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Abstract
Flow control techniques for turbulent drag reduc-

tion in internal flows are typically evaluated under two
alternative flow conditions, i.e. at constant mass flow
rate or constant pressure gradient. Succesfull control
leads to reduction of drag and pumping power at con-
stant mass flow rate, whereas constant pressure gra-
dient leads to an increase of the mass flow rate and
pumping power. In practical applications, however,
a compromise between the energy consumption and
the corresponding convenience (flow rate) achieved
with that amount of energy has to be reached so as
to accomplish a goal which in general depends on the
specific application. Based on this idea, we describe
the derivation of two dimensionless parameters which
quantify the total energy consumption and the required
time (convenience) for transporting a given volume of
fluid through a given duct. Performances of existing
drag reduction strategies are re-evaluated within the
present framework.

1 Introduction
Flow control with the goal of reducing the skin

friction drag on the fluid-solid interface is an active
fundamental research area, motivated by its poten-
tial for significant energy savings and reduced emis-
sions in the transport sector. Up to now, various
drag-reducing techniques, applied to the classic turbu-
lent channel or pipe flows, have been studied mainly
through Direct Numerical Simulation (DNS) of the
Navier–Stokes equations, and their control perfor-
mance has been evaluated while keeping constant in
time either the flow rate (CFR) or – less often – the
pressure gradient (CPG).

Under the CFR condition, a successful drag-
reducing technique effectively reduces friction drag,
which immediately translates into a reduction of the
pumping energy. The CPG condition, on the other
hand, has the advantage of keeping the friction-based
Reynolds number unchanged by design. As a conse-

quence, friction drag is unchanged too, and drag re-
duction manifests itself through an increase of the flow
rate, which implies an increase in the power required
to drive the flow.

In the present problem, two main factors are at
play: flow rate and pressure gradient. The flow rate,
constant in the CFR approach, is an essential con-
sequence of employing a duct to transport a given
amount of fluid through the duct itself over a certain
distance, and we term it convenience. The pressure
gradient, constant in the CPG approach, is directly re-
lated to the energy consumption required to achieve
that convenience. In real-life applications using flow
control, minimizing energy consumption for a given
flow rate (the CFR approach) and maximizing conve-
nience for a fixed energy consumption (the CPG ap-
proach) are only two of the many possible strategies
conceivable to balance the two intervening factors. In
general, the designer of a fluidic system would con-
sider both convenience and energy requirements, the
relative value and cost of which will depend on the
specific application. The optimal use of a control tech-
nique is the one that achieves maximum value at min-
imum cost, as determined by the designer.

In the present study, we develop a unified frame-
work to assess (non necessarily active) flow control
techniques against whatever application-dependent
value-for-money considerations will be possible. A
new evaluation plane is proposed in which both quan-
tities, i.e. energy consumption and convenience (or, in
other words, money and time), are simultaneously and
explicitly considered. This new plane can be viewed
as an improved version of the familiar Cf −Re plane,
which describes in a dimensionless way how the flow
rate and the pressure gradient required to achieve that
flow rate are related. In the new plane, an analogous
non-dimensional description relates the flow rate and
the energy expenditure required to achieve that flow
rate, possibly including control energy. Re-evaluating
existing drag-reduction data by taking advantage of
this plane will give us new insight on their perfor-



mance and on the way we have to go for flow control
techniques to become reality in applications.

2 Dimensional Analysis

Energy-Convenience Map
We shall consider a given fluid volume V ∗

f which
has to be transported through a duct by means of a
pressure gradient. The asterisk represents dimensional
quantities throughout this paper. The flow is assumed
to be fully developed. The cross sectional area A∗ and
the wetted perimeter C∗ of the duct do not vary along
the streamwise direction x. The hydraulic diameter is
defined as D∗ = 4A∗/C∗.

A simple analysis leads to the following relation-
ship for the pumping energy per unit wetted area:

E∗
p = τ∗

w

V ∗
f

A∗ =
M∗U∗

b
2Cf

2A∗ , (1)

where τ∗
w, U∗

b , ρ and M∗ = ρ∗V ∗
f are the wall-shear-

stress, the bulk mean velocity, the fluid density and the
total mass of the transported fluid, respectively. The
dimensionless friction coefficient Cf is defined as

Cf =
τ∗
w

1
2ρ∗U∗

b
2 , (2)

In order to evaluate control performance in terms
of energy consumption and convenience, we start from
the plot sketched in Fig. 1 (a), where the vertical axis
is pumping energy E∗

p (and thus degree of energetic
cost), and the horizontal axis is 1/U∗

b , which repre-
sents the time for a fluid to travel over a unit length
(and thus the degree of convenience). In a laminar
flow Cf ∝ U∗

b
−1 so that E∗

p ∝ U∗
b , which is plot-

ted as a dashed line in Fig. 1 (a). In non-controlled
turbulent flows, the Blasius correlation (Schlichting,
1979) can be employed, from which Cf ∝ U∗

b
−1/4

and E∗
p ∝ U∗

b
7/4, which is depicted by a solid line

in Fig. 1 (a). The objective of turbulence control is to
achieve a flow state located in the region left/below the
solid line. This plot naturally emphasizes that reduced
energy consumption can easily be achieved when one
is willing to sacrifice convenience, i.e. wait longer for
a certain amount of fluid to arrive, and that high con-
venience, i.e. extremely fast transport, increases the
energy requirements significantly.

