interesting perspectives for the net energy saving rate S = R
− Pin: indeed, in several parts of the control parameter space R decreases slower than Pin, implying
that S actually increases with Re.

Figure 9 plots S for traveling waves at Reτ = 1000 and A+ = 12. In the map, the positive values
of S are graphically emphasized by filled rectangles. S > 0 occurs within the (light red) elliptic
region delimited by the solid line, which identifies the low-Re ridge of largest drag reduction. In the
rest of the parameter space S is negative (owing to the large value of A). One first notices that the
positions of maximum drag reduction rate Rm, minimum Pin and maximum energy saving Sm are
not the same, whereas at Reτ = 200 these points coincide at κ+

x = 0.005 and ω+ = 0.018. At Reτ

= 1000, Sm moves to κ+
x = 0.01 and ω+ = 0.024, and Rm moves to κ+

x = 0.014 and ω+ = 0.04,
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FIG. 9. Net energy saving rate S at Reτ = 1000 for the traveling waves with amplitude A+ = 12. Compared to
Figure 2, the vertical axis is extended to include larger wavenumbers. The shaded areas mark two important low-Re re-
gions: the light-red ellipse encloses the region of large drag reduction, while the light-blue triangle marks the region of drag
increase. Rectangle-enclosed figures quantify the local value of S, with filled rectangles highlighting positive S. Below them,
the smaller numbers quantify �S, the change of S when Reτ increases from 200 to 1000.

while the position of minimum Pin is unchanged owing to its perfect wall units scaling. Hence,
the shift of Sm is only due to the large Re-sensitivity of R in the low-ω+, low-κ+

x part of the
drag reduction ridge, which causes Rm to shift towards higher frequencies and wavenumbers. The
scenario is fully confirmed by the limited dataset at Reτ = 2100 (not reported in the figure), for which
Sm = 0.10 ± 0.02 occurs at κ+

x = 0.015 and ω+ = 0.04.
The positive trend of S with Re, discussed before in the context of Figure 8, is demonstrated in

Figure 9 by the numerical value of �S, i.e., the change in S when Reτ is increased from 200 to 1000.
�S is positive for every data point at S < 0, usually at high ω+ or distant from the drag reduction
ridge.

We would like to underline that the numerical values of S should not be emphasized too much.
Indeed, the entire dataset is computed for the sole value of A+ = 12, whereas it is well known that
the best S are obtained at smaller amplitudes. Moreover, S is defined as a difference between R and
Pin: while Pin does not present perceivable statistical uncertainty, we have seen that R does. Hence,
the numerical values of S, whose magnitude can be smaller than R, suffer from a larger relative
uncertainty, so that the discussion above is only intended to highlight the interesting positive trend
of S with Re.

V. DISCUSSION

The results presented so far do not disagree with the information available in the literature:
when the value of Re is increased, the maximum drag reduction decreases rapidly. However, the
present study highlights that this is true only for the region of the parameter space where the low-
Re optimum is located. Indeed, the decrease rate of drag reduction significantly depends upon the
particular region of parameter space, with the low-Re optimum and drag increase “valley” showing
the fastest decrease. This is a new observation, although in the available literature a few consistent
datapoints can indeed be found. For example, Ricco and Quadrio9 in their study of the oscillating
wall presented a DNS point at small T+ where R decreases very slightly from Reτ = 200 to
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FIG. 10. Sketch of the changes in drag reduction by streamwise-traveling waves in the κ+
x − ω+ plane when Re increases:

low-Re is pictured at the left, and higher-Re at the right. The color scale is similar to that of Figure 2, with maximum drag
reduction in red and drag increase in blue. The arrows highlight the shift of the large-drag-reduction area towards higher
frequencies and wavenumbers, and the widening of the drag-increase region. The remaining regions of the plane are much
less affected.

Reτ = 400. However, a clear and general picture is emerging for the first time from the present
work, where at the same time the more revealing streamwise-traveling waves are considered, and
a parametric survey is carried out with a five-fold Re separation and, with a more limited set of
datapoints, up to ten-fold Re separation.

