Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

STABILITY OF PLANAR SHEAR FLOW IN THE PRESENCE OF ELECTROCONVECTION

F. Martinelli¹, <u>M.Quadrio^{1,2} & P.Schmid¹</u>

¹LadHyx, École Polytechnique (F) ²Dip. Ing. Aerospaziale, Politecnico di Milano (I)

Ottawa, July 29th, 2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

OUTLINE

ntroduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

1 INTRODUCTION

2 EHD WITHOUT CROSS-FLOW

- Modal
- Non-modal

3 EHD WITH CROSS-FLOW

- Modal
- Non-modal

OUTLINE

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

1 INTRODUCTION

EHD WITHOUT CROSS-FLOW

- Modal
- Non-modal

3 EHD WITH CROSS-FLOW

- Modal
- Non-modal

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

WHAT IS EHD?

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

- Dielectric fluid
- Negligible magnetic effects
- Charge injection at the boundary
- Fully coupled problem owing to Coulomb force

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

WHAT IS ELECTROCONVECTION? Review by P.Atten, IEEE Trans., 1996

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

- Planar indefinite geometry (periodic box)
- Unipolar autonomous injection
- "Analogous" to Rayleigh-Bénard thermal convection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WHAT IS KNOWN ABOUT ELECTROCONVECTION? Results for linear stability date back to '70-'80

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

EQUATIONS Two-way coupling between kinetic and electric field

$$\nabla^2 \Phi = -\frac{q}{\epsilon}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

Quasi-electrostatic limit of Maxwell equations

EQUATIONS Two-way coupling between kinetic and electric field

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

$$\nabla^2 \Phi = -\frac{q}{\varepsilon}$$
$$\frac{\partial q}{\partial t} + \nabla \cdot (q \mathbf{V} + q K \mathbf{E} - D \nabla q) = 0$$

 α

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Conservation of charge density q

EQUATIONS TWO-WAY COUPLING BETWEEN KINETIC AND ELECTRIC FIELD

_

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

$$\begin{split} \nabla^2 \Phi &= -\frac{q}{\varepsilon} \\ \frac{\partial q}{\partial t} + \nabla \cdot (q \mathbf{V} + q K \mathbf{E} - D \nabla q) = 0 \\ \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} &= -\frac{1}{\rho} \nabla P + v \nabla^2 \mathbf{V} + \mathbf{F}_e \end{split}$$

Electric force is $\mathbf{F}_e = q\mathbf{E}$ (no dielectric force since ε is uniform)

EQUATIONS Two-way coupling between kinetic and electric field

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

$$\nabla^2 \Phi = -\frac{q}{\varepsilon}$$
$$\frac{\partial q}{\partial t} + \nabla \cdot (q \mathbf{V} + q K \mathbf{E} - D \nabla q) = 0$$
$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} = -\frac{1}{\rho} \nabla P + v \nabla^2 \mathbf{V} + \mathbf{F}_e$$
$$\nabla \cdot \mathbf{V} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Incompressibility

DIMENSIONLESS PARAMETERS

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

Reference length, potential and velocity are h, Φ_0 and $K\Phi_0/h$

- Taylor number T (forcing par., fluid properties + Φ_0)
- Ionic mobility M (fluid properties)
- Charge diffusivity Fe (fluid properties + Φ_0)

Moreover:

Charge injection coefficient C (boundary condition only)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Reynolds number <u>Re</u> (in base flow)

FORMULATION, NUMERICS

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

- $v \eta \Phi$ formulation
- Fourier transform in x,z directions
- Small perturbations, linearization
- y discretization with N Chebyshev polynomials

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

OUTLINE

ntroduction

EHD without cross-flow

Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

INTRODUCTION

2 EHD WITHOUT CROSS-FLOW

- Modal
- Non-modal

3 EHD WITH CROSS-FLOW

- Modal
- Non-modal

4 CONCLUSIONS

STATE OF THE ART P.ATTEN 1996

Introduction

EHD without cross-flow

Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

- Charge diffusion assumed to be negligible, Fe → ∞
 Instability for κ ≈ 2.5 and T = T_c ≈ 161
- Discrepancy between numerical T_c and experimental $T_c \approx 100$

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

NEUTRAL CURVE DIFFUSION MATTERS!

NURNERNERNER E DRC

"Optimal" FeExplains difference between experimental and numerical T_c ?

