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ABSTRACT
The first complete study of linear, modal and non-modal

stability of the EHD electroconvection problem with and with-
out cross-flow is presented. Emphasis is put on understanding
how electroconvection changes the stability characteristics of
the plane Poiseuille flow.

INTRODUCTION
The present work concerns the field of electro-

hydrodynamics (EHD), which studies the action of an electric
field upondielectric fluids which, due to their low electrical
conductivity, do not give rise to large electric currents, and
hence render the effects of magnetic field negligible. EHD is
thus the dual case of magneto-hydrodynamics (MHD) where
conducting liquids with large electrical currents, negligible
electric fields and strong magnetic fields prevail. In partic-
ular, in this work we address the so-called electroconvec-
tion problem. In the typical electroconvection problem, ions
are injected into the bulk fluid from the boundary (typically
by electrochemical reactions) under the action of an exter-
nal electric field; only the Coulomb force is able to induce
fluid motion, and the resulting mathematical problem is fully
coupled, linking the well-known Navier-Stokes equations to
the spatio-temporal evolution equation for the electric charge
density. For suitable values of the electric forcing, large-scale
rolls develop owing to an instability mechanism.

Several studies of electroconvection are available, dating
back to the ’70s and ’80s and often motivated by a techno-
logical interest in Coulomb-driven convection (Felici, 1971;
Crowley, 1986). Perhaps the most widespread interest and ap-
plication arose from a desire to increase the heat transfer on
large distribution power transformers, where lower temper-
atures yield increased efficiency; other applications withdi-
electric liquids, where injected ions represent the main source
of charge, encompass those in electrostatic precipitators, EHD

Figure 1. Sketch of the geometry (considered in the present
work) and the coordinate system. When present, the cross-
flow is directed along thex (streamwise) direction.

ion-drag pumps, EHD turbulent mixers. Applications con-
taining liquid crystals or industrial processes involvingmetal
casting have also prompted research into EHD. More recently,
with the thriving boom in micro- and nano-fluid dynamical
applications, interest of EHD flows is rising rapidly, mostly
based on its potential for increasing mixing and heat transfer
in micro- or nano-devices.

Most studies available in the literature contain simple
configurations, like the cylindrical geometry or the planarone
depicted in figure 1, where two solid walls (the injector and
the collector) are present, across which a difference of elec-
tric potential is established to inject ions from one wall into
the fluid and with the interior space filled by a dielectric fluid
containing charged particles. For low-voltage forcing, the in-
herent viscous damping of the system is sufficient to ensure a
stable motion, while at higher forcing levels the fluid is setinto
motion characterized by large-scale rolls. This stabilityprob-
lem resembles that of Rayleigh-Bénard convection, where the
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temperature plays the analogous role to that of the charge den-
sity and the heat flux on the high-temperature wall acts as the
forcing analogous to the potential difference in electrocon-
vection. As soon as the instability sets in, however, macro-
scopic phenomena in EHD appear (such as the segregation
of charge, i.e. the creation of large regions virtually freeof
charge) which have no counterpart in Rayleigh-Bénard.

The asymptotic stability of small perturbations to the
electroconvective flow has been studied, both experimentally
and numerically, over the last three decades, with two reviews
by Castellanos (1991) and Atten (1996). To date, however, the
critical value of the forcing parameter above which instability
sets in remains a subject of some controversy, with numerical
analyses predicting values about 50% higher than experimen-
tal investigations (Castellanos, 1991). On the other hand,the
stability of wall-bounded shear flows of dielectric liquidsin
the presence of charge injection has received considerablyless
or no attention at all, and we are only aware of one single pa-
per (Castellanos & Agrait, 1992) on the subject. In that paper,
moreover, only weak ion injection is considered, and the two-
way coupling between the velocity and electric fields is ne-
glected. Furthermore, EHD (with or without cross-flow) has
never been studied from the viewpoint of non-modal stability,
to ascertain (or refute) whether transient growth mechanisms
are at play (Schmid & Henningson, 2001).

We thus set as our long-term goal to understand how
EHD effects can modify a shear flow, for example, plane
Poiseuille flow, in the laminar, transitional and fully turbulent
regime. The large-scale convective cells associated with the
electroconvective instability make this kind of electric forc-
ing a potential and attractive candidate for effectively creating
large-scale vortical structures in a shear flow, especiallycon-
sidering its almost negligible power requirements. Such vor-
tices might be exploited as flow control actuators leading, for
example, to reduced friction drag (Schoppa & Hussain, 1998)
or to substantial changes in heat transfer efficiency. The goal
of the present paper is thus to present an initial stability study
of EHD flow with and without (laminar) cross flow, perform-
ing both modal and non-modal analyses. It is worth noting
that, for the first time, we will consider finite values of charge
diffusivity, and this decision will be shown to bring about im-
portant consequences. Finally we will assess, though stillin
a preliminary way, the idea of exploiting EHD instabilitiesto
create large-scale vortical structures that may be used in flow-
control applications.

