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Wall oscillations for drag reduction

It is well known that drag reduction in wall turbulent flows can be induced by
the cyclic movement of the wall in the spanwise direction. The amount of drag
reduction obviously depends on

• Period of the oscillations T ;

• Amplitude of the oscillations Wm;

• Shape of the oscillations;

  

All the attemps have been carried out by using sinusoidal wall oscillations and
the effects of the oscillating function are still not determined!

• How do deviations from the sinusoid - which might occur when trying to
realize an oscillating wall in practice - influence the control performance?

• Is it possible to obtain flow control performance superior to the sinusoidal
wall oscillations with other oscillations shapes?



Numerical experiments
The problem we are addressing takes this form

CONTROL PERFORMANCES = fi (Wm,T ;Re)

The control performances depend on the oscillating parameter Wm and T and
this dependency, fi (), varyies changing the oscillating function, i-pedix.

⇓

For each shape, several simulations to cover the space of parameter (Wm,T )

• Channel flow;

• Pseudo-spectral code;

• Reτ = 200, ∆x+ = 10, ∆z+ = 5
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Selected wall oscillations
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Figure: Oscillating wall function used in the present work.
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Numerical results
The overall behavior in the (Wm,T )-space appears unaffected by the wave-form
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Power Input,
Pin = 1

tf−ti

∫ tf
ti

ww (t)τzdt/P0

Power Saved,
R = Ub

tf−ti

∫ tf
ti

(τ 0
x − τx)dt/P0

Net Energy Saving,
S = R − Pin



Overall performances
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• No energy saving data larger than the optimal one, S = 0.073, for the
sinusoidal case;

• There are regions of the (Wm,T )-space where the sinusoidal case is not
the best;

• Local increase of the performances;



Generalized Stokes layer

To understand the effects of non-sinusoidal oscillations and to generalize the
present results we consider the analytycal solutions of the Stokes problem

∂〈w(x, t)〉
∂t

(y , t) =
1

Re

∂2〈w(x, t)〉
∂y 2

,

found to describe the spanwise turbulent flow above sinusoidal oscillations.

Linear diffusive problem ⇒ Linear superposition of solutions

Harmonic decomposition:

ww (t) = Wm

∞∑
k=0

Wke
j(2πk/T )t + c.c.

Solution: linear superposition of spanwise layers due to all the harmonics
composing the wall oscillation

w(y , t) = Wm

∞∑
k=0

Wke
−y
√

Reπk/T e
j
[

(2πk/T )t−
√

Reπk/Ty
]

+ c.c. .



Validation
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• The averaged spanwise turbulent flow collapse with the Stokes prediction;

• The resulting power input, P?in, can be directly predicted a priori as

P?in = W 2
m

∞∑
k=−∞

WkW
∗
k

√
πk

ReT



Drag reduction prediction

The drag reduction is more difficult to determine since results from the
complex interaction between spanwise oscillations and turbulence. Nonetheless
it is possible to link the Stokes parameters to drag reduction for T+ < 150.

Stokes thickness l : max wall distance y
where the induced spanwise velocity
variance is higher than a threshold Wth

〈w(y , t)2〉(l) =

W 2
m

∞∑
k=−∞

W 2
k e
−2l
√

Reπk/T = Wth
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Net energy saving prediction

From the Stokes prediction of Pin and the drag reduction scaling with l we are
able to predict a priori the control performances of any kind wall oscillations for
T+ < 150.
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=⇒ Predictive tool based on the generalized Stokes layer



Implications: sinusoid is the best?

Given the validity of the tool we are proposing we have that no better
performances can be reached by using non-sinusoidal oscillations.

Power input:

Pin = W 2
m

∞∑
k=−∞

WkW
∗
k

√
πk

ReT

Power saved:

R = f (l) =⇒ 〈w(l , t)2〉(l) = W 2
m

∞∑
k=−∞

W 2
k e
−2l
√

Reπk/T

Each armonic Wk contributes to Pin with a weighting factor
√
k while to the

spanwise fluctuation with exp(−
√
k).

⇓

Given the base sinusoid, W1, the superimposed armonics, Wk (k > 1),

contribute more to power input than to the heigh of the Stokes layer!



But...

• Given a technological constrain in the maximum wall velocity Wm or
period T it is possible to increase the performances by using
non-sinusoidal oscillations with ad-hoc spectral decomposition
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• What about large oscillating period, T+ > 150?



Summary

The numerical analysis of non-sinusoidal wall oscillations for drag reduction
highlighted:

• The oscillating shape actually matters for the control performances;

• No better control performances have been reached;

• Generalization of the Stokes solution to non-sinusoidal oscillations;

• Predictive tool based on the Stokes layer (important for the applications);

• The sinusoid is the best for drag reducing techniques;

• Given technological constraints the spectral behavior of non-sinusoidal
oscillations could be helpfull;

• T+ > 150?


