Near-wall enstrophy generation in a drag-reduced turbulent channel flow with spanwise wall oscillations

Pierre Ricco¹, Claudio Ottonelli, Yosuke Hasegawa, Maurizio Quadrio
1 Sheffield, 2 Onera Paris,
3 Tokyo, 4 Politecnico Milano

ERCOFTAC/PLASMAER Workshop, Toulouse, 10 December 2012
Active open-loop technique

Energy input into system
Pre-determined forcing

Numerical approach

Direct numerical simulations of wall turbulence
Fully-developed turbulent channel flow ($Re_\tau = u_\tau h/\nu = 200$)
Compact finite-difference scheme along wall-normal direction
Spectral discretization along streamwise and spanwise directions

Spanwise wall oscillations

- New approach: *Turbulent enstrophy*
- *Transient evolution*

Constant dp/dx

τ_w is fixed in fully-developed conditions
GAIN: U_b increases
ACTIVE OPEN-LOOP TECHNIQUE

- Energy input into system
- Pre-determined forcing

NUMERICAL APPROACH

- Direct numerical simulations of wall turbulence
- Fully-developed turbulent channel flow ($Re_\tau = u_\tau h/\nu = 200$)
- Compact finite-difference scheme along wall-normal direction
- Spectral discretization along streamwise and spanwise directions

SPANWISE WALL OSCILLATIONS

- New approach: Turbulent enstrophy
- Transient evolution

CONSTANT DP/DX

- τ_w is fixed in fully-developed conditions
- **GAIN**: U_b increases
Active Open-Loop Technique

- Energy input into system
- Pre-determined forcing

Numerical Approach

- Direct numerical simulations of wall turbulence
- Fully-developed turbulent channel flow \((Re_\tau = u_\tau h/\nu = 200)\)
- Compact finite-difference scheme along wall-normal direction
- Spectral discretization along streamwise and spanwise directions

Spanwise Wall Oscillations

- New approach: *Turbulent enstrophy*
- *Transient evolution*

Constant dp/dx

- \(\tau_w\) is fixed in fully-developed conditions
- **Gain:** \(U_b\) increases
Active Open-Loop Technique
- Energy input into system
- Pre-determined forcing

Numerical Approach
- Direct numerical simulations of wall turbulence
- Fully-developed turbulent channel flow ($Re_\tau = u_\tau h/\nu = 200$)
- Compact finite-difference scheme along wall-normal direction
- Spectral discretization along streamwise and spanwise directions

Spanwise Wall Oscillations
- New approach: *Turbulent enstrophy*
- *Transient evolution*

Constant dp/dx
- τ_w is fixed in fully-developed conditions
- **GAIN:** U_b increases
Turbulent Drag Reduction

Active Open-Loop Technique
- Energy input into system
- Pre-determined forcing

Numerical Approach
- Direct numerical simulations of wall turbulence
- Fully-developed turbulent channel flow ($Re_T = u_T h/\nu = 200$)
- Compact finite-difference scheme along wall-normal direction
- Spectral discretization along streamwise and spanwise directions

Spanwise Wall Oscillations
- New approach: *Turbulent enstrophy*
- *Transient evolution*

Constant dp/dx
- τ_w is fixed in fully-developed conditions
- **GAIN:** U_b increases
Spanwise Wall Oscillations
Geometry

\[W_W = A \sin \left(\frac{2\pi}{T} t \right) \]

Mean flow

\[R = \frac{C_{f,r} - C_{f,o}}{C_{f,r}} = \frac{U_{b,r}^2 - U_{b,o}^2}{U_{b,o}^2} \]

Why does the skin-friction coefficient decrease?

\[C_f = 2\tau W / (\rho U_b^2) \] decreases → study why \(U_b \) increases

5 December 2012
Spanwise wall oscillations

Geometry

Mean flow

\[W_W = A \sin \left(\frac{2\pi}{T} t \right) \]

\[R = \frac{C_{f,r} - C_{f,o}}{C_{f,r}} = \frac{U_{b,o}^2 - U_{b,r}^2}{U_{b,o}^2} \]