NURNURR SERVER E 1990

DEFINITION OF ENERGY

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

Total energy of the system split into mechanical and electric contributions

$$\mathscr{E} = \mathscr{E}_m + \mathscr{E}_e = \frac{1}{2}(u^2 + v^2 + w^2) + \frac{1}{2}\varepsilon\mathbf{E}\cdot\mathbf{E}$$

Transient growth function defined as

$$G(t) = \max \frac{\mathscr{E}(t)}{\mathscr{E}(0)} = \max_{\mathbf{x}_0 \neq 0} \frac{\| \mathbf{x}(t)^2 \|_E}{\| \mathbf{x}_0^2 \|_E}$$

MAP OF G_{max} Mild transient growth

Server a server a SQC

OUTLINE

ntroduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal

Conclusions

INTRODUCTION

EHD WITHOUT CROSS-FLOW

- Modal
- Non-modal

3 EHD WITH CROSS-FLOW

- Modal
- Non-modal

4 CONCLUSIONS

NEUTRAL CURVE Squire theorem still applies: $\beta = 0$

MOST UNSTABLE HYDRODYNAMIC MODE $Re = 7000, \alpha = 1$

EHD without cross-flow Modal Non-modal

EHD with cross-flow

Modal Non-modal

Conclusions

= -) Q (P)

MOST UNSTABLE ELECTRIC MODE $Re = 100, \alpha = 1$

Transient growth at $oldsymbol{eta}=0$

NURSERSER E DRC

Optimal input for $\beta = 0$ Orr mechanism. $\alpha = 1, \beta = 0, Re = 1000$

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

 \geq

~) Q (~

Optimal output for $m{eta}=0$ orr mechanism

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

= -290

N 11 K N11 K N 2 K N 2 K 1

DOES EHD ENHANCE TRANSIENT GROWTH? LOOKING AT KINETIC ENERGY ALONE, $\beta = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

OUTLINE

ntroduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

INTRODUCTION

EHD WITHOUT CROSS-FLOW

- Modal
- Non-modal

3 EHD WITH CROSS-FLOW

- Modal
- Non-modal

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

CONCLUSIONS

Introduction

- EHD without cross-flow Modal Non-modal
- EHD with cross-flow Modal Non-modal
- Conclusions

- Electroconvection (stability) revisited
- Role of diffusion
- Non-modal effects (esp. with cross-flow)
- Non-linear effects?
- EHD as a extremely-low-power flow control device?

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DIMENSIONLESS NUMBERS

Reference length, potential, velocity, time and pressure are: $h, \Phi_0, K\Phi_0/h, h^2/K\Phi_0$ and $\rho K^2 \Phi_0^2/h^2$

 $M = \frac{1}{K} \sqrt{\frac{\varepsilon}{\rho}}$ $T = \frac{\varepsilon \Phi_0}{\mu K}$ $Fe = \frac{K \Phi_0}{D}$ $C = \frac{q_0 h^2}{\varepsilon \Phi_0}$

K is ionic mobility, ρ and μ fluid density and dynamic viscosity, *D* is charge diffusivity, ε fluid (uniform) fluid permittivity.

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

DIMENSIONLESS EQUATIONS

Introductior

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

$$\begin{split} \frac{\partial \hat{\Delta} \hat{v}}{\partial t} &= -j\alpha \overline{U} \hat{\Delta} \hat{v} + j\alpha \overline{U}'' \hat{v} + M^2 \Big[\overline{\Phi}''' \kappa^2 \hat{\psi} - \overline{\Phi}' \kappa^2 \hat{\Delta} \hat{\psi} \Big] + \frac{M^2}{T} \hat{\Delta} \hat{\Delta} \hat{v} \\ \frac{\partial \hat{\eta}}{\partial t} &= -j\beta \overline{U}' \hat{v} - j\alpha \overline{U} \hat{\eta} + \frac{M^2}{T} \hat{\Delta} \hat{\eta} \\ \frac{\partial \hat{\Delta} \hat{\psi}}{\partial t} &= \overline{\Phi}' \frac{\partial \hat{\Delta} \hat{\psi}}{\partial y} + \overline{\Phi}''' \frac{\partial \hat{\psi}}{\partial y} + 2\overline{\Phi}'' \hat{\Delta} \hat{\psi} - j\alpha \overline{U} \hat{\Delta} \hat{\psi} - \overline{\Phi}''' \hat{v} + \frac{1}{Fe} \hat{\Delta} \hat{\Delta} \hat{\psi}, \end{split}$$

 $\overline{U}(v)$ and $\overline{\Phi}(v)$ are the base velocity and potential profiles

EXAMPLE OF FLUID PROPERTIES Data for Pyralene 1460

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

K = 3.2E - 9	D = 8.2E - 11
$\varepsilon = 5.224E - 11$	$\mu = 0.01$
$\rho = 1.41E3$	M=60
$T = 1.6325\Phi_0$	$Fe = 0.6\Phi_0$

APPLICATIONS

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

Ion-drag pumping

EHD turbulent mixing

EHD heat transfer augmentation

Transient growth at $\alpha = 0$

Conclusions

NURNERNERNER E 1980

Optimal input for $\alpha = 0$ Liftup mechanism. $\alpha = 0$, $\beta = 0.2$, Re = 1000

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

= ->20

N 11 7 N 11 7 7 N 2 7 N 2 7 1

Optimal output for $\alpha = 0$ Liftup mechanism

Introduction

EHD without cross-flow Modal Non-modal

EHD with cross-flow Modal Non-modal

Conclusions

N P K N P K N E K N E K N R C