Conclusions

Davide Gatti^{1,2}, Maurizio Quadrio¹

Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves

¹POLITECNICO DI MILANO

²CENTER OF SMART INTERFACES Technische Universität Darmstadt

Conclusions

Turbulent skin-friction Drag Reduction

Motivation

- Economical benefits
- Environmental benefits
- Better understanding of turbulence

Our focus

• The effects of Re on a particular control strategy

Conclusions

A promising strategy

Streamwise-traveling waves of spanwise wall velocity (Quadrio et al., JFM 2009)

Conclusions

High performances

Drag reduction rate:

$$R = \frac{P_0 - P}{P_0}$$

Input power:

$$P_{in} = \frac{1}{L_x L_z T} \int_0^{L_x} \int_0^{L_z} \int_0^T w_w \frac{\partial w}{\partial y} dt dx dz$$

Power saving rate:

$$S = R - \frac{P_{in}}{P_0}$$

Conclusions

High drag reduction achievable

(Quadrio et al., JFM 2009)

What happens at high Re?

What happens at high Re?

Conclusions

Several means of investigation

Conclusions

Our approach

Up to $Re_{\tau} = 2000$ with DNS of channels of reduced size

Pros

- No modeling errors
- No resolution errors

Cons

• Discretization errors at the large scales

Conclusions

Conclusions

Simulation time

Larger fluctuations of the space-averaged wall shear (Ω)

Ω treated as a measure: $σ_{\overline{Ω}} = C \frac{σ_{Ω}}{\sqrt{T_{sim}}}$

optimal compromise between space and time average

Effects on drag reduction $\kappa_x = 0$ (oscillating wall)

Effects on drag reduction $\kappa_x = 0$ (oscillating wall)

Wave parameters $\lambda_{\star}^{+} = 1256$

Drag reduction $\lambda_{\star}^{+} = 1256$

Input power $\lambda_x^+ = 1256$

13/17

Conclusions

 $\mathsf{R} \sim Re_{\tau}^{-0.22}$

Conclusions

... or even better!

 ${\sf R} \sim {\it Re_{ au}^{-0.08}}$

S increases with Re

Conclusions

A broader result

Need for extensive parametric studies

focusing on optimal parameters gives a limited view!

Davide Gatti^{1,2}, Maurizio Quadrio¹

Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves

¹POLITECNICO DI MILANO

²CENTER OF SMART INTERFACES Technische Universität Darmstadt

Box size

$$L_x^+ = 1000 \div 2000$$
 $L_z^+ = L_x^+/2$

Criteria:

- "Healthy" turbulence up to y_d apart from wall if $L_z^+ = 3y_d^+$ and $L_x^+ \approx h^+$ (Florez and Jiménez, PoF 2010)
- At least one wavelength long $L_{\rm X}=2\pi/\kappa_{\rm X}$

Simulation data

Simulation time:	$T_{sim}^+ = 12000 \div 240$	$T_{sim}^+ = 12000 \div 24000$	
Resolution:	$\Delta x^+ = \Delta z^+ = 10$	$\Delta y^+ < 4$	
Grid points:	$128 imes \textit{Re}_{ au}/2 imes 64$	$192 imes \textit{Re}_{ au}/2 imes 96$	

Effects on wall skin friction Fixed wall

Effects on input power

 $\kappa_x = 0$