Why does the skin-friction coefficient decrease?

\[C_f = 2\tau_w / (\rho U_b^2) \] decreases \(\rightarrow\) study why \(U_b\) increases
Mean flow

\[W_W = A \sin \left(\frac{2\pi}{T} t \right) \]

\[R = \frac{C_{f,r} - C_{f,o}}{C_{f,r}} = \frac{U_{b,o}^2 - U_{b,r}^2}{U_{b,o}^2} \]

Why does the skin-friction coefficient decrease?

\[C_f = \frac{2\tau_w}{(\rho U_b^2)} \] decreases \(\rightarrow \) study why \(U_b \) increases
$W_W = A \sin \left(\frac{2\pi}{T} t \right)$

$R = \frac{C_{f,r} - C_{f,o}}{C_{f,r}} = \frac{U_{b,o}^2 - U_{b,r}^2}{U_{b,o}^2}$

Why does the skin-friction coefficient decrease?

$C_f = \frac{2\tau_w}{\rho U_b^2}$ decreases \rightarrow study why U_b increases
Averaging Operators

Space: Homogeneous Directions

$$\bar{f}(y, t) = \frac{1}{L_x L_z} \int_0^{L_x} \int_0^{L_z} f(x, y, z, t) \, dz \, dx$$

Phase

$$\hat{f}(y, \tau) = \frac{1}{N} \sum_{n=0}^{N-1} \bar{f}(y, nT + \tau)$$

Time

$$\langle f \rangle (y) = \frac{1}{T} \int_0^{T} f(y, \tau) \, d\tau$$

Global

$$[f]_g = \int_0^{n} \langle f \rangle (y) \, dy$$
AVERAGING OPERATORS

SPACE: HOMOGENEOUS DIRECTIONS

\[
\overline{f}(y, t) = \frac{1}{L_x L_z} \int_0^{L_x} \int_0^{L_z} f(x, y, z, t) dz dx
\]

PHASE

\[
\hat{f}(y, \tau) = \frac{1}{N} \sum_{n=0}^{N-1} \overline{f}(y, nT + \tau)
\]

TIME

\[
\langle f \rangle (y) = \frac{1}{T} \int_0^T f(y, \tau) d\tau
\]

GLOBAL

\[
[f]_g = \int_0^n \langle f \rangle (y) dy
\]
AVERAGING OPERATORS

SPACE: HOMOGENEOUS DIRECTIONS

\[\bar{f}(y, t) = \frac{1}{L_x L_z} \int_0^{L_x} \int_0^{L_z} f(x, y, z, t) \, dz \, dx \]

PHASE

\[\hat{f}(y, \tau) = \frac{1}{N} \sum_{n=0}^{N-1} \bar{f}(y, nT + \tau) \]

TIME

\[\langle f \rangle (y) = \frac{1}{T} \int_0^T f(y, \tau) \, d\tau \]

GLOBAL

\[[f]_g = \int_0^h \langle f \rangle (y) \, dy \]
Averaging operators

Space: Homogeneous Directions

\[\tilde{f}(y, t) = \frac{1}{L_x L_z} \int_0^{L_x} \int_0^{L_z} f(x, y, z, t) dz dx \]

Phase

\[\hat{f}(y, \tau) = \frac{1}{N} \sum_{n=0}^{N-1} \tilde{f}(y, nT + \tau) \]

Time

\[\langle f \rangle (y) = \frac{1}{T} \int_0^T f(y, \tau) d\tau \]

Global

\[[f]_g = \int_0^h \langle f \rangle (y) dy \]
SPACEx: HOMOGENEOUS DIRECTIONS

\[
\bar{f}(y, t) = \frac{1}{L_x L_z} \int_{0}^{L_x} \int_{0}^{L_z} f(x, y, z, t) \, dz \, dx
\]