Now, we suppose to apply control to the non-
controlled flow state N in Fig. 1 (a). When U∗

b is kept
constant (CFR), the control shifts N along the vertical
arrow to, say, A. The reduction of E∗

p , i.e. the distance
|NA| between points N and A, is equivalent to drag
reduction. On the other hand, under the CPG condi-
tion, Eqn. (1) indicates that E∗

p also remains constant,
since τw is unchanged: in this case, successful control
shifts N to the left along the horizontal arrow to B.

The dash-dotted line connecting the origin and
flow state N represents the points for which the pump-
ing power, i.e. the pumping energy divided by the

operating time, remains constant. A shift to point C
along the arrow in Fig. 1 (a) therefore corresponds to a
controlled state that requires the same power input as
the non-controlled state (constant power input, CPI):
if flow control is succesful, such a state provides at the
same time larger flow rate and smaller pumping en-
ergy.

If the flow control technique is of the active type
and thus requires energy to operate, its energy input
E∗

c must enter the picture. In order to account for E∗
c ,

Fig. 1 (a) with just pumping energy E∗
p is replaced by

Fig. 1 (b), where the total energy E∗
t = E∗

p + E∗
c is

used on the vertical axis. The paths for a controlled
flow state under constant flow rate and constant pres-
sure gradient are shown by the arrows NA′ and NB′.
The solid and broken lines for non-controlled turbu-
lent and laminar flows are the same as those in Fig. 1
(a), since E∗

t = E∗
p . The additional control energy in-

put E∗
c is reflected in Fig. 1 (b) by the shift of points

A and B in the vertical direction to A′ and B′, re-
spectively. According to Bewley (2009) and Fukagata
et al. (2009), the total energy consumption at a given
flow rate is minimized when the flow becomes laminar.
Therefore, no flow state can be located below the lami-
nar curve, i.e., in the grey region in Fig. 1 (b). We also
note that, in analogy to Fig. 1 (a), a line connecting
the origin in Fig. 1 (b) and any point along the non-
controlled curve represents flow states with the same
total power consumption (CPI).

Implementation of Cost Function
The plane depicted in Fig. 1 (b) shows that several

paths are possible to move the flow state from the non-
controlled point N towards the laminar curve. The
three particular ones considered so far, i.e. the CFR,
CPG and CPI straight lines, are not the only ones,
and not necessarily the best ones: only application-
specific considerations allow the designer to rank the
various strategies. The energy-convenience plane is a
natural workspace where the chosen strategy can be
represented in terms of an application-dependent cost
function F = F(E∗

t , U∗
b ) to be minimized.

Three energy-convenience maps with typical cost
functions are shown in Fig. 2 (a) - (c). The dot-
ted lines represent the isolines of each cost function.
The minimization is first constrained by the maximum
affordable energy expenditure (E∗

t )max and by the
maximum affordable inconvenience (1/U∗

b )max. This
avoids a trivial solution such as U∗

b = 0 or E∗
t = ∞

when the cost function includes only one of the two
competing factors, i.e., E∗

t and U∗
b . An admissible

region bounded by a dashed line in Fig. 2 is conse-
quently defined, and the optimal flow state should exist
either inside the region or on its boundary.

The case where F = E∗
t as shown in Fig. 2 (a)

is considered first. When control is not applied, only
the flow states on the uncontrolled turbulent curve are
realizable. In this case, point N shown in Fig. 2 a)
provides the minimum value of F , and is therefore op-



timal. The downward arrow from point N shows the
local gradient of F , indicating that a control strategy
changing the flow state in this direction is most effec-
tive to decrease the objective function. This particular
choice of F corresponds to the CFR condition. Since
flow states below the laminar curve cannot be realized,
the lower-bound of F is obtained at point X on the
laminar curve.

Similarly, when F = 1/U∗
b , the optimal flow state

without control is given by the intersection point N
of the turbulent curve and the upper boundary of the
admissible region as shown in Fig. 2 (b). In this case,
the local gradient of F indicates that enhancing U∗

b

under the constant E∗
t is the optimal strategy. If the

applied control is passive or E∗
c in active control is

negligibly small, E∗
t is equivalent to E∗

p , so that the
optimal control strategy results in the CPG condition.
Again, the minimum F is achieved at point X on the
boundary of the admissible region.