To describe quantitatively how a change in Re affects the drag reduction rate R, it can be assumed
that, at least within the present range of Reynolds numbers, R depends on Reτ according to a simple
power law:

R ∼ Reγ
τ . (8)

Such a choice has been employed in the past, hence it is a required step to compare our findings
with available information; however, it is in itself a rather arbitrary choice, and alternatives could
be considered. For example Belan and Quadrio30 found that their predictions of Rm, computed
for a bulk Reynolds number up to one million, are better fitted by a law of the type R = α + Reβ

τ .
Obviously, both the coefficients α and β could eventually be considered as functions of the parameters
themselves, and/or of Re. However, if we stick to the functional dependence (8), the present study
clearly highlights that γ , which plays the role of a sensitivity coefficient, is not constant when ω and
κx are varied.

The case of the oscillating wall (κx = 0) is somewhat simple, and not entirely revealing. The
normally accepted value for the empirical coefficient, i.e., γ ≈ −0.20, is confirmed by our data, but
only as far as Rm is concerned. On the other hand, at short periods of oscillation, like for example
ω+ = 0.2 or T+ ≈ 30, R is less sensitive to a change in Re, leading to γ ≈ −0.08.

The traveling waves present a more complex behavior, tentatively sketched in Figure 10. The
size of the ridge with the largest observed drag reductions shrinks when Re increases, and its low-
frequency, low-wavenumber tail rapidly vanishes. Here is where the measured local sensitivity is
highest, with γ ≈ −0.25. This part of the drag reduction map seems thus to be an essentially low-Re
feature, bound to disappear at large Re. On the other hand, the high-frequency, high-wavenumber part
of the ridge is much less sensitive to Re, and presents γ = −0.1 (at ω+ = 0.04, κ+

x = 0.015) which
reduces to γ = −0.09 (at ω+ = 0.08, κ+

x = 0.035). In this part of the ridge large values of R can still
be attained, ranging between 0.4 and 0.5 at A+ = 12. This suggests the possibility that interestingly
large R and S can still be obtained at high Re. Interesting is also how the low-Re drag-increasing
region is modified: the drag increase weakens, while the interested area appears to widen. At
Reτ = 1000 the drag increase at κ+

x = 0.005 almost disappears and at Reτ = 2100 turns into
mild drag reduction. Lastly, at high frequencies (|ω+| > 0.2) both forward- and backward-traveling
waves are but weakly affected by a change of Re: we observe γ = −0.08 at low wavenumbers and
γ = −0.05 at the relatively high κ+

x = 0.04.
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FIG. 11. Relative change of R as function of Reτ for traveling waves with wavenumber κ+
x = 0.005 and amplitude A+

= 12, at ω+ = −0.2 (left) and ω+ = 0.005 (right). The results of two large-domain simulations at Reτ = 200 and Reτ = 400
are shown with filled symbols, and fully confirm the observed differences in the decrease rate of drag reduction. The region
far from the low-Re optimum (left) presents much lesser Re sensitivity.

Two weak points admittedly exist in our reasoning. The first is that we cannot be sure as to
whether the observed behavior is general or concerns spanwise forcing only. Although there is no
specific reason to favor the last possibility, further studies are definitely required to clarify this issue.
The second one is even more important, and hinges upon the size of the spatial domain employed
for the simulations. Using relatively small domain sizes has been an enabling step to make such a
large parametric study possible, but the obtained results may still be dependent on the domain size,
although we have made an effort to ensure that this effect is kept reasonably small and under control.
To address this crucial issue at least partially, two distinct traveling waves are studied in comparative
form at Reτ = 200 and Reτ = 400 through large, full-size DNS simulations. Both waves have
A+ = 12 and κ+

x = 0.005 but a different oscillation frequency, and thus belong to different regions
of the parameter space: their drag reduction is thus expected to decrease very differently. The domain
size for these simulations is chosen to be Lx = 6πh and Lz = 3πh, as done in previous work at
Reτ = 200,3 and the same spatial resolution in wall units is employed. These new data points
are shown in Figure 11 with filled symbols. The left plot corresponds to a case at higher (in
absolute value) forcing frequency, ω+ = −0.2, and lies in a region where the sensitivity is
low at γ = −0.08. The right plot, on the other hand, corresponds to a case near the low-
Re optimum at ω+ = 0.005, and in that region sensitivity attains its maximum value at γ