PHASE

\[
\hat{f}(y, \tau) = \frac{1}{N} \sum_{n=0}^{N-1} \bar{f}(y, nT + \tau)
\]

TIME

\[
\langle f \rangle (y) = \frac{1}{T} \int_{0}^{T} f(y, \tau) \, d\tau
\]

GLOBAL

\[
[f]_g = \int_{0}^{h} \langle f \rangle (y) \, dy
\]
Scaling by viscous units
Mean velocity increases in the bulk of the channel
Mean wall-shear stress is unchanged
Optimum period of oscillation $T \approx 75$
Scaling by viscous units
Mean velocity increases in the bulk of the channel
Mean wall-shear stress is unchanged
Optimum period of oscillation $T \approx 75$
Scaling by viscous units

Mean velocity increases in the bulk of the channel
Mean wall-shear stress is unchanged
Optimum period of oscillation $T \approx 75$
Scaling by viscous units

Mean velocity increases in the bulk of the channel

Mean wall-shear stress is unchanged

Optimum period of oscillation $T \approx 75$
Scaling by viscous units

Mean velocity increases in the bulk of the channel
Mean wall-shear stress is unchanged
Optimum period of oscillation $T \approx 75$
Turbulence kinetic energy decreases.
Streamwise velocity fluctuations are attenuated the most.
New oscillatory Reynolds stress term \hat{vw} is created, $\langle \hat{vw} \rangle = 0$.
Turbulence kinetic energy decreases

Streamwise velocity fluctuations are attenuated the most

New oscillatory Reynolds stress term \hat{vw} in created, $\langle \hat{vw} \rangle = 0$
Turbulence kinetic energy decreases
Streamwise velocity fluctuations are attenuated the most
New oscillatory Reynolds stress term \hat{vw} in created, $\langle \hat{vw} \rangle = 0$
Turbulence kinetic energy decreases
Streamwise velocity fluctuations are attenuated the most
New oscillatory Reynolds stress term $\langle \hat{vw} \rangle$ in created, $\langle \hat{vw} \rangle = 0$
Energy balance: a schematic

Energy is fed through $P_x \rightarrow U_b \tau_w$ and wall motion $\rightarrow \varepsilon_w$

Energy is dissipated through:
- Mean-flow viscous effects $\rightarrow D_U, D_W$
- Turbulent viscous effects $\rightarrow D_T$

![Diagram showing energy balance and dissipation](image-url)
Energy balance: a schematic

Energy is fed through $P_x \rightarrow U_b \tau_w$ and wall motion $\rightarrow \varepsilon_w$

Energy is dissipated through:
- Mean-flow viscous effects $\rightarrow \mathcal{D}_U, \mathcal{D}_W$
- Turbulent viscous effects $\rightarrow \mathcal{D}_\tau$
Energy is fed through $P_x \rightarrow U_b \tau_w$ and wall motion $\rightarrow E_w$.

Energy is dissipated through:

- Mean-flow viscous effects $\rightarrow \mathcal{D}_U, \mathcal{D}_W$
- Turbulent viscous effects $\rightarrow \mathcal{D}_\tau$
Energy balance: a schematic

Energy is fed through $P_x \rightarrow U_b \tau_w$ and wall motion $\rightarrow \epsilon_w$

Energy is dissipated through:
- Mean-flow viscous effects $\rightarrow D_U, D_W$
- Turbulent viscous effects $\rightarrow D_T$
Global Mean Kinetic Energy Equation

\[
U_b \tau_w + \left\langle A \frac{\partial \hat{W}}{\partial y} \right|_{y=0} \right\rangle = - \left[\hat{u} v \frac{\partial \hat{U}}{\partial y} \right]_{g} - \left[\hat{v} w \frac{\partial \hat{W}}{\partial y} \right]_{g} + \left[\left(\frac{\partial \hat{U}}{\partial y} \right)^{2} \right]_{g} + \left[\left(\frac{\partial \hat{W}}{\partial y} \right)^{2} \right]_{g}
\]

