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Harmonic oscillations of the walls of a turbulent plane channel flow are studied by
direct numerical simulations to improve our understanding of the physical mechanism
for skin-friction drag reduction. The simulations are carried out at constant pressure
gradient in order to define an unambiguous inner scaling: in this case, drag reduction
manifests itself as an increase of mass flow rate. Energy and enstrophy balances,
carried out to emphasize the role of the oscillating spanwise shear layer, show that
the viscous dissipation of the mean flow and of the turbulent fluctuations increase with
the mass flow rate, and the relative importance of the latter decreases. We then focus
on the turbulent enstrophy: through an analysis of the temporal evolution from the
beginning of the wall motion, the dominant, oscillation-related term in the turbulent
enstrophy is shown to cause the turbulent dissipation to be enhanced in absolute terms,
before the slow drift towards the new quasi-equilibrium condition. This mechanism
is found to be responsible for the increase in mass flow rate. We finally show that
the time-average volume integral of the dominant term is linearly related to the drag
reduction.
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1. Introduction
The reduction of skin-friction drag in wall-bounded turbulent flows is an important

and challenging area of fluid mechanics. Its difficulty lies both in the extreme
complexity of the physics underlying turbulence and in the resistance of such flows
to change favourably when disturbed by external agents. The interest in the subject is
steadily growing as the viscous action exerted by turbulence causes dramatic energy
losses in flow systems of technological relevance, such as oil and gas pipelines, high-
speed aircraft wings, jet engine intakes, and turbine blades. Even a small reduction
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of turbulence activity, and thus of wall friction, translates into improved system
efficiency and therefore into lower fuel consumption. Further potential advantages
are the attenuation of noise, structural vibrations, and aerodynamic heating.

Active turbulent drag reduction techniques, for which energy is introduced into the
system, have received widespread attention, owing to the (so far) limited performances
achieved by most passive techniques. Closed-loop feedback control strategies represent
an emerging field of research where the activation is usually applied at the wall
as wall-normal distributed transpiration (Kim & Bewley 2007; Kasagi, Suzuki &
Fukagata 2009b). Open-loop techniques, for which the control law is predetermined,
usually operate at much larger spatio-temporal scales and do not require distributed
sensing. Regarding this type of forcing, near-wall flows have been excited by Lorentz
forces or dielectric barrier discharge plasma actuators, alternating wall suction and
blowing, unsteady cross-flow pressure gradients and different types of wall motion
with the intent to disrupt the self-sustaining turbulence production mechanisms. With
regard to the space–time distribution of forcing, both spanwise- and streamwise-
travelling waves have been employed. Leschziner, Choi & Choi (2011) contains
several contributions to the subject.

We consider here the simplest amongst such open-loop techniques, i.e. the harmonic
spanwise wall oscillations introduced by Jung, Mangiavacchi & Akhavan (1992). The
oscillating wall has been chosen because it can be regarded as a paradigm for a larger
class of drag-reduction techniques and because it offers the largest amount of available
experimental and numerical data and the smallest number of forcing parameters. This
flow has been studied mainly through turbulence statistics, flow visualizations of the
near-wall modified flow, and simplified models which attempt to explain the physics
behind drag reduction. Various mechanisms for drag reduction have been proposed,
such as the relative displacement of near-wall structures (Baron & Quadrio 1996)
and the creation of negative spanwise vorticity during the oscillation cycle (Choi,
DeBisschop & Clayton 1998). In spite of such efforts, the answer to fundamental
questions, such as why the turbulent kinetic energy and the friction drag decrease and
how the wall forcing can be modified most efficiently to achieve the largest net energy
saving, still remain elusive.

The objective of the present work is therefore to gain further insight into the
physics of an incompressible channel flow with spanwise wall oscillations. Although
our conclusions will be limited to the oscillating wall, it is our hope that they will
bear some generality. The focus is on how the energy transfer between the mean flow
and the turbulent fluctuations is affected by the wall motion and on the role played by
the forcing on the modification of the turbulent enstrophy. The approach is to identify
those terms in the equations which are directly affected by the spanwise forcing and to
single out the dominant one(s). Another important point is to study the energy transfer
during the temporal evolution from the start-up of the wall motion with the aim of
explaining the decrease of skin-friction coefficient. As statistical and flow visualization
studies on drag-reducing flows are affected by the reference quantities used for dealing
with dimensionless quantities, an important and critical choice made in this study is to
carry out the numerical simulations with a constant streamwise pressure gradient: this
provides us with a clear and unequivocal inner-units scaling.

The flow configuration, the numerical procedures, the flow field decompositions and
the basic flow statistics are presented in § 2. The analysis of the energy budget is
given in § 3. The turbulent enstrophy budget, chosen as a convenient substitute for the
turbulent dissipation budget, is discussed in § 4. Section 5 contains a summary of the
results.
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FIGURE 1. (a) Wall-normal profiles of 〈Û〉 for fixed-wall (thin line) and oscillating-wall
(thick line) conditions. (b) Drag reduction R as a function of T .

2. Flow configuration and numerical procedures
An incompressible fully developed turbulent channel flow between two infinite

parallel flat plates a distance 2h∗ apart, driven by a constant streamwise pressure
gradient Π∗, is studied by direct numerical simulations (DNS). Dimensional quantities
are indicated by the symbol *. The coordinates x∗, y∗, z∗ indicate the streamwise, wall-
normal and spanwise directions, respectively. The two walls at y∗ = 0 and y∗ = 2h∗

oscillate in phase along z∗ according to w∗(x∗, z∗, t∗) = A∗ cos(2πt∗/T∗), where t∗ is
time and T∗ is the oscillation period. Quantities are scaled by viscous units, i.e. by
the kinematic viscosity of the fluid ν∗ and the friction velocity u∗τ =

√
τ ∗w/ρ∗, where

τ ∗w is the time- and space-averaged wall-shear stress and ρ∗ is the density of the fluid.
The friction-velocity Reynolds number is Reτ = u∗τh

∗/ν∗ = 200. As Π∗ is constant,
the momentum balance at the walls shows that, once the oscillating-wall regime is
established, τ ∗w (and therefore Reτ ) retains the fixed-wall value. It follows that a unique
wall-unit scaling is defined. Since this is the only scaling used throughout the paper,
we omit the customary symbol + marking inner-scaled quantities. (We would like to
point out here that the advantage in carrying out DNS at constant pressure gradient
is not general. There is a potential impact on the computing costs for cases, like the
present one, where an abrupt change of one parameter is introduced. As a general
rule, a constant flow rate allows the wall friction to reach the new state sooner, thus
yielding a shorter transient. However, this advantage is compensated by the integration
time required to obtain a reliable value of the mean wall friction, which is averaged
over two spatial directions only at each time step. This quantity thus presents larger
temporal fluctuations than the flow rate, which is a volume-averaged quantity. At the
present value of the Reynolds number, the computational cost of the two approaches is
comparable.)

Details on the DNS code are found in Luchini & Quadrio (2006). The
computational domain has dimensions of L∗x = 6πh∗, L∗y = 2h∗, L∗z = 3πh∗ in the three
directions. The wall-normal direction is discretized by 160 mesh points and 320× 320
Fourier modes are used along the homogeneous x∗ and z∗ directions. The time step is
1t = 0.1 which guarantees that the CFL condition is amply satisfied for the chosen
time integration scheme (a three-substep low-storage Runge–Kutta). The mean velocity
profile and the variance of velocity fluctuations for the fixed-wall case, shown in
figures 1 and 2, have been compared with those by del Álamo & Jiménez (2003) at
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FIGURE 2. (a) Wall-normal profiles of the variance of velocity fluctuations and of Reynolds
stress 〈ûv〉 for fixed-wall (thin lines) and oscillating-wall (thick lines) cases. Squares, u;
diamonds, v; circles, w; triangles, 〈ûv〉. (b) Wall-normal profiles of Reynolds stresses v̂w at
different values of the phase angle φ.

a slightly lower Reynolds number and excellent agreement has been found. When the
wall oscillates, the amplitude (maximum speed) of the wall motion is A = 12. The
effect of A on drag reduction has been previously studied by Quadrio & Ricco (2004)
and is not considered here. The calculations span the range 0 < T 6 500, and most
of the paper discusses one case with T = 100, which is the oscillation period unless
otherwise indicated.