As a less obvious example, Fig. 2 c) shows isolines
of F = (E∗

t )2 + (1/U∗
b )2, where the energy saving

and the convenience are considered to be equally im-
portant. The optimal flow state N without control, as
well as the optimal state X with control, are located
inside the admissible region; the local gradient of F is
always pointing towards the origin, indicating that the
control under the CPI condition is locally the optimal
strategy. However, this example also highlights that
the minimum of F at X is reached along a non-trivial
curve that does not correspond to the global CPI con-
straint. In general, the possible maximum reduction of
the cost function is given by F(N) − F(X), and the
performance η of a control that leads to a certain flow
state Y shown in Fig. 2 c) can be expressed with re-
spect to its potential, by computing the ratio between
the realized reduction of F and the maximum possible
reduction, i.e.

η =
F(N) −F(Y )
F(N) −F(X)

.

3 Dimensionless Analysis
Here, we generalize the concept of the E∗

t −U∗
b
−1

map by normalizing the both axes with appropriate hy-
drodynamics quantities. First, the horizontal axis can
be easily made dimensionless by using ν∗/(U∗

b D∗) =
Re−1

D , where ReD is the diameter-based Reynolds
number and ν∗ is the fluid kinematic viscosity. To deal
with the vertical axis, we first introduce an effective
wall friction τ e

w
∗ based on the total power consump-

tion P ∗
t = P ∗

p + P ∗
c :

τe
w
∗ =

P ∗
t

U∗
b

= τ∗
w +

P ∗
c

U∗
b

. (3)

Employing Eq. (1), the total energy consumption
E∗

t is obtained by simply replacing Cf with Ce
f as:

E∗
t =

M∗U∗
b

2Ce
f

2A∗ , (4)

where Ce
f is the effective friction coefficient defined in

analogy to (2) as Ce
f = 2τe

w
∗/ρ∗U∗

b
2.

Thus, the vertical axis may be interpreted as an ef-
fective friction coefficient:

Ce
f =

2A∗E∗
t

M∗U∗
b

2 . (5)

and the plane described in Fig. 1 (b) becomes analo-
gous to the conventional Cf−Re plane, with the added
benefit of including the energetic cost of the control.
However, like in the usual Cf − Re plane, the above
form is still not suitable for the present purpose, since
the measure of convenience, i.e., U∗

b , appears explic-
itly in the denominator of Ce

f . In order to avoid this,
multiplication of Eq.(5) with Re2

D results in:

Ce
fRe2

D =
2A∗E∗

t

M∗(ν∗/D∗)2
. (6)

This way, E∗
t is non-dimensionalized by the fluid vis-

cosity and geometrical properties of the duct only.
Fig. 3(a, b) graphically illustrates the non-

dimensional form of Fig. 1 (a, b) with isolines of a
typical cost function given by a quadric sum of energy
expenditure and inconvenience:

F =
(

CfRe2
m

α

)2

+
(

Re−1
m

β

)2

, (7)

where α and β is relative costs of energy expenditure
and inconvenience. In this example, they are set to
be (α, β) = (545312, 0.000198). We consider a fully
developed turbulent channel flow, and the Reynolds
number Rem is defined based on the bulk mean ve-
locity and the channel hight. The optimal operation
condition of the uncontrolled flow is given by the
red solid circle, where F is minimized on the black
curve. This corresponds to the bulk Reynolds num-
ber of Rem = 6340, which is equivalent to the Fric-
tion Reynolds number of Reτ = 200. As for a con-
trol technique, we consider spanwise wall oscillation
(Jung et al., 1992), since it is one of the simplest open-
loop control scheme, and also offers a large amount of
available control results. Plotted in Fig. 3 are results
obtained by Quadrio & Ricco (2004) and Ricco et al.
(2012) under CFR and CPG, respectively.

In Fig. 3 (a), where the vertical axis represents
the dimensionless pumping energy, significant pump-
ing energy saving is confirmed under CFR, while en-
hancement of the convenience is achieved at the same
pumping energy under CPG. Once the energy expen-
diture for flow control is taken into account, the over-
all picture changes drastically as shown in Fig. 3 (b).
Namely, most controlled flow states are located above
the uncontrolled turbulent line, indicating that the con-
trol modes consider here do not have advantage in the
proposed energy-convenience map. This is because
the present oscillation modes have relatively large am-
plitude of wall velocity, and therefore requires large



energy input. Taking a closer look, however, there is
one blue cross which is below the uncontrolled turbu-
lence line. This corresponds to the optimal oscillation
mode, where the net energy saving rate of 7 % is ob-
tained under CFR condition (Quadrio & Ricco, 2004).