Global Turbulent Kinetic Energy Equation

\[
\left[\hat{u} v \frac{\partial \hat{U}}{\partial y} \right]_{g} + \left[\hat{v} w \frac{\partial \hat{W}}{\partial y} \right]_{g} + \left[\frac{\partial u_i \partial u_i}{\partial x_j \partial x_j} \right]_{g} = 0
\]

Total Kinetic Energy Balance

\[
U_b \tau_w + \varepsilon_w = D_U + D_W + D_T
\]

Turbulent Dissipation

\[
D_T = \left[\hat{\omega}_i \hat{\omega}_i \right]_{g}
\]
Global mean kinetic energy equation

\[U_b \tau_w + \left(A \frac{\partial \hat{W}}{\partial y} \bigg|_{y=0} \right) = - \left[\hat{u}v \frac{\partial \hat{U}}{\partial y} \right]_{g} - \left[\hat{w}w \frac{\partial \hat{W}}{\partial y} \right]_{g} + \left[\left(\frac{\partial \hat{U}}{\partial y} \right)^2 \right]_{g} + \left[\left(\frac{\partial \hat{W}}{\partial y} \right)^2 \right]_{g} \]

\[\mathcal{P}_{uv} \]
\[\mathcal{P}_{ww} \]
\[\mathcal{D}_{U} \]
\[\mathcal{D}_{W} \]

Global turbulent kinetic energy equation

\[\left[\hat{u}v \frac{\partial \hat{U}}{\partial y} \right]_{g} + \left[\hat{w}w \frac{\partial \hat{W}}{\partial y} \right]_{g} + \left[\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right]_{g} = 0 \]

\[\mathcal{P}_{uv} \]
\[\mathcal{P}_{ww} \]

Total kinetic energy balance

\[U_b \tau_w + \varepsilon_w = \mathcal{D}_U + \mathcal{D}_W + \mathcal{D}_T \]

Turbulent dissipation

\[\mathcal{D}_T = \left[\hat{\omega}^i \hat{\omega}^i \right]_{g} \]
Global Mean Kinetic Energy Equation

\[U_b \tau_w + \langle A \frac{\partial \hat{W}}{\partial y} \bigg|_{y=0} \rangle = - \left[\hat{u} \frac{\partial \hat{U}}{\partial y} \right]_g - \left[\hat{w} \frac{\partial \hat{W}}{\partial y} \right]_g + \left[\left(\frac{\partial \hat{U}}{\partial y} \right)^2 \right]_g + \left[\left(\frac{\partial \hat{W}}{\partial y} \right)^2 \right]_g \]

Global Turbulent Kinetic Energy Equation

\[\left[\hat{u} \frac{\partial \hat{U}}{\partial y} \right]_g + \left[\hat{w} \frac{\partial \hat{W}}{\partial y} \right]_g + \left[\frac{\partial u_i \partial u_i}{\partial x_j \partial x_j} \right]_g = 0 \]

Total Kinetic Energy Balance

\[U_b \tau_w + \varepsilon_w = D_U + D_W + D_T \]

Turbulent Dissipation

\[D_T = \left[\omega_i \omega_i \right]_g \]
Global Mean Kinetic Energy Equation

\[
U_b \tau_w + \left[A \frac{\partial \hat{W}}{\partial y} \right]_{y=0} = - \left[\hat{u} \frac{\partial U}{\partial y} \right]_{g} - \left[\hat{w} \frac{\partial \hat{W}}{\partial y} \right]_{g} + \left[\left(\frac{\partial \hat{U}}{\partial y} \right)^2 \right]_{g} + \left[\left(\frac{\partial \hat{W}}{\partial y} \right)^2 \right]_{g}
\]

