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We perform finite-difference numerical simulations of turbulent channel flow in stationary
and moving reference frames. The flow statistics computed in the stationary frame exhibit
significant discrepancies with respect to reference spectral data in terms of energy spectra
and convection velocity of disturbances, especially in the near-wall region. On the other
hand, simulations performed in a reference frame moving with the bulk flow velocity suffer
from this shortcoming to a much lesser extent. We propose an explanation of these obser-
vations by assuming the scalar Burgers’ equation as working model. The analysis highlights
the lack of Galilean invariance of finite-difference schemes, which exhibit a leading disper-
sive error in the presence of bulk advection. The numerically computed energy spectra
exhibit the same features as the channel spectra, supporting the notion that dispersive
effects are responsible for the blockage of the mechanism of energy cascade to high
wavenumbers.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In the past decades significant insight into turbulence physics has been gained through direct numerical simulation
(DNS), which has become an invaluable research tool for the fluid dynamics community [1]. One of the most investigated
(and simulated) turbulent flows is the plane channel, which, together with the pipe flow, is the simplest prototype to under-
stand wall turbulence. Since the first DNS, dating back to the work of Kim et al. [2], many simulations of the turbulent chan-
nel flow have appeared during the years, performed with both spectral and finite-difference (FD) methods [3,4]. The
comparison between the two approaches has been addressed in several works [5–7], which have pointed out relative advan-
tages and deficiencies. Spectral methods are known to suffer particularly from the aliasing error, which has to be carefully
removed from the computation, but they are usually regarded to be more accurate, an often quoted result being that second-
order central difference schemes require about twice the resolution in each coordinate direction to achieve similar results.
On the other hand FD methods have lower level of aliasing errors [7] and they are attractive for their inherent simplicity and
flexibility, especially for inhomogeneous flows, and their relative importance might further increase owing to the rapid
development of the immersed-boundary technique to deal with complex geometries.

One drawback of FD methods for the Navier–Stokes (NS) equations, appears when dealing with turbulent flows that have
a convective character and thus possess a preferential direction of propagation of disturbances. This happens, for example, in
duct flows, boundary layers and jets. In this case, if the grid is not sufficiently fine, FD methods yield a misrepresentation of
the small scales of motion (in the direction of flow propagation), which manifests itself in non-negligible errors in the pre-
diction of the short wavelength disturbances, whose energy and phase velocity are underestimated. The aim of the paper is
to trace back the origin of this behavior, and suggest a solution to reduce these errors. To provide an instance of the effects
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Table 1
Computational parameters for the channel flow simulations.