= −0.25. It can be clearly appreciated that, in both cases, the full-size simulations yield results
that entirely confirm the picture described above and in particular the existence of different regions
in the parameter space where drag reduction decreases at very different rates. Hence, although the
specific values of R and S may be slightly miscalculated within the present approach, the rate at
which such quantities change for increasing Re appears to be robustly computed.

Additional evidence exists that points to the substantial correctness of our description. For
example, at the 9th EFMC in Rome, where we presented a preliminary version of the present work,
we became aware of a closely related study (Hurst and Chung, private communication), in which
the standard computational procedure with large computational domains and highly demanding
numerical simulations is employed. As a consequence, the parameter space is not sampled in
full detail. On the other hand, the results do not suffer from domain size effects and support our
findings, confirming a strong dependence of the performance of the flow control technique on the
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forcing parameters. Moreover, although limited to the oscillating wall, our predictions agree with
the simulation of Touber and Leschziner15 at Reτ = 1000 in predicting the decay rate of Rm.

The consequences of the previously described scenario are noticeable. Some are obvious. For
example, since the optimal set of control parameters is found to change with Re, and new regions of
the parameter space may yield interesting values of drag reduction and net power saving at high Re,
the outcome of the present study reinforces the need for experimental measurements at application-
level Re. Since we believe it is inconceivable to increase Re in DNS calculations by additional orders
of magnitudes, the implication is that a suitably miniaturized actuator for a true field test is required.

One less-obvious remark descends from the observation that the results obtained in the present
work by using a rather small (as measured in outer units) computational domain are well in line
with those from large-scale simulations as far as changes with Re are concerned. The fact poses new
questions on the role of the largest turbulent structures, progressively misrepresented by smaller
domains, which reside away from the wall and have been proven to modulate the inner flow,43

on the mechanisms that modulates the drag reduction with Re in this range of Reynolds numbers.
Moreover, we observe that the small values of γ found here in regions far from the low-Re optimum
are similar to the predictions obtained from simplified linear models like the one by Duque-Daza
et al.31 This once again emphasizes the dynamical importance of linear processes in the near-wall
region of turbulent flows.

VI. CONCLUSION

This work has investigated via DNS how increasing the value of the Reynolds number from
Reτ = 200 up to Reτ = 1000 changes the drag-reducing properties of the streamwise-traveling
waves of spanwise wall velocity. A more limited dataset at Reτ = 2100 has also been presented
and discussed. We considered, at each value of Re, several wavenumbers and frequencies; adjusting
the domain size in the two homogeneous directions has been an enabling approach to limit the
computational effort and to succeed in running such parametric surveys. The collateral effects of
this adjustment needed to be properly addressed. On one hand, the finite-averaging-time statistical
uncertainty for wall-shear fluctuations of larger amplitude has been quantified. On the other hand,
a comparison of few points to DNS results obtained with large computational domains has shown
that the rate of change in drag reduction with Re is correctly predicted, although the specific values
of the drag reduction rate R might be slightly overestimated (especially when R is large).

The global qualitative picture that emerges from our study is that drag reduction always decreases
when Re is increased, but the rate at which R drops markedly depends on the control parameters κ+

x
and ω+. The steepest decay is observed in regions of the parameter space where, at low Re, maximum
drag reduction and drag increase occur. However, the decay is much slower in other regions, so that
the optimal control parameters are shifted towards higher frequencies and wavenumbers. The control
parameters yielding the minimum (nondimensional) input power Pin, maximum R, and maximum
net power saving rate S do not coincide any more at higher Re. For a given forcing amplitude,
increasing Re results in a reduction of Pin, and regions exist where the required power decays faster
than R, thus resulting in an increase of the net power saving.
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