

THE EFFECTS OF POROUS WALLS ON TRANSITIONAL AND TURBULENT CHANNEL FLOWS

M. Quadrio¹, M. Rosti¹, D. Scarselli¹ & L. Cortelezzi²

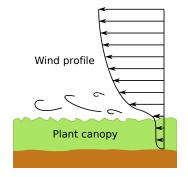
¹ Politecnico di Milano (I), Dept. of Aerospace Science and Technology ² Dept. Mechanical Engineering, McGill University, Montreal, Quebec, Canada

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Background	
------------	--

Setup

Stability


Turbulence

Conclusions

WHY POROUS WALLS?

Flow over porous media are common:

- Water-immersed surfaces
- Biologic surfaces (blood vessels, vascular protheses)
- Atmospheric boundary layer over plant canopies
- Aeronautics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

-		 		
	ro			

Back

Setup

Stability

Turbulence

Conclusions

(日) (日) (日) (日) (日) (日) (日)

STATE OF THE ART

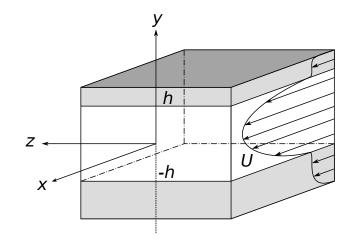
STABILITY: POROUS WALLS ARE DE-STABILIZING

- Critical linear Reynolds number decreases by 90%
- Sparrow (JAM 1973), Tilton & Cortelezzi (JFM 2008)

TURBULENT FLOWS

- Porous layer is neglected and represented via a wall boundary condition
- Very simple porous material are considered
- Present approach: solve VANS equations

Background	Setup
------------	-------


Stability

Turbulence

Conclusions

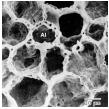
PROBLEM SETUP

TWO BOUNDARY LAYERS ACROSS EVERY POROUS LAYER

Background	Setup	Stability	Turbulence	Conclusions

MODEL OF THE POROUS MEDIUM

Porosity ε


- · Volume fraction of the fluid phase
- $\varepsilon = V_{fluid}/V_{total}, 0 \le \varepsilon \le 1$

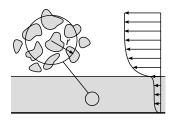
PERMEABILITY K [M²]

- The ease of fluid flow through the medium
- Non-dimensional permeability $\sigma = \sqrt{K}/h, \ \sigma \ge 0$

Alveoli in the lungs

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Background	Setup	Stability	Turbulence	Conclusions


THE VOLUME-AVERAGED NAVIER–STOKES EQUATIONS VANS: WHITAKER, 1996

SIMPLIFIED VANS: LINEAR!

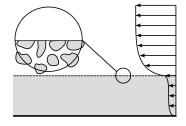
$$\nabla \cdot \langle \mathbf{u} \rangle = 0$$
$$\frac{\partial \langle \mathbf{u} \rangle}{\partial t} = -\frac{1}{\rho} \nabla \langle p \rangle + v \nabla^2 \langle \mathbf{u} \rangle - \frac{v}{K} \varepsilon \langle \mathbf{u} \rangle$$

 $\langle {f u}
angle$ and $\langle p
angle$ are continuous functions

- Homogeneous porosity
- Isotropic porosity
- Inertial effects negligible

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Background Setup Stability Turbulence

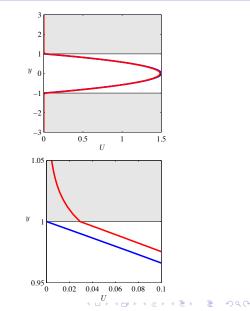

OCHOA-TAPIA AND WHITAKER, IJHMT 1995

CONTINUITY

$$\mathbf{u}=\langle \mathbf{u}\rangle,\,p=\langle p\rangle$$

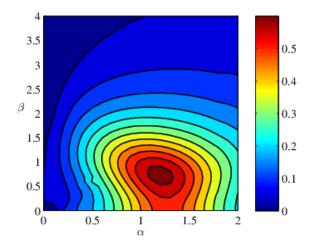
STRESS JUMP CONDITIONS

$$\frac{1}{\varepsilon} \frac{\partial \langle u \rangle}{\partial y} - \frac{\partial u}{\partial y} = \pm \frac{\tau}{\sqrt{K}} u$$
$$\frac{1}{\varepsilon} \frac{\partial \langle w \rangle}{\partial y} - \frac{\partial w}{\partial y} = \pm \frac{\tau}{\sqrt{K}} w$$

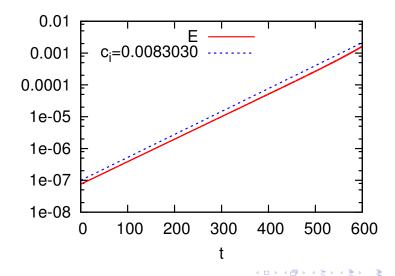

- The stress jump models the momentum transfer
- *τ* accounts for the surface manufacturing/machining

Conclusions

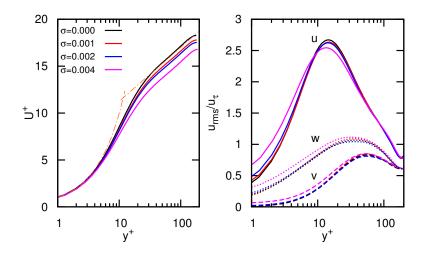
Background	Setup	Stability	Turbulence	Conclusions
	Nov			


NON-MODAL STABILITY

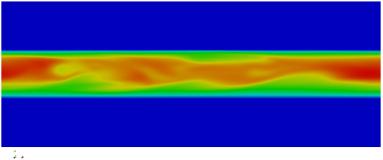
- Analytical base flow
- Chebyshev discretization
- 7 parameters: *Re*, α, β, h_p, σ, ε, τ
- Adaptive algorithm, >4M cases


Background	Setup	Stability	Turbulence	Conclusions
	LARGEST FRA	ACTIONAL C	HANGE IN G_{max}	

 $Re = 500, h_p = 0.5, \sigma = 0.02, \varepsilon = 0.3, \tau = 0.5$


 $Re = 2800, \varepsilon = 0.6, \sigma = 0.004, \tau = 0, h_p = 1$

Background	Setup	Stability	Turbulence	Conclusions


LIMIT OF SOLID WALL

 $Re = 2800, \varepsilon = 0.6, \tau = 0, h_p = 0.1$

★□▶ ★□▶ ★ 三▶ ★ 三▶ ● 三○ ○ ○ ○ ○

Background	Setup	Stability	Turbulence	Conclusions
		VERY LOW R	?e!	

Background	Setup	Stability

Turbulence

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

CONCLUSIVE REMARKS

- Non-modal stability
- Turbulent flow
- Ongoing work: control, drag reduction