Turbulence Drag Reduction by Spanwise Travelling Waves of Spanwise Velocity

Wenxuan Xie, Maurizio Quadrio

Department of Aerospace Engineering Politecnico di Milano

European Fluid Mechanics Conference, Sep 2012, Rome

Skin-friction drag reduction: motivation The breakdown of the drag on an aircraft

State-of-the-art

Active open-loop techniques only

Turbulent drag reduction by in-plane wall motion:

Strategy	R	S
Streamwise travelling waves	large	high
(Quadrio et al JFM 2009)		
Spanwise-oscillating wall (Jung	large	low
et al Phys. Fluids 1992)		
Spanwise travelling waves (Du	large	unknown
et al Science 2000)		

A⊒ ▶ < ∃

Spanwise travelling waves

 $w = A \sin(\kappa_z z - \omega t)$

If $\kappa_z = 0$, wall oscillation

W.Xie, M.Quadrio (Politecnico di Milano)

Turbulence Drag Reduction

E ▶ 4 ≣ ▶ Ξ ∽ Q (? EFMC9, Rome 4 / 15

Aim and Method

Aim

Find the optimal point in the 3d parametric space $(A - \omega - \kappa_z)$ with the best energetic performance.

Method

250 Direct Numerical Simulation turbulent channel flow at $Re_{\tau} = 200$.

Map of Drag Reduction and Net Energy Saving A=0.1

Map of Drag Reduction and Net Energy Saving (cont.) A=0.2

Map of Drag Reduction and Net Energy Saving (cont.) A=0.5

Modification of Near Wall Turbulence

top view
$$A = 0.5, \quad \kappa_z = 4, \quad y^+ = 5$$

DI ($\omega = 0.5$)

UNCONTROLLED

(ロ) (部) (目) (日) (日)

DR ($\omega = 1.0$)

Reynolds Stress

 $\overline{\mathit{uv}}$ of the DI and DR cases

W.Xie, M.Quadrio (Politecnico di Milano)

EFMC9, Rome 10 / 15

Spanwise flow rate

- $\nabla_z P = 0$ in all simulations
- spanwise flow rate arises for most of the simulations
- analogy to travelling wave of blowing and suction (Hoepffner and Fukagata JFM 2009)

In the case of standing wave

• Different initial fields lead to different sign of the flow rate. The symmetry is kept on ensemble average.

Conclusion and Future Work

• Conclusion: From the global map:

- large maximum drag reduction, but low net energy saving
- always outperformed by the spanwise wall oscillation

From the flow statistics:

- near wall turbulence cycle is modified
- creation of spanwise flow rate (could be used?)
- Future Work:

spanwise traveling wave of body force (Du et al 2000 Science)

Thank you all!

3

-

</l>< □ > < □ >

"Streaming" effect from blowing/suction waves

Suppose the blowing/suction wave is travelling from left to right. We look at a particle originally at distance y_0 from the wall:

- In the first cell (the cell on the right), the particle is first pused towards the wall and then blowed back to y_0 , the particle is travelling in region $y < y_0$.
- In the second cell, the particle is first blowed towards the center line and then sucked back to y₀, the particle is travelling in region y > y₀

(Hoepffner and Fukagata JFM 2009)