(ロ) (型) (E) (E) (E) (C) (C)

Turbulence Drag Reduction by In-Plane Wall Motion

Wenxuan Xie, Maurizio Quadrio

Department of Aerospace Engineering Politecnico di Milano

European Postgraduate Fluid Dynamics Conference, 2012

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Why turbulence drag reduction?

Turbulence drag plays an important role in:

- Air transportation
- Ground transportation
- Water transportation
- Pipeline oil transportation
- ...

Why turbulence drag reduction? (cont.)

The breakdown of the drag on an aircraft (Schrauf, Community Aeronautics Days 2006)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Flow control techniques

Passive control

no actuators, e.g.riblets (simple, less efficient)

- Active control
 - open-loop

with actuators but no sensors (relatively simple, efficient)

closed-loop

with both actuators and sensors (complex, efficient)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Flow control techniques (cont.)

Turbulent drag reduction by in-plane wall motion:

- Spanwise-oscillating wall (Quadrio et al 2004 JFM) relatively large drag reduction, low net energy saving
- Streamwise travelling waves (Quadrio et al 2009 JFM) large drag reduction, higher net energy saving
- Spanwise travelling waves
 - wall motion
 - body forcing

Spanwise travelling waves (of spanwise velocity)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Spanwise travelling waves

body forcing:

$$F_z = Ie^{-y/\Delta} \sin(\kappa_z z - \omega t)$$

Drag reduction 30% based on very limited observations, net savings unknown. (Du et al JFM 2002)

wall motion:

 $w = A \sin(\kappa_z z - \omega t)$

Two methods give similar results in turbulence statistics and drag reduction. (Zhao et al Fluid Dyn Res 2004) If $\kappa_z = 0$, wall oscillation

Motivation	Methods	Results	Conclusion

Aim

Method

find the optimal point in the 3d parametric space $(A - \omega - \kappa_z)$ with the best energetic performance.

Around 250 Direct Numerical Simulation for the turbulent channel flow

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

• $L_x = 4.8$, $L_y = 2$, $L_z = 3.2$ non-dimensionalized by h (half of the channel height)

•
$$nx = 64$$
, $ny = 100$, $nz = 128$
 $\Delta_x^+ = 10$, $\Delta_z^+ = 5$

• $Re_{ au} = 200$ (corresponding to Re = 4760)

Map of Drag Reduction and Net Energy Saving

A=0.1

< 4 ₽ > < Ξ

Map of Drag Reduction and Net Energy Saving (cont.)

A=0.2

< 4 ₽ > < Ξ

Map of Drag Recution and Net Energy Saving(cont.)

A=0.5

Modification of Near Wall Turbulence

Motivation	Methods	Results	Conclusion
Spanwise flow	w rate		

- $\nabla_z P = 0$ in all simulations
- spanwise flow rate arises for most of the simulations
- analogy to travelling wave of blowing and suction

"Streaming" effect from blowing/suction waves

Suppose the blowing/suction wave is travelling from left to right. We look at a particle originally at distance y_0 from the wall:

- In the first cell (the cell on the right), the particle is first pushed towards the wall and then blowed back to y_0 , the particle is travelling in region $y < y_0$
- In the second cell, the particle is first blowed towards the center line and then sucked back to y_0 , the particle is travelling in region $y > y_0$

Hoepffner and Fukagata JFM 2009

In the case of standing wave

- Different initial fields lead to different sign of the flow rate. The symmetry is kept on time average.
- The absolute values of the flow rate qualitatively agree with the drag reduction values from standing wave of blowing and suction. (Mamori and Fukagata ETC 2011)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation	Methods	Results	Conclusion
Conclusion			

From the global map:

relatively large maximum drag reduction, but low net energy saving

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

• outperformed by the spanwise wall oscillation

From the flow statistics:

- near wall turbulence cycle is modified
- creation of spanwise flow rate (could be used?)

Thank you all!