2.1. Averaging operators and flow field decomposition
This paper employs different types of space and time averages and the relevant
operators are presented here. A quantity f (x, y, z, t) is averaged along the
homogeneous x and z directions as

f̃ (y, t)= 1
LxLz

∫ Lx

0

∫ Lz

0
f (x, y, z, t) dz dx. (2.1)

The velocity and the vorticity fields, U = U(x, y, z, t) and Ω = Ω(x, y, z, t), are
decomposed as follows:

U = {Ũ(y, t), 0, W̃(y, t)} + {u, v,w}, Ω = {Ω̃x(y, t), 0, Ω̃z(y, t)} + {ωx, ωy, ωz},
(2.2)

where Ω̃x = (1/2)∂W̃/∂y and Ω̃z = −(1/2)∂Ũ/∂y since Ṽ = 0. At statistically steady
state, a quantity f̃ (y, t) is averaged over the N periods of oscillation as follows:

f̂ (y, τ )= 1
N

N−1∑
n=0

f̃ (y, nT + τ). (2.3)

Note that these averaged quantities henceforth depend on the ‘window’ phase-average
time τ , 0 6 τ < T . Alternatively, they can be observed as a function of the oscillation
phase φ = 2πτ/T . A quantity f (y, τ ), indicating a phase-averaged quantity or the
product of two phase-averaged quantities, is averaged over T according to

〈f 〉(y)= 1
T

∫ T

0
f (y, τ ) dτ. (2.4)
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A global quantity [f ]g is obtained by integrating 〈f 〉(y) along y, as follows:

[f ]g =
∫ h

0
〈f 〉(y) dy.

A transport equation is defined as global when its terms are global. All statistical
samples are doubled by averaging over the two channel halves, by properly accounting
for the existing symmetries.

2.2. Definition of turbulent drag reduction
The skin-friction coefficient is defined as Cf = 2τ ∗w/ρ

∗U∗2b , where U∗b is the bulk
velocity,

U∗b =
[Û∗]g

h∗
. (2.5)

Following Kasagi, Hasegawa & Fukagata (2009a), the drag reduction R is defined as
the change of Cf with respect to the fixed-wall value Cf ,0, i.e. R = (Cf ,0 − Cf )/Cf ,0.
When Π∗ is constant, R is due to the increase of mass flow rate. As

Cf = 2
U2

b

, (2.6)

R may be written as

R= U2
b − U2

b,0

U2
b

. (2.7)

2.3. Basic flow statistics

Figure 1(a) shows that the mean velocity profile 〈Û〉 increases significantly throughout
the channel for T = 100 (R = 0.31), while the wall-shear stress remains constant, in
agreement with experimental studies where the drag-reduced friction velocity was used
for inner scaling (Choi et al. 1998; Ricco & Wu 2004). Figure 1(b) shows that R
increases sharply with T up to the optimum Topt ≈ 70 and then decays at a slower
rate. This behaviour is well documented by previous numerical studies, although
quantitative differences exist that can be ascribed to different scaling procedures. For
example, the optimum period at constant A∗ is typically reported to be Topt ≈ 100–125
at constant mass flow rate if the fixed-wall u∗τ is used for scaling.

The variance of the turbulent velocity fluctuations and the Reynolds stress
component 〈ûv〉 are shown in figure 2(a). The wall motion primarily affects 〈û2〉
up to y ≈ 30; the peak decreases and its position shifts upward from y ≈ 14 to y ≈ 20.
The profile of 〈v̂2〉 is largely unvaried, while that of 〈ŵ2〉 increases up to y ≈ 40. As
discussed by Quadrio & Ricco (2011) in the context of streamwise-travelling waves,
it appears that the large reductions of turbulence fluctuations for all the velocity
components often reported in the literature are largely a byproduct of the outer
scaling employed to compare flows that in fact have different values of Reτ owing
to drag reduction. The Reynolds stresses 〈ûv〉 are attenuated up to y ≈ 30. This is
consistent with Marusic, Joseph & Mahesh (2007)’s finding on the relation between
drag reduction and a weighted integral of 〈ûv〉, an extension of the result by Fukagata,
Iwamoto & Kasagi (2002) to the Π -constant case.
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The wall oscillation induces the additional phase-varying Reynolds stresses v̂w,
shown in figure 2(b). This term is null in the fixed-wall case. At opposite phases of
the cycle, the v̂w profiles show the same behaviour with opposite sign, which leads to
〈v̂w〉 = 0.

3. Energy balance
As follows from (2.6), the reduction of Cf can be understood by studying how Ub

increases. As a first step, we therefore study the transport equations for the mean
kinetic energy (MKE), (Û2 + Ŵ2)/2, where Ub appears explicitly, and for the turbulent
kinetic energy (TKE), q̂2/2, where q2 = uiui. (The Einstein summation convention
of repeated indices is adopted henceforth and the subscripts i = 1, 2, 3 denote the
x, y, z directions and the corresponding velocity and vorticity components.) These two
equations are then summed to obtain the global balance for the total kinetic energy.

3.1. Mean kinetic energy balance
The transport equation for MKE reads

1
2
∂(Û2 + Ŵ2)

∂τ︸ ︷︷ ︸
1

+ ÛΠ︸︷︷︸
2

= ûv
∂Û

∂y︸ ︷︷ ︸
3

+ v̂w
∂Ŵ

∂y︸ ︷︷ ︸
4

− ∂(ûvÛ)

∂y︸ ︷︷ ︸
5

− ∂(v̂wŴ)

∂y︸ ︷︷ ︸
6

+ ∂

∂y

(
Û
∂Û

∂y

)
︸ ︷︷ ︸

7

+ ∂

∂y

(
Ŵ
∂Ŵ

∂y

)
︸ ︷︷ ︸

8

−
(
∂Û

∂y

)2

︸ ︷︷ ︸
9

−
(
∂Ŵ

∂y

)2

︸ ︷︷ ︸
10

. (3.1)

Term 1 denotes the temporal change of MKE and term 2 is the work per unit time
done by Π , i.e. the power used to drive the flow along the x-direction. Thanks to the
wall oscillation, the system absorbs more kinetic energy than in the fixed-wall case
through the increment of Û. Term 3 is the work of deformation carried out by the
Reynolds stresses ûv, through which energy is exchanged between the mean flow and
the fluctuating flow. Term 4 indicates the work of deformation done by the Reynolds
stresses v̂w; similarly to term 3, it transfers energy between the mean flow and the
fluctuating flow. Terms 3 and 4 appear with opposite sign in the TKE equation, as
shown in § 3.2. The transport work performed by the Reynolds stresses ûv and v̂w is
described by terms 5 and 6, respectively. Terms 7 and 8 are the transport work done
by the mean streamwise and spanwise viscous stresses, respectively. Term 9 is the
viscous dissipation of MKE by the wall-normal gradient of Û, while term 10 is the
viscous dissipation by the wall-normal gradient of Ŵ.

The second part of term 1 and terms 4, 6, 8, 10 are directly related to the wall
oscillation, since Ŵ appears explicitly in their expressions. The turbulent production
term 4, −v̂w∂Ŵ/∂y, which is absent in the fixed-wall case because v̂w and Ŵ are null,
is shown in figure 3 at different phases of the cycle. Although it is negative during
part of the cycle (mainly for y < 15, when it instantaneously extracts energy from the
turbulent fluctuations to enhance MKE), it is positive for most of the cycle, i.e. its
average contribution is to transfer MKE to the turbulent fluctuations; see dashed line in
figure 3, which represents −〈v̂w∂Ŵ/∂y〉.

As the primary interest resides in the change of Ub, the MKE equation (3.1) is
now time-averaged and integrated along y to make Ub appear in the energy balance.
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FIGURE 3. Wall-normal profiles of −v̂w∂Ŵ/∂y at different phases φ (solid lines) and their
time-averaged value (dashed line).

Time averaging eliminates term 1 because of time periodicity. Terms 2, 3, 4, 9, 10 are
retained as is term 8 since Ŵ is non-zero at y = 0. Terms 5 and 6 disappear because
ûv and v̂w are null at y= 0 and at y= h. Term 7 becomes null because Û = 0 at y= 0
and ∂Û/∂y= 0 at y= h.