PROBLEM DEFINITION
We consider the planar geometry sketched in figure 1,

where the used coordinate system is also introduced. Thex
direction is the streamwise direction of the laminar Poiseuille
flow, when such a cross-flow is considered. The flow is gov-
erned by the incompressible Navier-Stokes equations, aug-
mented by an electric forceFq/ρ that acts as a body force per
unit mass. The electric force, in turn, satisfies a constitutive
equation that, under the quasi-electrostatic limit, simplifies to
an expression involving only the Coulomb force. Neglecting
dielectric and electro-strictive forces one obtains

Fq

ρ
= qE =

ε
ρ

∇2Φ∇Φ. (1)

whereq is the charge density,E = −∇Φ is the electric field
andΦ is the electric potential. Gauss’ law∇2Φ =−q/ε links
the electric potential and the charge density (withε as the fluid
permittivity, assumed uniform).

The conservation law forq involves the divergence of
its flux vectorJ which, in the present context, contains three
contributions: convection of charge due to fluid motion, a drift
induced by the external electric field beyond the zero-net ran-
dom motions of the electrons, and diffusion. It can be written:

J = qV+qKE−D∇q,

with K andD as the ionic mobility and charge diffusion co-
efficients. It can be observed thatKE is the migration (drift)
velocity of ions under action of the electric field. An evolu-
tion equation for the charge density is then formulated, and
the equivalent fourth-order equation forΦ reads

∂
∂ t

∇2Φ+∇ ·
(

∇2ΦV−K∇2Φ∇Φ+D∇2(∇2Φ)
)

= 0. (2)

The system consisting of the incompressible Navier-
Stokes equations coupled via (1) to equation (2) has to be
supplemented by a set of boundary conditions. Periodic con-
ditions are employed in the homogeneous directions, while at
the walls no-slip conditions are used for fluid velocities. At
the walls, which are a distance 2h apart, the electric poten-
tial is set toΦ(h) = Φ0 andΦ(−h) = 0. The mechanism by
which charge is injected at the wall aty=−h (injector) and re-
moved at the opposite wall (collector) remains to be specified.
It is customary in the literature (Castellanos, 1991) to model
this process under the assumption of autonomous (i.e. inde-
pendent of the electric field) and unipolar (one single charge)
injection, which implies a non-homogeneous Dirichlet bound-
ary conditionq(−h) = q0 at the injector, and a homogeneous
Neumann condition∂q/∂y|y=h = 0 at the collector, i.e.,

∇2Φ|y=−h =−q0/ε;
∂
∂y

∇2Φ|y=h = 0.

Numerical method
Before discretization, it is convenient to convert the gov-

erning equations to non-dimensional form. The problem is
parametrized by four non-dimensional groups, built usingh
as the reference length,Φ0 as the reference potential,KΦ0/h
as the reference velocity,h2/(KΦ0) as the reference time and
ρK2Φ2

0/h2 as the reference pressure. The four resulting pa-

rameters are (i) the charge injection coefficientC = h2q0
εΦ0

, di-
rectly related to the boundary condition for the injection of
charge, (ii) the Taylor parameterT = εΦ0

µK , which expresses
the ratio of the electric forcing of the system to its inherent
viscous damping; (iii) the dimensionless charge diffusivity
Fe = KΦ0

D , and, lastly, (iv) the dimensionless ionic mobility
M = 1

K

√
ερ.

After applying a Fourier transform along the homoge-
neous directionsx andz, and linearizing about a a parabolic
Poiseuille base flowU(y) and a base profile forΦ (which can
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be computed analytically), the resulting linearized equations
for the perturbations read

∂ ∆̂v̂
∂ t

=− jαU ∆̂v̂+ jαU ′′v̂+M2
[

Φ′′′κ2ψ̂ −Φ′κ2∆̂ψ̂
]

+
M2

T
∆̂∆̂v̂

∂ η̂
∂ t

=− jβU ′v̂− jαU η̂ +
M2

T
∆̂η̂

∂ ∆̂ψ̂
∂ t

= Φ′ ∂ ∆̂ψ̂
∂y

+Φ′′′ ∂ψ̂
∂y

+2Φ′′∆̂ψ̂ − jαU ∆̂ψ̂ −Φ′′′
v̂+

1
Fe

∆̂∆̂ψ̂,

where ˆv, η̂ andψ̂ denote perturbations of the wall-normal ve-
locity, wall-normal vorticity and potential. It is worth notic-
ing that, with the present choice of velocity and length scales,
the role usually played by the Reynolds number in plane
Poiseuille flow is taken by the non-dimensional groupT/M2.
With this in mind, one easily recovers the Orr-Sommerfeld-
Squire equations in the normal velocity-normal vorticity for-
mulation after settingΦ= 0. The composite parameterM con-
tains fluid properties and geometric quantities and can thusbe
considered a material parameter; on the other hand,C, T and
Fe contain both fluid and flow properties.

