Davide Gatti1,2, Maurizio Quadrio1

Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves

1POLITECNICO DI MILANO

2CENTER OF SMART INTERFACES
Technische Universität Darmstadt
Turbulent skin-friction Drag Reduction

Motivation

- **Economical** benefits
- **Environmental** benefits
- Better **understanding** of turbulence

Our focus

- The effects of Re on a particular control strategy
A promising strategy

Streamwise-traveling waves of spanwise wall velocity (Quadrio et al., JFM 2009)

\[w_w(x, t) = A \sin(\kappa_x x - \omega t) \]

\[c = \frac{\omega}{\kappa_x} \]

Flow Unit for Drag Reduction

Results

Conclusions
High performances

Drag reduction rate:

\[R = \frac{P_0 - P}{P_0} \]

Input power:

\[P_{in} = \frac{1}{L_x L_z T} \int_0^{L_x} \int_0^{L_z} \int_0^T w w \frac{\partial w}{\partial y} \, dt \, dx \, dz \]

Power saving rate:

\[S = R - \frac{P_{in}}{P_0} \]
High drag reduction achievable

(Quadrio et al., JFM 2009)
What happens at high Re?

Two possible scenarios

![Graph showing two zones: "Well-known" and Unknown Zone, with data points for Numerical and Experimental methods.](image-url)
What happens at high Re?

Two possible scenarios
Several means of investigation

<table>
<thead>
<tr>
<th>Modeling error</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>RANS</td>
<td>exceeds present modeling skills</td>
</tr>
<tr>
<td></td>
<td>LES</td>
<td>our attempt: Smagorinsky model fails</td>
</tr>
<tr>
<td></td>
<td>DNS</td>
<td>Touber and Leschziner, JFM 2012 : high computational costs and low reliability</td>
</tr>
<tr>
<td>none</td>
<td>Experiments</td>
<td>difficult drag measurements and more</td>
</tr>
</tbody>
</table>
Our approach

Up to \(Re_T = 2000 \) with DNS of channels of reduced size

Pros

- No modeling errors
- No resolution errors

Cons

- Discretization errors at the large scales
Neither minimal nor full

\[L_z^+ = 1000 \]

\[L_x^+ = 2000 \]
Neither minimal nor full

$L_z^+ = 1884$

$L_x^+ = 3768$
Neither minimal nor full

$L_z^+ = 100$

$L_x^+ = 250$
Larger fluctuations of the space-averaged wall shear (Ω)

Ω treated as a measure: $\sigma_{\Omega} = C \frac{\sigma_{\Omega}}{\sqrt{T_{sim}}}$

optimal compromise between space and time average

Jiménez & Moin, JFM 1991
Effects on drag reduction

$\kappa_x = 0$ (oscillating wall)
Effects on drag reduction

$\kappa_x = 0$ (oscillating wall)
Wave parameters

\[\lambda_x^+ = 1256 \]
Drag reduction

\[\lambda^+_x = 1256 \]
$\lambda_x^+ = 1256$

![Graph showing input power $100 \frac{P_{in}}{P_0}$ vs. ω^+ for different Re_T values including 200, 1000, and 2000.](image)
Reynolds effect

\[R_{\text{max}} \sim Re^{-0.22} \]

Reduced
Reynolds effect

\[R \sim Re^{-0.08} \]

\[100 R \]

\[\omega^+ \]

\[Re_\tau \]

\[\omega^+ \]

\[100 R \]

\[\omega^+ \]
Reynolds effect

\[R \sim Re^{-0.08} \]
Conclusions

$R \sim Re^{-0.22}$
“Conclusions”

...or even better!

\[R \sim Re_{\tau}^{-0.08} \]

S increases with \(Re \)
A broader result

Need for extensive parametric studies

focusing on optimal parameters gives a limited view!
Davide Gatti1,2, Maurizio Quadrio1

Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves

1POLITECNICO DI MILANO

2CENTER OF SMART INTERFACES
Technische Universität Darmstadt
Box size

\[L_x^+ = \frac{1000}{2000} \quad L_z^+ = \frac{L_x^+}{2} \]

Criteria:

- “Healthy” turbulence up to \(y_d \) apart from wall if \(L_z^+ = 3y_d^+ \) and \(L_x^+ \approx h^+ \)
 (Florez and Jiménez, PoF 2010)
- At least one wavelength long \(L_x = \frac{2\pi}{\kappa_x} \)
Simulation data

Simulation time: \(T_{sim}^+ = 12000 \div 24000 \)

Resolution: \(\Delta x^+ = \Delta z^+ = 10 \quad \Delta y^+ < 4 \)

Grid points: \(128 \times Re_T/2 \times 64 \quad 192 \times Re_T/2 \times 96 \)
Effects on wall skin friction

Fixed wall

![Graph showing the effects on wall skin friction for different Reτ values. The graph plots $C_f \times 10^3$ against $L_x^+ \times L_z^+$, with data points for $Re_\tau = 200$, $Re_\tau = 1000$, and $Re_\tau = 2000$. The graph also includes a line for Dean's results.](image-url)
Effects on input power

\[\kappa_x = 0 \]