The global transport equation for MKE is

Ubτw +
〈

A
∂Ŵ

∂y

∣∣∣∣
y=0

〉
︸ ︷︷ ︸

Ew

=−
[

ûv
∂Û

∂y

]
g︸ ︷︷ ︸

Puv

−
[
v̂w
∂Ŵ

∂y

]
g︸ ︷︷ ︸

Pvw

+
(∂Û

∂y

)2


g︸ ︷︷ ︸
DU

+
(∂Ŵ

∂y

)2


g︸ ︷︷ ︸
DW

,

(3.2)

where τw = 〈∂Û/∂y|y=0〉. The first term on left-hand side comes from term 2 in (3.1)
and represents the global energy per unit time pumped into the system through the
external pressure gradient Π . Term Ew is the energy input given by the wall motion,
and denotes the energy spent to move the walls against the frictional resistance of the
fluid. It stems from the transport term 8 in (3.1). Terms Puv and Pvw, which originate
from terms 3 and 4 in (3.1), are a sink for MKE and appear in the global TKE balance
as production terms. Terms DU and DW , which stem from terms 9 and 10 in (3.1)
respectively, denote the global viscous dissipation due to the gradients of the mean
streamwise and spanwise velocity components. Equation (3.2) represents the first step
toward understanding drag reduction because Ub now appears explicitly. It states that
part of the energy input, Ubτw + Ew, is transferred to the turbulence via Puv and Pvw,
and the remaining part is dissipated into heat through DU and DW .

3.2. Turbulent kinetic energy balance
The transport equation for TKE reads

1
2
∂ q̂2

∂τ︸ ︷︷ ︸
1

=−∂(v̂p)

∂y
− 1

2
∂(v̂q2)

∂y︸ ︷︷ ︸
2

− ûv
∂Û

∂y︸ ︷︷ ︸
3

− v̂w
∂Ŵ

∂y︸ ︷︷ ︸
4

+ 1
2
∂2q̂2

∂y2︸ ︷︷ ︸
5

− ∂̂ui

∂xj

∂ui

∂xj︸ ︷︷ ︸
6

, (3.3)
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where p is the turbulent pressure. The temporal change of TKE is expressed by term 1,
while terms 2 represent the transport work done by the total dynamic pressure of
turbulence. Terms 3 and 4 denote production of TKE and also appear in the MKE
equation (3.1) with opposite sign. Terms 5 and 6 together represent the combined
effect of the work done by the viscous shear stresses of the turbulent motion and of
the viscous dissipation of TKE into heat. Term 6 is often referred to as the pseudo-
dissipation (see Pope 2000, p. 132). The turbulent production term 4, v̂w∂Ŵ/∂y, is the
only one containing Ŵ explicitly.

Analogously to the analysis of the MKE equation, time averaging and integration
along y lead to the following simplifications. Term 1 disappears because of time
periodicity. Terms 2 become null upon y-integration because of the no-slip condition at
y= 0 and v̂p= v̂q2/2= 0 at y= h. Term 5 is also null because[

∂2q̂2

∂y2

]
g

=
∫ h

0

∂

∂y

〈
∂ q̂2

∂y

〉
dy=

〈
∂ q̂2

∂y

〉∣∣∣∣
y=h

−2

〈
q̂
∂q

∂y

〉∣∣∣∣
y=0

= 0, (3.4)

as ∂ q̂2/∂y= 0 at y= h and q= 0 at y= 0.
The global transport equation for TKE is[

ûv
∂Û

∂y

]
g︸ ︷︷ ︸

Puv

+
[
v̂w
∂Ŵ

∂y

]
g︸ ︷︷ ︸

Pvw

+
[
∂̂ui

∂xj

∂ui

∂xj

]
g

= 0, (3.5)

where Puv and Pvw are as in (3.2). The next-to-last equation in Hinze (1975,
p. 74) shows that the last term in (3.5) is the global TKE dissipation,

DT ≡
[̂∂ui

∂xj

(
∂ui

∂xj
+ ∂uj

∂xi

)]
g

=
[
∂̂ui

∂xj

∂ui

∂xj

]
g

. (3.6)

Equation (3.5) may therefore be written as

−Puv −Pvw =DT . (3.7)

The balance in (3.7) simply states that the global TKE engendered by the production
terms, Puv and Pvw, is dissipated into heat by the turbulent viscous stresses.
Figure 4 shows the wall-normal profiles of the three terms whose integrals compose
the balance (3.7). It is observed that the integrand of Puv is suppressed near the
oscillating wall and its peak moves upward. These changes are attributed to the
increase of d〈Û〉/ dy in the outer region and to the near-wall reduction of 〈ûv〉, as
shown in figures 1(a) and 2(a), respectively. In contrast, DT decreases near the wall,
but it significantly increases at y ≈ 10. As shown in § 4, this is directly linked to
the enstrophy production through the stretching of vorticity fluctuations by the Stokes
layer.

3.3. Total kinetic energy balance
By summing the global transport equations for MKE, (3.2), and TKE, (3.5), the global
balance for the total mechanical energy is found:

Ubτw + Ew =DU +DW +DT . (3.8)
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FIGURE 4. Wall-normal profiles of the integrands of Puv , Pvw, and DT in (3.7). Time-
averaged values of production term 3 in (3.3), denoted by triangles, of production term 4 in
(3.3), denoted by squares, and of pseudo-dissipation term 6 in (3.3), denoted by circles, for
fixed-wall (thin lines) and oscillating-wall (thick lines) cases.
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w

FIGURE 5. Schematic of the global energy balance for the total mechanical energy. The
numbers indicate the magnitude of the terms and the additional contribution due to the wall
oscillation. The light grey portions of arrows denote the contributions at fixed-wall conditions,
while the dark grey arrows or portions of arrows indicate the changes due to the wall motion.

The energy input Ubτw (per unit area and unit time), which drives the flow along
x, and the energy Ew, spent to enforce the wall motion, are dissipated into heat
through the viscous action of the mean streamwise and spanwise flow gradients,
denoted by DU and DW respectively, and through the viscous dissipation DT of the
turbulent fluctuations. Note that, as shown by Laadhari (2007) for the uncontrolled
flow, DT �DU as Reτ →∞.

Figure 5 summarizes and quantifies the global energy balance. The two boxes
represent MKE and TKE; MKE-x and MKE-z indicate the portion of the MKE balance
pertaining to the streamwise and spanwise directions, respectively. The light grey
portions of arrows indicate the energy terms in the fixed-wall case, while the dark
grey arrows or portions of arrows denote the energy transfers due to the wall motion.
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The schematic graphically highlights that the production terms Puv and Pvw only
transfer energy ‘internally’ between MKE and TKE, therefore disappearing from the
total energy balance (3.8).

As Cf and Ub are related, the aim is to study how the wall motion acts on Ub

to discern information on drag reduction. The total energy balance (3.8) is therefore
analysed in more detail because it contains Ub explicitly. As shown in figure 5, it is
first noted that the terms in (3.2) pertaining to the streamwise and spanwise directions
are decoupled, so that

Ubτw =Puv +DU, (3.9)

and, correspondingly, Ew =Pvw + DW . The two terms containing Ŵ, i.e. Ew and DW ,
almost balance each other; the difference, given by Pvw (which is absent in (3.8)),
is much smaller than the other terms in (3.8). To gain insight into the changes of
Ub, one is thus led to investigate how the wall oscillation affects the dynamics of the
two remaining relevant terms, i.e. DU and DT . The relative contribution of DU to
the input power Ubτw increases in the oscillating-wall case. In the fixed-wall case, the
input power in viscous units is 15.9, 59 % (i.e. 9.4/15.9) of which is dissipated by DU.
When the wall oscillates, this share increases to 62 % (i.e. 12.1/19.4). This fact agrees
with previous studies on flow control (Bewley 2009; Fukagata, Sugiyama & Kasagi
2009), which show that, as Cf decreases as the flow tends to the laminar regime, the
input power is dissipated more by DU and less by DT .

Three different scenarios might explain how the wall motion acts on DU and why
the relative contribution of DU in the global balance increases during the wall motion.
(a) In the first scenario, the mean spanwise shear may work directly on DU. The

transport equation for (∂Û/∂y)
2
, the integrand of DU (see (3.2)), is thus studied. It

reads

1
2
∂

∂τ

(∂Û

∂y

)2
=−∂2ûv

∂y2

∂Û

∂y
+ 1

2
∂2

∂y2

(∂Û

∂y

)2
− ∂2Û

∂y2
. (3.10)

The spanwise velocity Ŵ does not appear in the transport equation for (∂Û/∂y)
2
,

which proves that the oscillating wall does not influence the dynamics of the mean
streamwise flow directly and that the increase of DU is linked to the modification
of turbulent dynamics.