Case Res Lx=h Lz=h Dxþ Dzþ Nx Ny Nz Dtþ

Run 1 547 8p 4p 13.4 6.7 1024 256 1024 0.264
Run 2 547 8p 4p 8.9 4.4 1536 256 1536 0.176
Run 3 547 8p 4p 6.7 3.3 2048 256 2048 0.132
Run 4 547 8p 4p 13.4 6.7 1024 256 1024 0.024
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described above, we have carried out DNS of the turbulent channel flow at Res ¼ 550, for which a well-documented reference
numerical database obtained with spectral methods is available [3]. Here Res ¼ hus=m is the friction Reynolds number, based
on the friction velocity us, the kinematic viscosity m, and the channel half-width h. A series of simulations, whose parameters
are summarized in Table 1, have been performed with the FD code described by Orlandi [8], which relies on staggered sec-
ond-order central FD approximations. Time advancement is achieved by a hybrid third-order Runge–Kutta/second-order
Crank–Nicolson scheme, combined with the fractional-step procedure, with explicit treatment of the convective terms,
and implicit treatment of the viscous ones. All the simulations have been carried out in a computational box with size
Lx ¼ 8ph in the streamwise direction, and Lz ¼ 4ph in the spanwise direction, by varying the resolution in the homogeneous
directions from a relatively coarse grid (Run 1, Dxþ ¼ 13:4, Dxþ ¼ 6:7) to a very fine grid (Run 3, Dxþ ¼ 6:7, Dxþ ¼ 3:3). Note
that Run 1 and Run 2 match the resolution of the reference spectral database in terms of number of Fourier modes and phys-
ical points, respectively. An additional simulation (Run 4) has been also performed with the same resolution as Run 1, by
choosing a reduced time step to assess the influence of the time discretization errors. Note that the time step of all cases
is within the range suggested by Choi et al. [5] to get accurate statistics (Dtþ 6 0:4). For all computations, a Chebychev dis-
tribution is used in the vertical direction to cluster points near the two walls. The failure of the numerical solver to correctly
represent the high-wavenumber disturbances is well highlighted in Fig. 1, where one-dimensional spectra of the streamwise
velocity fluctuations are shown in Kolmogorov units, at two off-wall locations. Note that a semi-log scale is used to empha-
size the high-wavenumber end of the spectra. The streamwise spectra predicted by the FD method (panels a,c) exhibit much
earlier drop-off than the reference spectra in the dissipation range, this effect being particularly apparent in the outer layer.
Increasing the resolution improves the comparison but deviations (still large in the outer layer) are observed even for the
finest grid. Remarkably, this behavior does not depend on the computational time step, the spectra from Run 1 and Run 4
being nearly identical. A similar behavior of the streamwise velocity spectrum was also previously noticed by Rai and Moin
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Fig. 1. Channel flow simulations in the laboratory frame: one-dimensional spectral densities of streamwise velocity fluctuations at yþ ¼ 15 (a,b) and
y=h ¼ 0:75 (c,d), scaled in Kolmogorov units (g). Solid line, Run 1; dash-dot line, Run 2; dash-dot-dot line, Run 3; dashed line, Run 4; open circles, reference
data [3].
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Fig. 2. Channel flow simulations in the laboratory frame: spectral distribution of the difference (Dcu) between the convection velocity of u0 and the mean
velocity profile at yþ ¼ 15 (a) and y=h ¼ 0:75 (b), as a function of the streamwise wavelength of the disturbances, kx . Solid line, Run 1; dash-dot line, Run 2;
dash-dot-dot line, Run 3; dashed line, Run 4; open circles, spectral data [3].
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[9]. However, the method here employed is inherently non-dissipative, and the damping of the high-frequency content has
to be ascribed to other causes. In this respect it is worth noticing that the spectral densities taken in the spanwise direction
(shown in panels b,d) apparently do not suffer from the same problem, and they are in good agreement (which is very good
for the finer grids) with the reference data.

The misrepresentation of the smallest scales is not limited to the incorrect prediction of the streamwise spectra, but it
also extends to the convection velocities of the disturbances, whose distribution is shown in Fig. 2 for the streamwise veloc-
ity component, as a function of the streamwise wavelength kx. While the convection velocity of a generic variable is usually
derived from the wavenumber-frequency spectrum, here we adopt the method proposed by del Álamo and Jiménez [10],
which has the advantage of using only local time derivatives from realizations arbitrarily spaced in time. According to their
definition, the convection velocity of the streamwise velocity disturbances is given by
Fig. 3.
distribu
cu ¼ �
Imhû� @tûi
kx hj ûj2i

; ð1Þ
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Channel flow simulations in the convecting reference frame: streamwise spectral densities of streamwise velocity fluctuations (a,b) and spectral
tion of Dcu (c,d) at yþ ¼ 15 (a,c) and y=h ¼ 0:75 (b,d). Solid line, Run 1; dashed lined, Run 2; open circles, reference data [3].
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where ûðkx; kz; y; tÞ is the spatial Fourier coefficient of u. Fig. 2 shows cu at two off-wall locations, as obtained from the various
cases, together with the reference spectral data, in the form of deviations from the local mean velocity, which is �uþ ¼ 10:6 at
yþ ¼ 15, and �uþ ¼ 20:7 at y=h ¼ 0:75. Consistent with previous observations on the streamwise energy spectra, fair agree-
ment is found (for all the simulations) with the spectral data at large scales, whereas significant differences emerge for
the smallest scales, whose convection velocity is strongly underestimated by the FD solver.

