Wall Turbulence Control by spanwise-traveling waves

Wenxuan Xie, Maurizio Quadrio

Department of Aerospace Science and Technology
Politecnico di Milano

European Turbulence Conference, ENS Lyon, Sep 2013
Various flow control techniques have been proposed. The spanwise-traveling wave concept was first studied by Du and Karniadakis (*JFM* 2002, *Science* 2003)

- Large drag reduction (up to more than 30%)
- Modified near wall turbulence structure

Some interesting part in the parametric space is not covered by the existing simulation cases

- The energetic performance is not presented
Two types of spanwise-traveling wave

spanwise body forcing
\[F_z = A_f \sin(\kappa_z z - \omega t) e^{-y/\Delta} \]
- Acts directly on the bulk fluid
- Oriented in the spanwise direction
- Varies sinusoidally
- The wave travels along the spanwise direction
- Decays exponentially with the wall normal distance

spanwise wall velocity (EFMC 2012)
\[w = A_{vel} \sin(\kappa_z z - \omega t) \]
- In-plane wall deformation
- Oriented in the spanwise direction
- Varies sinusoidally
- The wave travels along the spanwise direction
- One parameter less!

How is the performance of the traveling wave of body forcing? (Drag and Energetic)

Key conclusion: spanwise wall oscillation \((\kappa_z = 0)\) outperforms all other waves in the parametric space
Purpose and Method

Aim

- Explore the 4-D \((\omega - \kappa_z - A_f - \Delta)\) parametric space more exhaustively
- Find the best **drag reduction and energetic performance**

Approach

- Near 800 turbulent channel flow DNS simulations at \(Re_T = 200\)
 \[\omega \in [0.5, 10], \quad \kappa_z \in [0, 9.8], \quad A_f \in [0.1, 2], \quad \Delta \in [0.01, 1]\]
- Constant Flow Rate

Definition:

\[
R(\%) \equiv \frac{P_0 - P}{P_0} \times 100 \quad S(\%) \equiv \frac{P_0 - (P + P_{in})}{P_0} \times 100
\]

in which

\[
P_{in} = \frac{1}{t_f - t_i} \int_{t_i}^{t_f} \int_0^{L_x} \int_0^{L_z} \int_0^{2h} \rho f_z w \, dy dz dx dt
\]
Modification of Near Wall Turbulence

Wall Turbulence Control by spanwise-traveling waves
W.Xie, M.Quadrio (Polimi)
Sep 2013 5 / 12
Results: R

\[\Delta = 0.01 \]

\[\Delta = 0.02 \]

\[\Delta = 0.04 \]

\[\Delta = 0.1 \]
The iso-surfaces of R (%)
$\Delta = 0.01$

$\Delta = 0.02$

$\Delta = 0.04$

$\Delta = 0.1$
The iso-surfaces of $S (%)$
Comparison with wall based forcing

<table>
<thead>
<tr>
<th></th>
<th>Body Forcing</th>
<th>Wall Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{max}</td>
<td>47 ($\omega = 1$, $\kappa_z = 0$, $A_f = 2$, $\Delta = 0.04$)</td>
<td>38 ($\omega = 0.5$, $\kappa_z = 0$, $A_{vel} = 0.5$)</td>
</tr>
<tr>
<td>S_{max}</td>
<td>12 ($\omega = 0.75$, $\kappa_z = 0$, $A_f = 0.5$, $\Delta = 0.04$)</td>
<td>10 ($\omega = 0.5$, $\kappa_z = 0$, $A_{vel} = 0.2$)</td>
</tr>
</tbody>
</table>

- 1 more parameter (Δ) enables the Body forcing to be better tuned
- The gain in R is largely cancelled out by the power required to manipulate the flow (P_{in})
- Both R_{max} and S_{max} are always found to be at $\kappa_z = 0$ in both cases
Conclusion

- Body forcing and wall motion behave similarly
- Both R and S reach the optimal at $\kappa_z = 0$
- The spanwise traveling wave concept is outperformed by the spanwise oscillatory body forcing
- Even the Spanwise oscillatory body forcing/wall oscillation isn’t particularly appealing in the sense of S compare to other techniques.
 e.g. Streamwise traveling wave of transverse wall velocity ($S_{max} > 25$)