(b) In the second scenario, the spanwise viscous effects directly damp Puv, so that
the relative contribution of DU in (3.9) is larger. As Puv depends on ûv and
∂Û/∂y (see (3.2)) and the direct action of Ŵ on ∂Û/∂y has been excluded, the
focus is on the transport equation for the Reynolds stresses ûv (which also appear
in the right-hand side of (3.10))

∂(ûv)

∂τ
=−v̂2

∂Û

∂y
− ∂(ûv

2)

∂y
−
(
v̂
∂p

∂x
+ û

∂p

∂y

)
+ ∂

2ûv

∂y2
− ∂̂u

∂xj

∂v

∂xj
. (3.11)

The mean flow Ŵ does not appear explicitly in (3.11), which demonstrates that
the oscillation does not work directly on ûv either. Therefore, this scenario is
excluded as Puv is not immediately affected by the large-scale spanwise flow
because neither ûv nor ∂Û/∂y are.

(c) The third scenario is rather counterintuitive. The wall oscillation enhances the
turbulent dissipation, so that the turbulent activity drops because of the increased
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dissipative nature of the flow. A relatively lower level of dissipation of turbulent
energy into heat thus sets in to balance this new condition. A similar behaviour
has been observed in applying the suboptimal control theory (Lee, Kim & Choi
1998) when the turbulent dissipation is employed as a cost function.

Elucidating the third scenario, i.e. understanding how the wall motion affects the
dynamics of the turbulent viscous dissipation DT , then becomes the aim of the next
section.

4. Turbulent enstrophy balance
By use of the fluctuating vorticity, term 6 in (3.3) becomes (Pope 2000)

∂̂ui

∂xj

∂ui

∂xj
= ω̂iωi + ∂

2(ûiuj)

∂xi∂xj
. (4.1)

The global dissipation of TKE in (3.3) becomes

DT = [ω̂iωi]g, (4.2)

which follows from the substitution of (4.1) into (3.6), from the periodicity along the
homogeneous x and z directions, from the velocity fluctuations being zero at y= 0 and
because ∂v̂2/∂y = 0 at y = h. Note that the viscous dissipation of the total mechanical
energy, DU + DW + DT , equals the global enstrophy only in the case of stationary
boundaries (Davidson 2004), and therefore not in the oscillating-wall case. However,
(4.2) is valid for the wall-oscillation case because the turbulent fluctuations vanish at
the walls.

Instead of considering the transport equation for the turbulent energy dissipation, we
opt to study the turbulent enstrophy equation. In the second part of the Appendix,
it is shown that the form of the turbulent dissipation equation is similar to that of
the enstrophy equation and that the dominant terms arising from the wall oscillation
in these equations have the same order of magnitude. Expressing DT in terms of
the turbulent enstrophy is more compact than if the turbulent dissipation is used
(compare (4.2) with (3.6)). The enstrophy equation has the further advantage over
the dissipation equation that the turbulent pressure does not need to be computed.
(This advantage is shared by the Orr–Sommerfeld and vorticity formulations of the
Navier–Stokes equations over the framework involving primitive variables.) Moreover,
the physical meaning conveyed by the enstrophy equation is arguably more immediate
than the one provided by the dissipation equation; for example, terms 2 and 3 in
the turbulent enstrophy equation (4.3), below, denote production of vorticity, while
the corresponding terms in the dissipation equation indicate production of turbulent
dissipation.

4.1. Balance equation for the turbulent enstrophy

The transport equation for the turbulent enstrophy (Tennekes & Lumley 1972) reads

1
2
∂ω̂iωi

∂τ︸ ︷︷ ︸
1

= ω̂xωy
∂Û

∂y︸ ︷︷ ︸
2

+ ω̂zωy
∂Ŵ

∂y︸ ︷︷ ︸
3

+ ω̂j
∂u

∂xj

∂Ŵ

∂y︸ ︷︷ ︸
4

− ω̂j
∂w

∂xj

∂Û

∂y︸ ︷︷ ︸
5
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− v̂ωx
∂2Ŵ

∂y2︸ ︷︷ ︸
6

+ v̂ωz
∂2Û

∂y2︸ ︷︷ ︸
7

+
̂
ωiωj

∂ui

∂xj︸ ︷︷ ︸
8

− 1
2
∂

∂y
(v̂ωiωi)︸ ︷︷ ︸

9

+ 1
2
∂2ω̂iωi

∂y2︸ ︷︷ ︸
10

− ∂̂ωi

∂xj

∂ωi

∂xj︸ ︷︷ ︸
11

. (4.3)

Term 1 indicates the time rate of change of the turbulent enstrophy. Terms 2 and
3 are the production (or removal) of turbulent vorticity caused by stretching (or
squeezing) of vorticity fluctuations by the mean flow gradients ∂Û/∂y and ∂Ŵ/∂y,
respectively. Terms 4 and 5 indicate the production of mean and turbulent enstrophy
by the stretching of fluctuating vorticity through the fluctuating strain rates ∂u/∂xj and
∂w/∂xj, respectively. Terms 6 and 7 represent the exchange of fluctuating vorticity
between the mean and the turbulent enstrophy due to the gradients of streamwise
and spanwise mean vorticity, respectively. They are analogous to the turbulent kinetic
energy production terms in the MKE and TKE equations (3.1) and (3.3). Term 8
is the production of turbulent enstrophy by stretching of turbulent vorticity through
turbulent velocity gradients. Term 9 denotes the transport of turbulent enstrophy by
the fluctuating wall-normal velocity component. Term 10 is the viscous transport of
turbulent enstrophy and term 11 is the viscous dissipation of turbulent enstrophy. The
only terms in (4.3) that become null when (4.3) is made global are term 1, when time
averaged because of time periodicity, and term 9 when integrated along y.

In contrast to the case of the transport equation (3.10) for (∂Û/∂y)
2
, which

contributes to DU (see (3.2)), Ŵ appears explicitly in terms 3, 4 and 6 of (4.3).
These terms arise only when the wall oscillates. This indicates that the spanwise
motion acts directly on the turbulent enstrophy and therefore on the global turbulent
dissipation DT . As this quantity increases during the wall motion, it is worth studying
how these oscillating-wall terms contribute to modify the enstrophy balance and, in
turn, Ub through (3.8) and Cf through (2.6).

Figure 6 shows the profiles of the time-averaged terms in the turbulent enstrophy
balance (4.3) for the fixed-wall (a) and oscillating-wall (b) cases once the new fully
developed regime is established. The numbers refer to the terms in (4.3) and the
thick lines in figure 6(b) highlight terms only occurring during the wall motion. The
fixed-wall profiles show very good agreement with the ones in Antonia & Kim (1994),
Gorski, Wallace & Bernard (1994) and Abe, Antonia & Kawamura (2009). (Note
that in Gorski et al. 1994 and Abe et al. 2009 the terms are multiplied by a factor
of 2.) In the oscillating-wall case, the vorticity production term 3, 〈ω̂zωy∂Ŵ/∂y〉, is
dominant in the proximity of the wall, y < 10, over terms 4 and 6, and over the
production and transport terms already present in the fixed-wall case, i.e. terms 2, 5, 7,
8, 10. This is the key term producing turbulent enstrophy (and dissipation). Its physical
meaning is further addressed in § 4.3. It peaks at y ≈ 6 and distinctly affects term 11,
the dissipation of turbulent enstrophy, at the edge of the viscous sublayer and in the
lower part of the buffer region, as is clear from the similar shapes of the profiles for
2< y< 20.