In Fig. 3 (b), one point, marked with the black dia-
mond, represents a new result, obtained in the present
work, and corresponds to the CPI condition. To our
knowledge, this is the first DNS ever carried out under
such condition. The flow state is moved by the control
action along the dash-dotted line drawn in Figs. 1 (b)
and 2 (c). To achieve this, we have scanned through
several combination of the oscillation parameters. For
each of them, our numerical code computes runtime
the control power required by the oscillating wall, and
decreases the pumping power accordingly, so that their
sum remains constant and equal to the pumping power
of the non-controlled flow. The point in the figure
represents the configuration that yields the maximum
increase in the flow rate. Friction drag is reduced
at the same time, and control power is naturally ac-
counted for. Apart from the CPI strategy, this new
set of simulations is identical to those by Quadrio &
Ricco (2004), in terms of numerical scheme, value of
Re, size of computational box and spatial resolution.

It is known that the oscillating wall is quite inef-
fective in producing net energy savings. Indeed, the
lowest point in Fig. 3 (a) corresponds to a net en-
ergy saving of about 7%. At such small values, it is
thus difficult to appreciate the quantitative difference
between the best performance of the same technique
with respect to the chosen cost function. The con-
ceptual difference of the two points in the energy–
convenience plane, however, is clearly established.
We also note that more sophisticated control algo-
rithms using streamwise traveling waves of spanwise
wall motion (Quadrio et al., 2009), streamwise travel-
ing wave of wall blowing/suction (Min et al., 2006,
Hoeffner & Fukagata, 2009), and wall deformation
(Nakanishi et al., 2012) have been proposed recently,
and they generally achieve larger net energy saving
rates when their control modes are properly optimized.
The proposed energy-money plane provides a unique
framework to compare control performances obtained
under different control techniques and flow conditions.

4 Conclusions
The optimization problem of flow control involves

an interplay between energy saving and convenience.
Starting from this observation, a methodology for as-
sessing flow control techniques for skin-friction drag
reduction is proposed. We derive two dimensionless
parameters, i.e., Ce

fRe2 and Re−1, which express the
cost of the total energy consumption and the conve-
nience for transporting a fluid through a duct with
a certain cross-sectional geometry. Any controlled
flow state can be represented in the two-dimensional
plane composed by these two dimensionless quanti-

ties, without the need of imposing a constraint on the
flow condition. The theoretical lower bound of the to-
tal energy consumption under a constant flow rate de-
rived by Bewley (2009) and Fukagata et al. (2009) is
naturally integrated into the plot.

The suggested “energy-convenience plane”, which
can also be used for external flows (see, Frohnapfel
et al., 2012), extends the comparison of flow control
techniques beyond the constant flow rate approach of-
ten used in literature up to now (Hoepffner & Fuka-
gata, 2009, Kasagi et al., 2009), and allows the inclu-
sion of application-specific cost functions such that the
control performance can be judged in respect to a spe-
cific application.
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Figure 1: (a) Pumping energy E∗
p versus the inverse of the bulk mean velocity U∗

b , which reflects the time needed to pump a
given amount of fluid through a duct with a given cross section and length. Starting from the non-controlled flow
state N , successful flow control under CFR shifts it to A, whereas successful flow control under CPG shifts it to B.
(b) Total energy E∗

t versus the inverse of the bulk mean velocity U∗
b . The vertical shifts from A and B in (a) to A′

and B′ represent the energy consumption E∗
c for the control.
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Figure 2: An energy-convenience plane with isolines of typical cost functions F represented by dotted lines; (a) F = E∗
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F = 1/U∗
b , (c) F = (E∗

t )2 + (1/U∗
b )2. An admissible region defined by (E∗

t )max and (1/U∗
b )max affordable in

the application is depicted by a square bounded by a dashed line. The flow state N is optimal for uncontrolled flow,
while the laminar state X provides the minimum achievable value of the cost function by flow control.
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The vertical axis of (a) corresponds to the pumping energy, while that of (b) takes into account additional energy
expenditure for flow control. The solid black line represents the Blasius correlation for the uncontrolled turbulent
flow, while the black broken line shows the energy consumption of a laminar flow under a given flow rate, i.e.,
convenience. The red curves correspond to the iso-lines of the cost function given by Eq. (7). In this example, the
red circle gives the minimum F in the uncontrolled flow (along the black solid line). Control results obtained by
spanwise wall oscillation under CFR and CPG (Quadrio & Ricco, 2004, Ricco et al., 2012) are also plotted. The
black diamond corresponds to a new data point obtained by the present CPI calculation.