\(\varepsilon_w \)

\(\mathcal{P}_{uv} \)

\(\mathcal{P}_{vw} \)

\(\mathcal{D}_U \)

\(\mathcal{D}_W \)

Global Turbulent Kinetic Energy Equation

\[
\left[\hat{u} \frac{\partial \hat{U}}{\partial y} \right]_{g} + \left[\hat{w} \frac{\partial \hat{W}}{\partial y} \right]_{g} + \left[\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right]_{g} = 0
\]

\(\mathcal{P}_{uv} \)

\(\mathcal{P}_{vw} \)

Total Kinetic Energy Balance

\[U_b \tau_w + \varepsilon_w = \mathcal{D}_U + \mathcal{D}_W + \mathcal{D}_\tau \]

Turbulent Dissipation

\[\mathcal{D}_\tau = \left[\omega_i \omega_i \right]_{g} \]
Key Questions

Still to be answered

- Why does TKE decrease?
- Why does U_b increase?

Three Possibilities

1. **Stokes layer acts on D_U directly**
 - → excluded because W does not work directly on $(\partial \hat{U}/\partial y)^2$

2. **Stokes layer acts on P_{uv} directly**
 - → excluded because W does not work directly on \hat{uv}

3. **Stokes layer acts on $D_T = [\hat{\omega}_i \hat{\omega}_j]_g$ directly**
 - → W works on turbulent vorticity transport

Turbulent Enstrophy Transport

Study the transport of turbulent enstrophy $\hat{\omega}_i \hat{\omega}_j$

The term *enstrophy* was coined by G. Nickel and is from Greek $\sigma \tau \rho \omega \phi \eta$, which means *turn*
Key Questions

Still to be answered

Why does TKE decrease?

Why does U_b increase?

Three Possibilities

1. Stokes layer acts on D_U directly

 → excluded because W does not work directly on $(\partial \hat{U}/\partial y)^2$

2. Stokes layer acts on P_{uv} directly

 → excluded because W does not work directly on \hat{uv}

3. Stokes layer acts on $D_T = [\hat{\omega}_i \hat{\omega}_j]_g$ directly

 → W works on turbulent vorticity transport

Turbulent Enstrophy Transport

Study the transport of turbulent enstrophy $\hat{\omega}_i \hat{\omega}_j$

The term *enstrophy* was coined by G. Nickel and is from Greek $\sigma \tau \rho \phi \eta$, which means *turn*
Key Questions

Still to be answered:

- Why does TKE decrease?
- Why does U_b increase?

Three Possibilities

1. Stokes layer acts on D_U directly

 → excluded because W does not work directly on $\left(\partial \hat{U} / \partial y \right)^2$

2. Stokes layer acts on P_{uv} directly

 → excluded because W does not work directly on \hat{uv}

3. Stokes layer acts on $D_T = \left[\omega_i \omega_i \right]_g$ directly

 → W works on turbulent vorticity transport

Turbulent Enstrophy Transport

Study the transport of turbulent enstrophy $\hat{\omega_i \omega_i}$.

The term *enstrophy* was coined by G. Nickel and is from Greek $\sigma \tau \rho \omega \gamma$, which means turn.
Key Questions

Still to be answered

Why does TKE decrease?
Why does U_b increase?

Three Possibilities

- Stokes layer acts on D_U directly
 - → excluded because W does not work directly on $(\partial \hat{U}/\partial y)^2$
- Stokes layer acts on P_{uv} directly
 - → excluded because W does not work directly on \hat{uv}
- Stokes layer acts on $D_T = [\omega_i \omega_i]_g$ directly
 - → W works on turbulent vorticity transport

Turbulent Enstrophy Transport

Study the transport of turbulent enstrophy $\hat{\omega_i \omega_i}$

The term *enstrophy* was coined by G. Nickel and is from Greek $\sigma \tau \rho \phi \eta$, which means *turn*
Key Questions

Still to be answered

- Why does TKE decrease?
- Why does U_b increase?