As anticipated, the scope of the note is to understand the reason of the observed differences between FD and spectral
methods, and devise solutions to alleviate the drawbacks of the former. For this purpose, we propose to solve the NS equa-
tions in a convecting reference frame (CRF), which moves at constant speed with respect to the laboratory frame. This strat-
egy is not entirely new, although – to our knowledge – it was typically motivated simply by the attempt of maximizing the
computational time step [see, e.g. [11]]. As discussed below, the best CRF speed is the one that minimizes the convection of
disturbances across the channel. One could, for example, take the average in the wall-normal direction of the mean profile of
the convection velocity of turbulent fluctuations. An operationally simpler choice is to use the bulk velocity of the flow,
which approximates well the convection velocity everywhere but in the inner layer [12], and which amounts to selecting
a moving frame in which the net mass flux is zero. Then, it is straightforward to think that if the total mass is zero in the
streamwise direction (as for the spanwise), there could be the possibility to have a correct exponential range in the stream-
wise spectra.

Run 1 and Run 2 have thus been repeated in a CRF moving with the bulk flow speed (Uþb ¼ 18:3), and the results are
shown in Fig. 3. Much better agreement between the spectral and the FD data is now recovered across the whole spectral
range. Some differences are still noticeable for the coarser grid at yþ ¼ 15, where the mean convective velocity is about half
of the bulk velocity in the laboratory frame, and thus the convection effects are only partially removed. In this respect one
should note the change of sign of the numerically computed phase speed difference between Figs. 2(a) and 3(c), which con-
firms a change of sign of the mean convection velocity in the moving frame. As expected, even more accurate representation
of the inner layer can be achieved using a frame moving at a velocity Ub=2, even though the agreement in the outer layer
would become somewhat poorer (the figures are omitted).

The above findings may appear quite surprising at first sight, because they apparently contradict the Galilean invariance
of the NS equations. To get some insight into this behavior, we consider the one-dimensional viscous Burgers equation,
which embodies several mathematical properties of the NS equations, and in particular allows for nonlinear steepening of
wavefronts, with associated transfer of energy to higher wavenumbers. Let us consider the Burgers equation in a frame
where the mean velocity is zero,
ut þ uux ¼ muxx;

Z 1

�1
uðx; tÞdx ¼ 0; ð2Þ
which describes the nonlinear advection of the u field under the action of u itself, in the absence of bulk advection. In this
frame, which is the equivalent of the convecting frame in channel flow simulations, a FD semi-discretization at node xj yields
duj

dt
þNðuÞj ¼ mD2ðuÞj; ð3Þ
where the discrete operator N symbolically denotes any possible discretization of the quadratic term, either conservative or
not [8], and D2 denotes the discrete approximation of the second derivative term.

The Galilean invariance of Burgers equation implies that the governing equation are left unchanged by the change of vari-
ables n ¼ x� Ut; s ¼ t; tðn; sÞ ¼ uðx; tÞ � U, which can be trivially verified upon substitution into Eq. (2), and which corre-
sponds to operating in a frame of reference where the bulk velocity is U, thus being the equivalent of the laboratory
frame in the channel flow simulations. However, Galilean invariance does not necessarily follow in the discrete sense. In this
respect, we note that any consistent FD approximation of the nonlinear term in (2) is quadratic in the point-wise value of u.
This implies that, applying the Galilean transformation to Eq. (3) yields
dtj

ds
þNðtÞj � U

@t
@n

� �
j

�DðtÞj

" #
¼ mD2ðtÞj; ð4Þ
where D denotes the FD approximation of the spatial first derivative of t at node j. This equation clearly shows that the
numerical method fails to discretely satisfy Galilean invariance, being different from Eq. (3), which governs the evolution
of u. In particular, while the nonlinear term in Eq. (4) is identical to Eq. (3), an extra term appears, which is related to the
(non-zero) mean value of t, and is linked to the accuracy in the approximation of the first derivative. Clearly, this extra term
vanishes if h is reduced, and hence Galilean invariance is restored in the continuous limit. Momentarily disregarding the ef-
fect of the nonlinear and diffusive terms, spectral analysis of the approximation (4) provides [13] the evolution of a single
Fourier mode tkðx; tÞ ¼ t̂ðtÞeikx,
tkðx; tÞ ¼ t̂ð0Þeikðx�UðZðuÞ�uÞtÞ; ð5Þ
where u ¼ kh is the reduced wavenumber, and ZðuÞ is the modified wavenumber associated with D. Eq. (5) indicates that
the main effect of the extra term in (4) is the occurrence of a spurious drift velocity when U – 0. For instance, in the case of a
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Fig. 4. Numerical solution of Burgers equation obtained with 512 (solid lines), 1024 (dashed lines), 2048 (dash-dot) collocation points. The solutions in
physical space (limited to the region around the shock) are given in panel (a), and the corresponding spectra are given in panel (b). Lines without symbols
indicate FD simulations in the stationary frame (i.e. U ¼ 1). FD simulation in the convecting frame (i.e. U ¼ 0) with 512 points is indicated with triangles.
Pseudo-spectral simulations at 512 resolution are shown in the convecting frame with open circles, and in the stationary frames with closed squares. The
thick solid line denotes the ‘exact’ solution.
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second-order central-difference approximation, ð@t=@nÞj ¼ ðtjþ1 � tj�1Þ=2h, one has ZðuÞ ¼ sin u, and the drift velocity is
negative, becoming larger in absolute value the larger is u, i.e. for marginally resolved waves.

