Wall Turbulence Control by spanwise-traveling waves

Wenxuan Xie, Maurizio Quadrio

Department of Aerospace Science and Technology Politecnico di Milano

European Turbulence Conference, ENS Lyon, Sep 2013

W.Xie, M.Quadrio (Polimi) Wall Turbulence Control by spanwise-traveling

Turbulence Skin Friction Drag Reduction

Various flow control techniques have been proposed The spanwise-traveling wave concept was first studied by Du and Karniadakis (*JFM* 2002, *Science* 2003)

- Large drag reduction (up to more than 30%)
- Modified near wall turbulence structure
- XXX A Picuture Here XXX
 - Some interesting part in the parametric space is not covered by the existing simulation cases
 - The energetic performance is not presented

Two types of spanwise-traveling wave

spanwise body forcing $F_z = A_f \sin(\kappa_z z - \omega t) e^{-y/\Delta}$

- Acts directly on the bulk fluid
- Oriented in the spanwise direction
- Varies sinusoidally
- The wave travels along the spanwise direction
- Decays exponentially with the wall normal distance How is the performance of the traveling wave of body forcing? (Drag and Energetic)

spanwise wall velocity (EFMC 2012) $w = A_{vel} sin(\kappa_z z - \omega t)$

- In-plane wall deformation
- Oriented in the spanwise direction
- Varies sinusoidally
- The wave travels along the spanwise direction
- One parameter less!

Key conclusion: spanwise wall oscillation ($\kappa_z = 0$) outperforms all other waves in the parametric space

Purpose and Method

Aim

- Explore the 4-D (ω − κ_z − A_f − Δ) parametric space more exhausitively
- Find the best drag reduction and energetic performance

Approach

- Near 800 turbulent channel flow DNS simulations at $Re_{\tau} = 200 \ \omega \in [0.5, 10], \ \kappa_z \in [0, 9.8], \ A_f \in [0.1, 2], \ \Delta \in [0.01, 1]$
- Constant Flow Rate

$$\frac{\text{Definition:}}{R(\%) \equiv \frac{P_0 - P}{P_0} \times 100 \quad S(\%) \equiv \frac{P_0 - (P + P_{in})}{P_0} \times 100$$
in which $P_{in} = \frac{1}{t_f - t_i} \int_{t_i}^{t_f} \int_0^{L_x} \int_0^{L_z} \int_0^{2h} \rho f_z w \, dy dz dx dt$

Modification of Near Wall Turbulence

W.Xie, M.Quadrio (Polimi)

Wall Turbulence Control by spanwise-traveling

Sep 2013 5 / 12

Results: R

W.Xie, M.Quadrio (Polimi)

Wall Turbulence Control by spanwise-traveling

Sep 2013 6 / 12

The iso-surfaces of R(%)

W.Xie, M.Quadrio (Polimi) Wall Turbulence Control by spanwise-traveling

Results: S

W.Xie, M.Quadrio (Polimi)

Wall Turbulence Control by spanwise-traveling

Sep 2013 8 / 12

The iso-surfaces of S (%)

W.Xie, M.Quadrio (Polimi) Wall Turbulence Control by spanwise-travelin

∃ >

	Body Forcing	Wall Motion
R _{max}	47 ($\omega = 1$, $\kappa_z = 0$, $A_f = 2$, $\Delta = 0.04$)	$\begin{array}{l} \textbf{38} \ (\omega = \textbf{0.5}, \ \kappa_z = \textbf{0}, \ \textbf{A}_{\textit{vel}} = \textbf{0.5}) \end{array}$
S _{max}	12 (ω = 0.75, κ_z = 0, A_f = 0.5, Δ = 0.04)	10 (ω = 0.5, κ_z = 0, A_{vel} = 0.2)

- 1 more parameter (Δ) enables the Body forcing to be better tuned
- The gain in R is largely cancelled out by the power required to manipulate the flow (*P_{in}*)
- Both R_{max} and S_{max} are always found to be at $\kappa_z = 0$ in both cases

- Body forcing and wall motion behave similarly
- Both R and S reach the optimal at $\kappa_z = 0$
- The spanwise traveling wave concept is outperformed by the spanwise oscillatory body forcing
- Even the Spanwise oscillatory body forcing/wall oscillation isn't particularly appealing in the sense of S compare to other techniques.
 e.g. Streamwise traveling wave of transverse wall velocity (S_{max} > 25)