Three Possibilities

1. Stokes layer acts on D_U directly

 → excluded because W does not work directly on $(\partial \hat{U} / \partial y)^2$

2. Stokes layer acts on P_{uv} directly

 → excluded because W does not work directly on \hat{uv}

3. Stokes layer acts on $D_T = [\hat{\omega}_i\hat{\omega}_j]_g$ directly

 → W works on turbulent vorticity transport

Turbulent Enstrophy Transport

Study the transport of turbulent enstrophy $\hat{\omega}_i\hat{\omega}_j$

The term enstrophy was coined by G. Nickel and is from Greek $\sigma_T\rho\omega\phi\eta$, which means *turn*
KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?
Why does U_b increase?

THREE POSSIBILITIES

- Stokes layer acts on D_U directly
 \rightarrow excluded because W does not work directly on $(\partial \hat{U}/\partial y)^2$

- Stokes layer acts on P_{uv} directly
 \rightarrow excluded because W does not work directly on \hat{uv}

- Stokes layer acts on $D_T = [\hat{\omega}_i \hat{\omega}_j] g$ directly
 \rightarrow W works on turbulent vorticity transport

TURBULENT ENSTROPHY TRANSPORT

Study the transport of turbulent enstrophy $\hat{\omega}_i \hat{\omega}_j$

The term enstrophy was coined by G. Nickel and is from Greek $\sigma \tau \rho \phi \eta$, which means turn
KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?
Why does U_b increase?

THREE POSSIBILITIES

1. Stokes layer acts on D_U directly
 → excluded because W does not work directly on $(\partial \hat{U}/\partial y)^2$

2. Stokes layer acts on P_{uv} directly
 → excluded because W does not work directly on \hat{uv}

3. Stokes layer acts on $D_T = [\hat{\omega}_I \hat{\omega}_I] g$ directly
 → W works on turbulent vorticity transport

TURBULENT ENSTROPHY TRANSPORT

Study the transport of turbulent enstrophy $\hat{\omega}_I \hat{\omega}_I$

The term enstrophy was coined by G. Nickel and is from Greek $\sigma \tau \rho \phi \dot{\eta}$, which means turn
Stokes layer influences dynamics of turbulent enstrophy

Three terms: which is the dominating one?

→ Let’s look at the terms of the equation
Turbulent enstrophy equation

\[
\frac{1}{2} \frac{\partial \omega_j \omega_i}{\partial \tau} = \omega_x \omega_y \frac{\partial \hat{U}}{\partial y} + \omega_z \omega_y \frac{\partial \hat{W}}{\partial y} + \omega_j \frac{\partial u_j}{\partial x} \frac{\partial \hat{W}}{\partial y} - \omega_j \frac{\partial w_j}{\partial x} \frac{\partial \hat{U}}{\partial y} - \frac{\partial \omega_j}{\partial x} \frac{\partial \omega_i}{\partial x}.
\]

Stokes layer influences dynamics of turbulent enstrophy

Three terms: which is the dominating one?

→ Let's look at the terms of the equation
Stokes layer influences dynamics of turbulent enstrophy

Three terms: which is the dominating one?

→ Let’s look at the terms of the equation
Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let's look at the terms of the equation
Turbulent enstrophy equation