The main consequence of the failure of FD schemes to discretely satisfy Galilean invariance is a different behavior in the
convecting and in the laboratory frames (i.e. in the case that the mean velocity is zero or not). To illustrate this change of
behavior we consider Burgers equation with m ¼ 2 � 10�4, and initial conditions uðx;0Þ ¼ �0:1 sinðpxÞ, and solve it with a sec-
ond-order central scheme in a frame with U ¼ 0 (the convecting frame), and in a frame with U ¼ 1 (the laboratory frame).
The results of simulations performed in a periodic ½�1 : 1� domain are shown in Fig. 4 at the time t ¼ 10. In the figure we
show results of a second-order, energy-consistent FD discretization, which is the equivalent of the numerical method used
for studying the channel flow. As a reference, we also report results obtained with a fully de-aliased spectral Burgers solver.
Three grids have been considered, with 512, 1024, and 2048 collocation points. Looking at the curves obtained with 512 col-
location points, it is clear that the FD solution in the convecting frame (triangles) well reproduces the nonlinear steepening of
the wavefront, whereas the solution obtained in the laboratory frame (solid line) exhibits significant dispersion of its con-
stituent harmonics and distortion of the waveform, which limits further steepening of the wavefront. Specifically, the dis-
persed harmonics appear to lag behind the nominal wavefront (marked with thick solid line), which confirms that their
drift velocity is negative. As anticipated, such effect is much reduced as the grid resolution is increased (dashed and
dash-dotted lines). In spectral space (Fig. 4(b)) the numerical spectrum in the convecting frame exhibits the expected k�2

tail associated with the formation of a shock singularity, whereas the solution in the laboratory frame at the lower resolution
exhibits a bump, followed by a cut-off at u � 0:2p. In this sense, one may regard the dispersive effect of FD discretizations in
a moving frame as causing a bottleneck in the energy cascade to higher wavenumbers. The same effect is much reduced at
higher resolution (especially for the simulation with 2048 collocation points, which is very close to exact solution), and it is
virtually absent from the spectral simulations, which have zero numerical dispersion in a linear setting, being ZðuÞ ¼ u. In
this case the main departure from the exact solution is some energy pile-up at the highest resolved wavenumbers. Both in
the laboratory frame (open circles) and in the convecting frame (solid circles), the wavefront is correctly captured by spectral
methods, and no sign of numerical dispersion is apparent.

The observations made for the one-dimensional Burgers equation are completely consistent and serve to explain those
made for the channel flow simulations. Specifically, we find that FD discretizations in the laboratory frame yield under-esti-
mation of the convection velocities, especially for the highest resolved wavenumbers. The dispersive spreading of the wave-
front in turn causes a bottle-neck effect in the energy spectra. This effect is not observed in the spanwise spectra (in which
direction the mean convection velocity is obviously zero), nor in spectral methods, which are inherently non-dispersive.

The main message of this paper is that a judicious selection of the computational reference frame can remove (or at least
greatly reduce) some shortcomings of FD discretizations of the NS equations caused by their failure to discretely satisfy Gal-
ilean invariance. In the case of turbulent channel flow, this can be approximately achieved in a simple way by carrying out
the calculations in a frame moving with the bulk flow, which yield results comparable to spectral calculations. Achieving
spectral-like results in the stationary frame is also possible in principle, but an impractically large number of points is re-
quired. One further advantage of operating in a convecting frame is the possibility to use larger time steps (as also acknowl-
edged in previous studies) while preserving accuracy.
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