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TURBULENT DRAG REDUCTION

ACTIVE OPEN-LOOP TECHNIQUE

Energy input into system

Pre-determined forcing

Channel flow DNS (Reτ = uτh/ν = 200)

SPANWISE WALL OSCILLATIONS

New approach: Turbulent enstrophy

Transient evolution

CONSTANT DP/DX

τw is fixed in fully-developed conditions

GAIN: Ub increases
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SPANWISE WALL OSCILLATIONS
GEOMETRY

Mean flow
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Why does the skin-friction coefficent decrease?

Cf = τw/(1/2ρU2
b ) decreases→ study why Ub increases

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 3-26



SPANWISE WALL OSCILLATIONS
GEOMETRY

Mean flow

x

y

z
Lx

Ly

LzWw = A sin
(

2π
T

t
)

R =

Cf ,r−Cf ,o
Cf ,r

=

U2
b,o−U2

b,r

U2
b,o

Why does the skin-friction coefficent decrease?

Cf = τw/(1/2ρU2
b ) decreases→ study why Ub increases

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 3-26



SPANWISE WALL OSCILLATIONS
GEOMETRY

Mean flow

x

y

z
Lx

Ly

LzWw = A sin
(

2π
T

t
)

R =

Cf ,r−Cf ,o
Cf ,r

=

U2
b,o−U2

b,r

U2
b,o

Why does the skin-friction coefficent decrease?

Cf = τw/(1/2ρU2
b ) decreases→ study why Ub increases

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 3-26



SPANWISE WALL OSCILLATIONS
GEOMETRY

Mean flow

x

y

z
Lx

Ly

LzWw = A sin
(

2π
T

t
)

R =

Cf ,r−Cf ,o
Cf ,r

=

U2
b,o−U2

b,r

U2
b,o

Why does the skin-friction coefficent decrease?

Cf = τw/(1/2ρU2
b ) decreases→ study why Ub increases

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 3-26



ENERGY BALANCE: A SCHEMATIC
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Energy is fed through Px (→ Ubτw ) and wall motion (→ Ew )
Energy is dissipated through:

Mean-flow viscous effects (→ DU ,DW )
Turbulent viscous effects (→ DT )
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KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?

Why does Ub increase?

DOES W ACT ON TURBULENT DISSIPATION?

Stokes-layer-type flow is generated by the wall oscillation

Stokes layer’s direct action on DT =
∫

V
ω̂iωi dV

Study the transport of turbulent enstrophy ω̂iωi

The term enstrophy was coined by G. Nickel and is from Greek στρoφή

→ turn
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TURBULENT ENSTROPHY EQUATION
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Terms scaled in viscous units

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let’s look at the terms of the equation
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∂y2

︸ ︷︷ ︸
6

+ v̂ωz
∂2Û
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∂y2

︸ ︷︷ ︸
6

+ v̂ωz
∂2Û

∂y2︸ ︷︷ ︸
7

+
̂
ωiωj
∂ui

∂xj︸ ︷︷ ︸
8

−
1

2

∂

∂y

(
v̂ωiωi

)
︸ ︷︷ ︸

9

+
1

2

∂2ω̂iωi

∂y2︸ ︷︷ ︸
10

−

̂∂ωi

∂xj

∂ωi

∂xj︸ ︷︷ ︸
11

.

Terms scaled in viscous units

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let’s look at the terms of the equation

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 6-26



TURBULENT ENSTROPHY EQUATION

1

2

∂ω̂iωi

∂τ︸ ︷︷ ︸
1

= ω̂xωy
∂Û
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∂y2︸ ︷︷ ︸
7

+
̂
ωiωj
∂ui

∂xj︸ ︷︷ ︸
8

−
1

2

∂

∂y

(
v̂ωiωi

)
︸ ︷︷ ︸

9

+
1

2

∂2ω̂iωi

∂y2︸ ︷︷ ︸
10

−

̂∂ωi

∂xj

∂ωi

∂xj︸ ︷︷ ︸
11

.

Terms scaled in viscous units

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let’s look at the terms of the equation

10 SEPTEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 6-26



TURBULENT ENSTROPHY PROFILES
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TURBULENT ENSTROPHY PROFILES
OSCILLATING-WALL PROFILES
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Turbulent dissipation of turbulent enstrophy increases
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INTERESTING, BUT...

We have not answered questions on TKE and Ub, yet

Key: transient from start-up of wall motion
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USEFUL INFORMATION
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DRAG REDUCTION MECHANISM

Initial state
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DRAG REDUCTION MECHANISM

Short
t+ < 50

Initial state

ωzωy
+ ∂W

+

∂y+ ↑ ωiωi
+ ↑
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DRAG REDUCTION MECHANISM
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DRAG REDUCTION MECHANISM

Short
t+ < 50

Intermediate
50 < t+ < 400

Long
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Initial state ‘Drag reduction’
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OSCILLATION PERIOD VS. TERM 3
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Drag reduction grows monotonically with global production term

This happens up to optimum period
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THANK YOU!
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MEAN FLOW
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≈ 75
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TURBULENCE STATISTICS
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ENERGY BALANCE: EQUATIONS

GLOBAL MEAN KINETIC ENERGY EQUATION
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GLOBAL TURBULENT KINETIC ENERGY EQUATION
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PHYSICAL INTERPRETATION OF ω̂zωy∂Ŵ/∂y

ω̂zωy∂Ŵ/∂y is key term leading to drag reduction

ω̂zωy∂Ŵ/∂y → ∂Ŵ/∂y acts on ω̂zωy

ω̂zωy ≈
∂̂u
∂y
∂u
∂z

∂u
∂y → upward eruption of near-wall low-speed fluid
∂u
∂z → lateral flanks of the low-speed streaks

0 200 400 600 800
0

200

400

x+

z+

∂u
∂y
∂u
∂z located at the sides of high-speed streaks
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MODELLING TURBULENT ENSTROPHY PRODUCTION
THANKS TO ANDREA FOR THE HELP!

y

z

xn

xs

α

ωyz

SIMPLIFIED TURBULENT ENSTROPHY EQUATION

1

2

∂

∂t

(
ω

2
y + ω

2
z

)
= ωzωy G −

(
∂ωy

∂y

)2

−

(
∂ωz

∂y

)2

Rotation of axis

1

2

∂ω2
n

∂t
= Snnω

2
n −

(
∂ωn

∂y

)2

Integration by Charpit’s method

ωn = ωn,0 esinα cosαGt︸ ︷︷ ︸
stretching

e−β
2 t e−βy︸ ︷︷ ︸

dissipation

, β =
∂ωn/∂t

∂ωn/∂y
∼
λy

λt
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