\[
\frac{1}{2} \frac{\partial \omega_i \omega_i}{\partial \tau} = \omega_x \omega_y \frac{\partial \hat{U}}{\partial y} + \omega_z \omega_y \frac{\partial \hat{W}}{\partial y} + \omega_j \omega_j \frac{\partial \hat{V}}{\partial x_j} \frac{\partial \hat{W}}{\partial y} - \omega_j \omega_j \frac{\partial \hat{V}}{\partial y} \frac{\partial \hat{U}}{\partial y} \\
- \nu \omega_x \frac{\partial^2 \hat{W}}{\partial y^2} + \nu \omega_z \frac{\partial^2 \hat{U}}{\partial y^2} + \omega_i \omega_j \frac{\partial u_i}{\partial x_j} - \frac{1}{2} \frac{\partial}{\partial y} \left(\nu \omega_i \omega_i \right) \\
+ \frac{1}{2} \frac{\partial^2 \omega_i \omega_i}{\partial y^2} - \frac{\partial \omega_i}{\partial x_j} \frac{\partial \omega_i}{\partial x_j}.
\]

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let's look at the terms of the equation
Term 3, $\omega_z \omega_y \hat{W}/\partial y \rightarrow$ turbulent enstrophy production is dominant.

Other oscillating-wall terms are much smaller.

Turbulent dissipation of turbulent enstrophy increases.
Term 3, $\omega z w_y \partial \widehat{W} / \partial y$ → turbulent enstrophy production is dominant.
Other oscillating-wall terms are much smaller.
Turbulent dissipation of turbulent enstrophy increases.
Term 3, $\tilde{\omega}_y \partial \tilde{W}/\partial y \rightarrow$ turbulent enstrophy production is dominant

Other oscillating-wall terms are much smaller

Turbulent dissipation of turbulent enstrophy increases
Term 3, \(\overline{\omega_z \omega_y} \partial \hat{W} / \partial y\) → turbulent enstrophy production is dominant

Other oscillating-wall terms are much smaller

Turbulent dissipation of turbulent enstrophy increases
We have not answered questions on TKE and U_b, yet

Key: transient from start-up of wall motion

Useful information
We have not answered questions on TKE and U_b, yet

Key: transient from start-up of wall motion

Useful Information

RED: term 3 increases abruptly, then decreases
We have not answered questions on TKE and U_b, yet

Key: transient from start-up of wall motion

Useful Information

RED: term 3 increases abruptly, then decreases

BLACK: turbulent enstrophy increases, then decreases
Interesting, but...

We have not answered questions on TKE and U_b, yet

Key: transient from start-up of wall motion

![Graph](image)

Useful Information

RED: term 3 increases abruptly, then decreases

BLACK: turbulent enstrophy increases, then decreases
We have not answered questions on TKE and U_b, yet

Key: transient from start-up of wall motion

Useful Information

RED: term 3 increases abruptly, then decreases

BLACK: turbulent enstrophy increases, then decreases

BLUE: TKE decreases monotonically
TRANSIENT: THREE STAGES

SHORT STAGE

Turbulent enstrophy increases through $\hat{\omega}_{zy} \partial \hat{W} / \partial y$

INTERMEDIATE STAGE

TKE decreases because of enhanced turbulent dissipation

LONG STAGE

Bulk velocity increases because of TKE reduction

\rightarrow drag reduction
TRANSIENT: THREE STAGES

SHORT STAGE

Turbulent enstrophy increases through $\omega_z \omega_y \partial W / \partial y$

INTERMEDIATE STAGE

TKE decreases because of enhanced turbulent dissipation

LONG STAGE

Bulk velocity increases because of TKE reduction

→ drag reduction
TRANSIENT: THREE STAGES

SHORT STAGE

Turbulent enstrophy increases through $\hat{\omega}_z \omega_y \partial \hat{W} / \partial y$

INTERMEDIATE STAGE

TKE decreases because of enhanced turbulent dissipation

LONG STAGE

Bulk velocity increases because of TKE reduction

\rightarrow drag reduction
Transient: Three Stages

Short Stage
- Turbulent enstrophy increases through $\hat{\omega}_z \hat{w}_y \partial \hat{W} / \partial y$

Intermediate Stage
- TKE decreases because of enhanced turbulent dissipation

Long Stage
- Bulk velocity increases because of TKE reduction
 - \rightarrow drag reduction
Initial state
Initial state