In a very thin near-wall layer, y< 2, term 3 is small. Term 10, the viscous transport
of turbulent enstrophy, is instead responsible for the intense increase of dissipation
of turbulent enstrophy there. While the production term 〈ω̂zωy∂Ŵ/∂y〉 emphasizes the
direct action of the spanwise shear layer on the turbulent enstrophy, the increase of
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FIGURE 6. Wall-normal profiles of the time-averaged terms in the turbulent enstrophy
equation (4.3) for the fixed-wall case (a) and the oscillating-wall case (b). Thick lines
highlight terms only occurring during the wall motion.

the production term 2, 〈ω̂xωy∂Û/∂y〉, indicates the indirect effect of the wall motion
caused by the increment of ∂Û/∂y. Term 3 is primarily dominant near the wall,
whereas term 2 increases at higher locations. This is because term 3 is dictated
by the near-wall spanwise velocity Ŵ, while ∂Û/∂y only varies significantly for
y > 15, the wall-shear stress being constant (see figure 1a). We finally note that the
production term 5, 〈 ̂ωj∂w/∂xj∂Û/∂y〉, decreases substantially in the oscillating-wall
case, while the production term 8 and the transport term 9, which only involve
fluctuating quantities, are largely unaffected.

4.2. Transient response of turbulent enstrophy

Although it is clear from the results discussed that the spanwise shear layer Ŵ
enhances the turbulent dissipation, it is difficult to verify the third scenario proposed in
§ 3.3 through the energy balance shown in figure 5, i.e. that the relative contribution of
DT to the global balance decreases. Furthermore, by studying the global balance no
information is gained on why the TKE decreases when the walls move. We therefore
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FIGURE 7. Temporal evolution of the space-averaged, y-integrated turbulent kinetic energy
(thin dashed line), turbulent enstrophy (thin solid line), three vorticity terms forming the
turbulent enstrophy (ωx denoted by squares, ωy denoted by diamonds, and ωz denoted by
triangles), and term 2 (thick dashed line) and term 3 (thick solid line) in (4.3). The oscillation
starts at t = 0. Terms 2 and 3 are multiplied by a scale factor of 30, while the kinetic energy is
divided by a scale factor of 100.

study the effect of the oscillation at very short times, in line with Quadrio & Ricco
(2003) and Xu & Huang (2005), who used the same approach to study the Reynolds
stress budget.

The temporal evolution of the space-averaged, y-integrated turbulent kinetic energy,
turbulent enstrophy, squares of the turbulent vorticity components, and terms 2 and 3
in (4.3) are shown in figure 7, where the wall is in motion for t > 0. On this short
time scale, terms 2 and 3 show an oscillating behaviour, whose period matches well
that of the wall forcing. Upon the beginning of the oscillation, term 3, denoted by the
thick solid line, grows abruptly until t = 25, i.e. at a quarter of the oscillation period.
It gives a transient production of turbulent enstrophy, and, specifically, of ωz, whose
production is related to the spanwise tilting of ωy by the Stokes layer, ωy∂W̃/∂y, in
the transport equation of ωz. Term 2, which is indicated by the thick dashed line and
is non-zero before the start of the oscillations, drops substantially up to t = 30 and
then becomes larger than term 3. As ∂Ũ/∂y changes only slightly on such a short time
scale, the decrease of term 2 is directly linked to ω̃xωy. This can be interpreted as
the wall oscillation causing a change of the phase relationship between the low-speed
streaks (related to ωy) and the quasi-streamwise vortices (related to ωx). This scenario
is in line with early suggestions on the effects of the forcing on near-wall coherent
structures (Baron & Quadrio 1996). This mechanism is indirect, since W̃ does not
appear explicitly in term 2. Term 2 also appears in the transport equation for ω2

x and
represents the tilting of ωy along x due to ∂Ũ/∂y. Figure 7 indeed shows that the
first two instantaneous peaks of term 2 agree fairly well with those of the transient
evolution of ω2

x . The long-term behaviour of term 2, namely the slight increase and
the outward shift of its maximum, is due to the increase of ∂Ũ/∂y in the bulk of
the channel, caused by the increase in mass flow rate. Figure 8 shows the temporal
evolution of all the space-averaged, y-integrated terms in the enstrophy equation (4.3).
Term 3 is the cause of the short-term transient changes in the enstrophy balance,
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FIGURE 8. Temporal evolution of the space-averaged, y-integrated terms in the turbulent
enstrophy equation (4.3). Thick lines highlight terms only occurring during the wall motion.

which is evinced by the resemblance of its temporal history to that of term 11, the
turbulent enstrophy dissipation, up to t = 50.

The turbulent dissipation is therefore enhanced, which causes the monotonic
decrease of TKE. This feeds back onto the turbulent vorticity and onto term 3,
which are both diminished because of the weakened turbulent activity. As a direct
consequence of the attenuation of TKE, the streamwise mean flow accelerates, thereby
increasing the streamwise mean velocity. This is evident from the mean streamwise
momentum equation,

−Π = ∂Ũ

∂t
− ∂

2Ũ

∂y2
+ ∂ ũv

∂y
, (4.4)

because −Π is constant (and positive) and the convective term ∂Ũ/∂t must be positive
to counteract the decay of the convective transport due to the Reynolds stresses (which
are larger than the mean viscous terms ∂2Ũ/∂y2). The TKE continuously decreases
because, although the turbulent dissipation and production are both attenuated, the
latter is proportionally smaller. As the streamwise flow accelerates, all the quantities
decrease up to t ≈ 400. This mirrors the transient behaviour of the turbulence under
constant-mass-flow-rate conditions, studied by Quadrio & Ricco (2003): on such a
short time scale, there is no difference between the two constraints. This is further
supported by the initial attenuation of the wall-shear stress, ∂Ũ/∂y|y=0, which is an
immediate consequence of the acceleration of the mass flow rate. This is shown by
integrating (4.4) along y,

−Πh= ∂

∂t

(∫ h

0
Ũ dy

)
+ ∂Ũ

∂y

∣∣∣∣
y=0

.

As −Π is positive and the flow-rate term on the right-hand side is positive, the wall-
shear stress must be smaller than its steady-state value during the transient evolution.
The value of the wall stress eventually re-establishes itself in the new fully developed
regime to the value imposed by the constant Π . This is evident in figure 9, where the
long-time evolution of TKE and of the mass flow rate are also shown.
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FIGURE 9. Temporal evolution of the space-averaged wall friction (dashed line), the TKE
(dotted line), and the mass flow rate (solid line). The TKE follows the temporal behaviour
of the friction, whereas it is graphically evident that the unbalanced friction causes a flow
acceleration with a consequent increase of the mass flow rate. All quantities are normalized
by the average values of the uncontrolled case.

Short Intermediate Long

Initial state ‘Drag reduction’

 

TKE

FIGURE 10. Schematic of the physical mechanism leading to skin-friction drag reduction by
wall oscillations, as discussed in § 4.2. The vertical arrows indicate whether the quantities
increase or decrease.

The temporal evolution has helped to clarify the action of the wall motion on the
turbulence dynamics. In particular, as the oscillation initially enhances the turbulent
dissipation, it is shown that the turbulent activity is suppressed due to the dissipative
nature of the flow. In the new quasi-equilibrium regime reached after the long transient
has elapsed, the flow therefore requires a relatively lower level of turbulent dissipation
because TKE is lower. The third scenario discussed in § 3.3 is therefore at work and
term 3 is key to explaining the lower contribution of DT in the global balance.

We close this section with the schematic in figure 10. The crucial physical processes
during the temporal flow evolution from the start-up of the wall motion to the new
fully developed regime are shown. This last regime is indicated with ‘drag reduction’,
although it should be recalled that, in the present context, the turbulent drag is
eventually unvaried by design, and that the effect of the oscillations is to increase
the mass flow rate.
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FIGURE 11. Wall-normal profile of ω̂zωy at the phase at which it reaches its maximum (thick
line). Thin lines indicate the sub-terms in (4.5).

4.3. Physical interpretation of 〈ω̂zωy∂Ŵ/∂y〉
Term 3 in the enstrophy equation (4.3), 〈ω̂zωy∂Ŵ/∂y〉, has been found to be dominant
and largely responsible for the change of global turbulent enstrophy and thus for drag
reduction. It is positive and therefore indicates a production of turbulent vorticity, i.e.
the mean spanwise flow shear ∂Ŵ/∂y acts on the turbulence structures represented
by the term ω̂zωy to increase the turbulent enstrophy. We proceed to investigate the
physical meaning of such interaction in more detail.