Short

$t < 50$

$\omega_z \omega_y \frac{\partial \overline{w}}{\partial y} \uparrow \quad \overline{\omega_i \omega_i} \uparrow$
DRAG REDUCTION MECHANISM

Initial state

Short
\(t < 50 \)

\(\omega_z \omega_y \frac{\partial W}{\partial y} \uparrow \quad \omega_i \omega_i \uparrow \)

\(D_T \uparrow \)
Drag reduction mechanism

Initial state

Short
$t < 50$

Intermediate
$50 < t < 400$

$\omega_z \omega_y \frac{\partial \bar{w}}{\partial y} \uparrow \quad \omega_i \omega_i \uparrow$

$D_T \uparrow$

TKE $\downarrow \quad \frac{\partial \bar{u} \bar{v}}{\partial y} \downarrow$
Initial state

Short
$t < 50$

$\omega_z \omega_y \frac{\partial \bar{W}}{\partial y}$ ↑ $\omega_i \omega_i$ ↑

D_T ↑

Intermediate
$50 < t < 400$

TKE ↓ $\frac{\partial \bar{U}}{\partial y}$ ↓

$\frac{\partial \bar{U}}{\partial t} > 0$
Drag reduction mechanism

Initial state

Short
$t < 50$

Intermediate
$50 < t < 400$

Long
$t > 400$

$\omega_z \omega_y \frac{\partial \bar{w}}{\partial y} \uparrow$ \hspace{5mm} $\omega_i \omega_i \uparrow$

$\bar{D}_T \uparrow$

$TKE \downarrow$ \hspace{5mm} $\frac{\partial u \bar{v}}{\partial y} \downarrow$

$\frac{\partial \bar{U}}{\partial t} > 0$

$\int_0^h \bar{U} dy \uparrow$
\(\hat{\omega}_{z\omega y} \partial \hat{W} / \partial y \) is key term leading to drag reduction

\(\hat{\omega}_{z\omega y} \partial \hat{W} / \partial y \rightarrow \partial \hat{W} / \partial y \) acts on \(\hat{\omega}_{z\omega y} \)

\(\hat{\omega}_{z\omega y} \approx \frac{\partial u}{\partial y} \frac{\partial u}{\partial z} \)

\(\frac{\partial u}{\partial y} \rightarrow \) upward eruption of near-wall low-speed fluid

\(\frac{\partial u}{\partial z} \rightarrow \) lateral flanks of the low-speed streaks

\(\frac{\partial u}{\partial y} \frac{\partial u}{\partial z} \) located at the sides of high-speed streaks
MODELLING TURBULENT ENSTROPHY PRODUCTION

SIMPLIFIED TURBULENT ENSTROPHY EQUATION

\[
\frac{1}{2} \frac{\partial}{\partial t} \left(\omega_y^2 + \omega_z^2 \right) = \omega_z \omega_y G - \left(\frac{\partial \omega_y}{\partial y} \right)^2 - \left(\frac{\partial \omega_z}{\partial y} \right)^2
\]

Rotation of axis

\[
\frac{1}{2} \frac{\partial \omega_n^2}{\partial t} = S_{nn} \omega_n^2 - \left(\frac{\partial \omega_n}{\partial y} \right)^2
\]

Integration by Charpit's method

\[
\omega_n = \omega_{n,0} e^{\sin \alpha \cos \alpha G t} e^{-\beta^2 t} e^{-\beta y}, \quad \beta = \frac{\partial \omega_n}{\partial t} \frac{\partial \omega_n}{\partial y} \approx \frac{\lambda_y}{\lambda_t}
\]

stretching
dissipation
Drag reduction grows monotonically with global production term
This happens up to optimum period
THANK YOU!

REFERENCE

Ricco, P. Ottonelli, C. Hasegawa, Y. Quadrio, M.
Changes in turbulent dissipation in a channel flow with oscillating walls