The quantity ω̂zωy can be expanded as

ω̂zωy =
̂∂v
∂x

∂u

∂z︸ ︷︷ ︸
3a

−
̂∂v
∂x

∂w

∂x︸ ︷︷ ︸
3b

−
̂∂u

∂y

∂u

∂z︸ ︷︷ ︸
3c

+
̂∂u

∂y

∂w

∂x︸ ︷︷ ︸
3d

. (4.5)

Figure 11 shows that 3c is the largest contributor to ω̂zωy, and that the next largest
sub-term in magnitude is term 3d. This confirms the order-of-magnitude analysis in the
Appendix. Terms ∂u/∂z and ∂u/∂y, contributing to term 3c, may be linked separately
to the dynamics of the turbulent low-speed streaks. In the near-wall region, ∂u/∂z
marks the lateral flanks of the low-speed streaks, i.e. the interfaces of the low-velocity
and high-velocity regions, while ∂u/∂y is related to the eruption of near-wall low-
speed fluid to higher locations and to the sweep-like motion of high-speed fluid toward
the wall. It is also noted that the peak location of 3c matches well that of DT in
figure 4, suggesting that the enhancement of DT is connected to term 〈ω̂zωy∂Ŵ/∂y〉.

Figure 12 shows contour plots of streamwise velocity fluctuations and ωyωz in the
x–z plane at y = 6 for the fixed-wall case. Low- and high-speed streaks show the
characteristic streamwise-stretched shape. Low-speed streaks are longer and thinner
than the high-speed ones. Regions of high magnitude of ωyωz are concentrated near
the wall. At y = 6, they appear sporadically and always occur at the sides of high-
speed regions. Figure 13 shows contour plots for the oscillating-wall case at four
different phases, where the characteristic cyclic tilting of the near-wall structures is
evident (Quadrio & Ricco 2003). The streaks are less energetic, which confirms the
attenuation of 〈û2〉, shown in figure 2. Regions of high |ωyωz| show an analogous
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FIGURE 12. Instantaneous contour plots of u and ωyωz, for the fixed-wall case, in the x–z
plane at y = 6. For the sake of clarity, only a fraction of the computational domain is
shown. Grey shading represents the level of streamwise velocity fluctuations, with white
corresponding to the maximum values and black to the minimum values; max |u| = 8.
Contour lines represent values of the quantity ωyωz; contour levels start from ±0.125, are
spaced by 0.25, and negative values are dashed.
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FIGURE 13. Instantaneous contour plots of u and ωyωz, for the oscillating-wall case, in the
x–z plane at y= 6: (a) φ = 0, (b)π/4, (c)π/2, (d)3π/4. Legend is the same as figure 12.

tilting, owing to their relationship with the velocity streaks. The number, the amplitude,
and the spatial size of the ωyωz pockets strongly increase during the wall motion, in
line with the observed intensified enstrophy fluctuations.

The interaction between the large-scale oscillating shear layer and the underlying
vortical structures can be modelled by analogy with the rapid distortion theory
problem of a large eddy stretching a smaller blob of vorticity, presented by Davidson
(2004, p. 213). We consider small-scale vorticity structures being stretched and
compressed by the large-scale action of the spanwise layer and we extend the model
by Davidson (2004) to include the viscous dissipation effects. It is assumed that the
forcing induced by the wall motion is more energetic than the turbulent fluctuations
and it operates on a longer time scale. To simplify the problem further, the focus
is on the dynamics at a wall-normal location y ≈ 6, where, as shown in figure 6,
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the vorticity production given by the spanwise layer, i.e. term 3 in (4.3), is largely
balanced by the viscous enstrophy dissipation, i.e. term 11 in (4.3). The gradient of the
spanwise layer, indicated by G, is taken as constant in the small region considered.

In the y–z plane, the enstrophy dynamics may thus be distilled into the following
simplified equation

1
2
∂

∂t

(
ω2

y + ω2
z

)= ωzωyG−
(
∂ωy

∂y

)2

−
(
∂ωz

∂y

)2

, (4.6)

where only the terms involving wall-normal gradients are retained amongst the
dissipation terms because they are dominant as revealed by the order-of-magnitude
analysis in the Appendix. The terms on the right-hand side of (4.6) may be written in
matrix form as follows:

ωzωyG= [ωy;ωz]
[

0 G/2
G/2 0

][
ωy

ωz

]
, (4.7)

(
∂ωy

∂y

)2

+
(
∂ωz

∂y

)2

= ∂

∂y
[ωy;ωz]

[
1 0
0 1

]
∂

∂y

[
ωy

ωz

]
. (4.8)

As shown in figure 14, a set of perpendicular axes (xn, xs) may be considered where
xn is orientated along the vorticity vector in the y–z plane, ωyz = [ωy;ωz]. The angle α
is defined between ωyz and the wall-normal axis y. In the new set of coordinates, the
terms on the right-hand side of (4.6) are written as

ωzωyG= [ωn; 0]
[

Snn Sns

Ssn Sss

][
ωn

0

]
= Snnω

2
n, (4.9)

(
∂ωy

∂y

)2

+
(
∂ωz

∂y

)2

= ∂

∂y
[ωn; 0]

[
Dnn Dns

Dsn Dss

]
∂

∂y

[
ωn

0

]
= Dnn

(
∂ωn

∂y

)2

, (4.10)

where ω2
n = ω2

y + ω2
z , Snn = sinα cosαG, and Dnn = 1, Dns = 0. The other components

of the strain-rate tensor, Sns, Ssn, only contribute to change the direction of the vorticity
vector, not its magnitude. Equation (4.6) is written as

1
2
∂ω2

n

∂t
= Snnω

2
n −

(
∂ωn

∂y

)2

. (4.11)

Equation (4.11) may be integrated by Charpit’s method (Garabedian 1964) to give

ωn = ωn,0 esinα cosαGt︸ ︷︷ ︸
stretching

e−β
2te−βy︸ ︷︷ ︸

dissipation

, (4.12)

where ωn,0 is the initial magnitude. The constant

β = ∂ωn/∂t

∂ωn/∂y
∼ λy

λt
,

where λy represents the dissipative scale along the wall-normal direction and λt

indicates the time scale of the turbulent fluctuations.
Equation (4.12) shows that the spanwise layer may stretch or compress the turbulent

fluctuations depending on the sign of its gradient and the orientation of the vorticity
vector. The spanwise layer works by stretching when sinα cosαG > 0. Its action is
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y

z

xn

xsyz

FIGURE 14. Coordinate systems in the y–z plane for turbulent vorticity vector ωyz.

null when the vorticity vector is parallel or perpendicular to the wall, and maximum
when either (i) G is at its negative peak at that y location and simultaneously ωyz

is oriented at π/4 with respect to the axes and along the first or third quadrant in
figure 14, or (ii) G is at its positive peak and simultaneously ωyz is orientated at π/4
with respect to the axes and along the second or fourth quadrant in figure 14. It is
further noted that the temporal rate of growth or decay of enstrophy is never larger
than G and that the exponential attenuation through the viscous effects is more intense
in time than space.

We conclude that turbulent vorticity is produced when sinα cosαG > β2, i.e. when
the shear-layer production, ruled by the intensity of the large-scale spanwise shear
layer and by the orientation of the turbulent vorticity vector, overcomes the viscous
dissipation, whose dynamics is linked to the time scale and the wall-normal spatial
scale of the fluctuating vorticity.

4.4. Drag reduction and production of turbulent enstrophy

The importance of the enstrophy production term 3 has been revealed. However, our
conclusions are only based on one flow condition, A = 12 and T = 100, yielding
R= 0.31. It remains to show whether this result can be generalized to other periods of
oscillation. For this purpose, additional simulations have been carried out by changing
T and leaving all the other parameters unvaried. Figure 15 shows that R is linearly
proportional to [ω̂zωy∂Ŵ/∂y]g up to the conditions where R≈ 0.30, which corresponds
to T = 42. The linearity between R and the global value of enstrophy production
begins to lose its validity at T = Topt .

The global value of the enstrophy term is shown because R is linked via (2.6) to
the change of Ub, a global quantity as defined in (2.5). It is known that when T is
larger than the characteristic lifetime of the near-wall turbulent structures (Quadrio &
Ricco 2004), drag reduction drops as the forcing is not fast enough to couple with
the near-wall turbulence dynamics. At high T , the oscillating wall is not expected to
induce drag reduction because the near-wall structures are too slowly affected and thus
tend to re-establish their natural dynamics between sweeps of the Stokes layer. Indeed,
one case at T = 500 (not shown in the figure) gives a small R = 0.06 and the linear
relationship with the global term 3 is lost. At the other extreme, the wall motion
becomes ineffective and produces small R at small T owing to the limited wall-normal
extent of the oscillating Stokes layer.
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FIGURE 15. Drag reduction as a function of [ω̂zωy∂Ŵ/∂y]g at different oscillations periods.
For small values of T the two quantities are linearly related.

4.5. A note on the scaling parameter by Quadrio & Ricco (2004)
In previous works, attempts have been made to identify a forcing parameter which
scales linearly with drag reduction. In particular, Choi, Xu & Sung (2002) have
introduced a parameter that has been shown by Quadrio & Ricco (2004) to relate
linearly to the amount of skin-friction reduction for periods of oscillations smaller than
or comparable with the optimum. (At larger periods, the above-mentioned decoupling
between the forcing and the near-wall turbulence takes place.) This scaling parameter
was constructed by combining a characteristic length scale related to the wall-normal
distance at which the wall motion affects the turbulent structures and the maximum
spanwise acceleration of the Stokes layer. It reads

S = 2

√
π

T
ln
(

A

Ath

)
exp

(
−y

√
2π
T

)
,

where Ath ≈ 1.2 is a threshold velocity and y ≈ 6.3 is a wall-normal distance
representative of the diffusion of the Stokes-layer viscous effects.

It is then natural to inquire whether there exists a relationship between S and the
global enstrophy production term (which is also related linearly to R, as shown in
figure 15), here expressed as a new parameter,

Sn =Sn(T,A)=
[
ω̂zωy

∂Ŵ

∂y

]
g

. (4.13)

The first observation is that S can be written as

S = 2
A

ln
(

A

Ath

)
Ωxm(y), (4.14)

where Ωxm is the maximum streamwise vorticity of the Stokes layer at y = y.
Relation (4.14) endows S with a more direct and physically relevant meaning as
it simply states that the drag reduction is linearly proportional to the maximum
spanwise shear induced by the Stokes layer at constant A, and that such shear is
most effective when at work at y ≈ 6.3. The fact that S relates well with drag
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reduction is not surprising in view of the scaling analysis based on the enstrophy
production. The parameter S in (4.14) can be seen as a simplified version of Sn

in (4.13). Although Sn is more elaborate as it possesses a precise physical meaning
and involves averaging and wall-normal integration, the spanwise shear plays a key
role in both expressions. The other point of note is that 〈ω̂zωy∂Ŵ/∂y〉 reaches its
maximum at y≈ 6.5 for optimum conditions of drag reduction, i.e. almost at the same
distance at which the correlation between R and S in (4.14) is maximum.

It is noted that other semi-empirical formulae linking R and the wall oscillation
parameters have been put forward. Bandyopadhyay (2006) developed a formula also
based on the effect of the Stokes layer on the near-wall turbulence. The central
idea is that the Stokes layer cyclically re-orients the near-wall vorticity and the drag
reduction is linearly related to the sine of the maximum angle of vorticity re-alignment
with respect to the streamwise direction. This approach can be said to belong to
the same family as ours, although the analysis in the present paper is based on the
modification of the turbulent flow statistics (specifically related to the dissipation),
while Bandyopadhyay’s physical model is more directly inspired by the instantaneous
action of the spanwise layer on the vortical coherent structures.

5. Summary
We have described via a DNS study how harmonic wall oscillations are capable

of increasing the mass flow rate in a turbulent plane channel flow driven by a
constant pressure gradient. The uniquely defined inner scaling brought about by the
constant pressure gradient is exploited to ascertain how the oscillations modify the
turbulence statistics. By looking at the energy fluxes in global form, it has emerged
that the energy spent to drive the wall motion almost coincides with the viscous
dissipation due to the oscillating spanwise layer, the difference taking the form of a
small turbulence kinetic-energy production term. The energy balance shows that the
enhancement of energy intake due to the increased flow rate is mainly balanced by
the combined increment of dissipation associated with the mean streamwise velocity
profile and the turbulent dissipation. It is also revealed that the relative contribution of
the latter to the total dissipation becomes smaller when the wall moves.

The spanwise oscillating layer shows a direct effect on the turbulent dissipation,
which is conveniently expressed as the volume integral of the turbulent enstrophy. The
amount of drag reduction is related linearly to the volume integral of an enstrophy
production term induced by the spanwise shear layer. The study of the turbulent
enstrophy transport equation reveals that this dominating enstrophy production term
synthesizes the stretching of the vorticity lines by the oscillating layer and therefore
enhances the turbulent dissipation. The analysis of the short-term evolution of the
flow after the beginning of the wall motion shows that the dissipative nature of the
near-wall field is responsible for the attenuation of the turbulence intensity and thus for
the increment of the bulk velocity.

The study of the turbulent enstrophy in fully developed conditions to evince which
term dominates the physics and the analysis of the flow temporal evolution to discern
how the new regime ensues can both be useful to investigate other turbulent flows
modified by external agents, such as boundary layers affected by large-scale Lorentz or
Coriolis forces, by wall transpiration, or by large temperature gradients. Furthermore,
it would be of interest to use the approach based on the turbulent enstrophy to
investigate the travelling-wave flow proposed by Quadrio, Ricco & Viotti (2009) in
drag-reduction and drag-increase conditions.
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Appendix. Order-of-magnitude analysis of turbulent enstrophy and dissipation
equations

The order of magnitude of the terms arising because of the wall motion in the
turbulent enstrophy equation (4.3) and in the turbulent dissipation equation can be
estimated through an analysis similar to the one carried out by Tennekes & Lumley
(1972, pp. 89 and 90). Two symbols are adopted, following the introductory discussion
on the use of symbols in Tennekes & Lumley (1972). The symbol ∼ denotes a
crude approximation; it highlights the dependence of the term under scrutiny on the
characteristic length and velocity scales of the turbulent motion. Upon decomposing
an enstrophy term into sub-terms containing the fluctuating velocity components, the
symbol O denotes its magnitude in terms of the dominant sub-term. In Tennekes
& Lumley (1972), a generic length scale is assumed to describe the mean flow
motion and the Taylor microscale is taken as the reference length scale for the
turbulent fluctuations in all directions, suggesting that such an analysis is useful
primarily for homogeneous isotropic turbulence. However, our interest is in the wall-
bounded turbulence dynamics with wall oscillations, which is strongly anisotropic. It is
therefore necessary to distinguish different length and velocity scales along the three
Cartesian directions.

The near-wall turbulent dynamics is characterized by three distinct length scales.
The length scale of the disturbance along z can be taken as λz = O(100), namely
the characteristic spacing of the low-speed streaky structures (Kline et al. 1967). As
shown by Ricco (2004), the streak spacing increases by about a fifth when R ≈ 0.3,
so that the order-of-magnitude estimate is still valid. The streak length, λx = O(1000)
for fixed-wall conditions, is representative of the disturbance flow along x (Kline et al.
1967). Ricco (2004) has shown that λx decreases by about a third when R ≈ 0.3.
The order of magnitude of λx = O(1000) is therefore applicable under wall-oscillation
conditions. The length scale along y for the mean flow is the spanwise boundary layer
thickness δ, defined here as the distance from the wall where the maximum Ŵ equals
exp(−1)A. As amply verified (see Choi et al. (2002), amongst many), Ŵ agrees well
with the laminar solution of the second Stokes problem for the flow induced by wall
oscillations beneath a still fluid (Batchelor 1967), so that the spanwise boundary layer
thickness can be approximated well by δ = √T/π. For T = 100, δ ≈ 5.7, so that it
can be assumed that δ = O(10). The boundary layer thickness δ can be taken as the
characteristic length scale for the near-wall disturbance flow because the oscillating
boundary layer affects the turbulence in a region close to the wall whose width is
comparable with δ. This is shown in figure 2 by the 〈ûv〉 profile being markedly
affected only for y < 25 and by the v̂w profile reaching its maximum at y ≈ 15.
The mean-flow length scale also becomes the length scale of the fluctuations along
the direction of the shear in other shear-driven phenomena, such as the penetration
of free-stream turbulence into the Blasius boundary layer to form the Klebanoff
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modes (Leib, Wundrow & Goldstein 1999). In that case, the wall-normal scale of
the fluctuations within the boundary layer is the Blasius boundary layer thickness.
The characteristic length scales along the Cartesian directions can therefore be taken
as λx > λz > δ. As for the order of magnitude of the velocity components near the
wall, as outlined by Pope (2000, p. 283), both u and w show a linear growth near
the wall, but the coefficient is larger for the streamwise component. The wall-normal
component v is smaller than both u and w because it grows quadratically from the
wall. The hypothesis u > w > v can therefore be adopted. The terminologies ‘larger’
and ‘smaller’ are used in the order-of-magnitude sense and the time-averaging symbol
is omitted for brevity.

The turbulent enstrophy equation (4.3) is considered first. The order of magnitude of
terms 3, 4 and 6, arising in (4.3) because of the wall oscillation, is estimated. Term 3
can be first decomposed as follows:

term 3: ω̂zωy
∂Ŵ

∂y
=

 ̂∂v
∂x

∂u

∂z︸ ︷︷ ︸
3a

−
̂∂v
∂x

∂w

∂x︸ ︷︷ ︸
3b

−
̂∂u

∂y

∂u

∂z︸ ︷︷ ︸
3c

+
̂∂u

∂y

∂w

∂x︸ ︷︷ ︸
3d

 ∂Ŵ

∂y
, (A 1)

and the order of magnitude of each sub-term is

3a∼ uv

λxλz
, 3b∼ vw

λ2
x

, 3c∼ u2

δλz
, 3d ∼ uw

δλx
,

∂Ŵ

∂y
∼ A

δ
. (A 2)

It is evident that term 3c, ̂(∂u/∂y)(∂u/∂z)∂Ŵ/∂y, is dominant. It follows that

Term 3: ω̂zωy
∂Ŵ

∂y
= O

(
u2A

δ2λz

)
. (A 3)

Further, term 3d > term 3a > term 3b. The magnitude of term 4 is estimated as
follows:

term 4: ω̂i
∂u

∂xi

∂Ŵ

∂y
=
[(̂
∂w

∂y
− ∂v
∂z

)
∂u

∂x
+
(̂
∂u

∂z
− ∂w

∂x

)
∂u

∂y
+
(̂
∂v

∂x
− ∂u

∂y

)
∂u

∂z

]
∂Ŵ

∂y

=

 ̂∂w

∂y

∂u

∂x︸ ︷︷ ︸
4a

−
̂∂v
∂z

∂u

∂x︸ ︷︷ ︸
4b

−
̂∂w

∂x

∂u

∂y︸ ︷︷ ︸
4c

+
̂∂v
∂x

∂u

∂z︸ ︷︷ ︸
4d

 ∂Ŵ

∂y
, (A 4)

4a, 4c∼ uw

δλx
, 4b, 4d ∼ uv

λxλz
. (A 5)

Terms 4a and 4c are larger than 4b and 4d because w> v and δ < λz, so that

term 4: ω̂i
∂u

∂xi

∂Ŵ

∂y
= O

(
uwA

δ2λx

)
. (A 6)

Note that this represents an upper bound because terms 4a and 4c may add to produce
a term of the order of magnitude given in (A 6) or give a term of smaller amplitude if
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these terms are of opposite sign. The magnitude of term 6 can be estimated as follows:

term 6: − v̂ωx
∂2Ŵ

∂y2
=
(
−v̂ ∂w

∂y
+ v̂ ∂v

∂z

)
∂2Ŵ

∂y2
, (A 7)

v̂
∂w

∂y
∼ vw

δ
, v̂

∂v

∂z
∼ vv
λz
,

∂2Ŵ

∂y2
∼ A

δ2
. (A 8)

The term − ̂v∂w/∂y(∂2Ŵ/∂y2) is clearly dominant because w > v and δ > λz. It
follows that

term 6: − v̂ωx
∂2Ŵ

∂y2
= O

(
vwA

δ3

)
. (A 9)

In order to compare term 6 with term 3, we resort to the continuity equation, as
follows:

∂v

∂y
∼ ∂u

∂x
H⇒ v

δ
∼ u

λx
, (A 10)

term 6: − v̂ωx
∂2Ŵ

∂y2
= O

(
vwA

δ3

)
= O

(
uwA

δ2λx

)
. (A 11)

Since u> w and λx > λz, one obtains

term 3: O

(
u2A

δ2λz

)
> term 6: O

(
uwA

δ2λx

)
. (A 12)

Terms 4 and 6 are either comparable, when the upper bound case for the order-of-
magnitude estimate for term 4 is considered, or term 4 < term 6 if the two comparable
leading terms in 4 have opposite sign. It can be concluded that term 3 > term 6 >
term 4, which is the result found through the numerical simulations.

The transport equation for the turbulent energy dissipation, called ε here

ε ≡̂∂ui

∂xj

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (A 13)

is now studied (Mansour, Kim & Moin 1989; Fischer, Jovanović & Durst 2001). For
the case of turbulent channel flow with spanwise wall oscillations, the equation reads

1
2
∂ε

∂τ︸︷︷︸
1

=− ∂̂u

∂xi

∂v

∂xi

∂Û

∂y︸ ︷︷ ︸
2

− ∂̂w

∂xi

∂v

∂xi

∂Ŵ

∂y︸ ︷︷ ︸
3

− ∂̂ui

∂x

∂ui

∂y

∂Û

∂y︸ ︷︷ ︸
4

− ∂̂ui

∂z

∂ui

∂y

∂Ŵ

∂y︸ ︷︷ ︸
5

− v̂ ∂u

∂y

∂2Û

∂y2︸ ︷︷ ︸
6

− v̂ ∂w

∂y

∂2Ŵ

∂y2︸ ︷︷ ︸
7

−
̂∂ui

∂xk

∂uj

∂xk

∂ui

∂xj︸ ︷︷ ︸
8

− 1
2
∂

∂y

(
̂
v
∂ui

∂xj

∂ui

∂xj

)
︸ ︷︷ ︸

9

−
̂∂ui

∂xj

∂2p

∂xj∂xi︸ ︷︷ ︸
10

−
̂∂2ui

∂xj∂xk

∂2ui

∂xj∂xk︸ ︷︷ ︸
11

+ ∂
2ε

∂y2︸︷︷︸
12

. (A 14)

The order of magnitude of the terms arising in (A 14) because of the wall motion can
be estimated through an analysis similar to one for the enstrophy equation (4.3). The
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magnitude of term 3 in (A 14) is found as follows:

term 3: ∂̂w

∂xi

∂v

∂xi

∂Ŵ

∂y
=

 ∂̂w

∂x

∂v

∂x︸ ︷︷ ︸
3a

+ ∂̂w

∂y

∂v

∂y︸ ︷︷ ︸
3b

+ ∂̂w

∂z

∂v

∂z︸ ︷︷ ︸
3c

 ∂Ŵ

∂y
, (A 15)

3a∼ vw

λ2
x

, 3b∼ vw

δ2
∼ uw

λxδ
, 3c∼ vw

λ2
z

∼ uv

λzλx
,

∂Ŵ

∂y
∼ A

δ
. (A 16)

Term 3b is dominant, so that

term 3: ∂̂w

∂xi

∂v

∂xi

∂Ŵ

∂y
= O

(
uwA

δ2λx

)
. (A 17)

The magnitude of term 5 in (A 14) is estimated as follows:

term 5: ∂̂ui

∂z

∂ui

∂y

∂Ŵ

∂y
=

 ̂∂u

∂z

∂u

∂y︸ ︷︷ ︸
5a

+
̂∂v
∂z

∂v

∂y︸ ︷︷ ︸
5b

+ ∂̂w

∂z

∂w

∂y︸ ︷︷ ︸
5c

 ∂Ŵ

∂y
, (A 18)

5a∼ u2

δλz
, 5b∼ v2

δλz
, 5c∼ w2

δλz
. (A 19)

Term 5a is dominant. It follows that

term 5: ∂̂ui

∂z

∂ui

∂y

∂Ŵ

∂y
= O

(
u2A

δ2λz

)
. (A 20)

It is found that

term 7: v̂
∂w

∂y

∂2Ŵ

∂y2
= O

(
uwA

δ2λx

)
(A 21)

because

v̂
∂w

∂y
∼ vw

δ
∼ uw

λx
,

∂2Ŵ

∂y2
∼ A

δ2
. (A 22)

Term 5a is estimated to be the largest amongst the terms in (A 14) induced by the wall
motion. This result confirms the analysis of the turbulent enstrophy, where term 3, of
the same order of magnitude, emerges as dominant.
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