The governing equations are then spectrally discretized
usingN Chebyshev polynomials. The modal stability prob-
lem is equivalent to solving an eigenvalue problem and in
particular to identifying the eigenvalue with the largest real
part. The non-modal stability problem, in contrast, searches
for short-time growth of the perturbation energy. In the hy-
drodynamic case, defining energy as the kinetic energy of the
flow is an obvious choice. Here, choosing a physically sound
norm to quantify the disturbance amplitude is key to obtain-
ing meaningful results. We define our energy as the sum of a
mechanical contribution (the kinetic energy of the flow) and
an electrical contribution, i.e.Etot = E f low +Eψ . The final
expression, in ˆv− η̂ − Ψ̂ form, reads

Etot =
1
4 ∑

α ,β

∫ 1

−1

1
κ2

(

|η̂|2+|dv̂
dy

|2
)

+|v̂|2+M2
(

κ2|ψ̂|2+|dψ̂
dy

|2
)

dy.

THE HYDROSTATIC CASE (NO CROSS-FLOW)
We consider first the purely hydrostatic case, where elec-

troconvection takes place in the absence of any pressure-
gradient driven cross-flow.

Modal stability
Modal stability for this problem has already been ad-

dressed in the literature, but this is the first time, to our knowl-
edge, that the effects of charge diffusion are accounted for.
We first consider in figure 2 the neutral stability curves for
different values ofFe. The critical valueTcr of the Taylor
number is observed to vary significantly withFe. The value
Tcr = 161, present in the literature for the strong-injection
regime (Castellanos, 1991) from studies neglecting diffusion,
seems to be recovered in the limitFe → ∞, but non-zero dif-
fusion appears to lowerTcr significantly, thus pointing to a
destabilizing effect of charge diffusion. The wavenumberκ
of the most unstable disturbance, on the other hand, does not
appear to vary significantly withFe.

T

κ

Neutral curves. N=250, M=100, C=50
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Figure 2. Neutral stability curves for electroconvection
without cross-flow. Effect of charge diffusion coefficientFe
on the critical Taylor numberT and disturbance wavenumber
κ. Calculations withN = 250 Chebyshev polynomials, and
M = 100 andC = 50.
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Figure 3. Neutral stability curve for electroconvection with-
out cross-flow. Effect of injection strength coefficientC on the
critical Taylor numberT and disturbance wavenumberκ. Cal-
culations withN = 150 Chebyshev polynomials, andM = 10
andFe = 200.

The value ofTcr appears to also depend on the injection
strength, though rather weakly. Figure 3 displays the neu-
tral curves for two values ofC, showing that increased injec-
tion strength produces a destabilizing effect. This is consis-
tent with the observation that the charge density, decreasing
from injector to collector, creates a potentially unstablesitua-
tion, where a charge moving towards the collector will experi-
ence an increase in Coulomb force which acts to increase such
movement. This results casts some doubt on the general belief
that, in the so-called strong injection regime,C ≫ 1, the value
of Tcr does not depend onC. Lastly, we have verified that
the value ofM has no effect on determiningTcr; this is anal-
ogous to the role of the Prandtl number in Rayleigh-Bénard
convection.

Given the strong sensitivity ofTcr to the value ofFe, we
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Figure 4. Change of the critical value of the Taylor number
Tcr with Fe, for N = 100,M = 100 andκ = 2.5.
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Figure 5. Maximum transient growth of perturbation energy
computed forN = 150,M = 10,C = 50 andFe = 200. The
white region in the top-right corner is the one of asymptotic
instability.

report in figure 4 the results of the search for the ”optimal” dif-
fusivity, i.e. for the value ofFe that yields the lowestTcr. This
search is performed forκ = 2.5 which approximately iden-
tifies the most unstable perturbation (see figure 2 and 3). It
is observed that, at low values ofFe which are representative
of dielectric fluids used in applications,Tcr may differ signif-
icantly from the predictedTcr = 161 of previous numerical
studies neglecting diffusion; experiments, on the other hand,
report a value ofTcr ≈ 100.

Non-modal stability
Non-modal stability is unexplored to date for the electro-

convection problem, even in absence of cross-flow. We thus
want to ascertain whether this flow supports a transient growth
mechanism. This is shown to be the case in figure 5 where
modest transient growth is observed, with a maximally 5-fold
increase of perturbation energy in the proximity of the neutral
curve. BelowT = 35 the energy of the initial condition decays
monotonically towards zero. (Due to space constraints, opti-
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Figure 6. Neutral stability curves forN = 150,C = 50 and
Fe = 200. AtRe = 0 the previous analysis without cross-flow
is recovered.

mal disturbances, i.e. initial conditions leading to maximum
energy amplifications, will only be discussed for the case of
cross-flow; see below).

THE CASE WITH CROSS-FLOW
When a Poiseuille cross-flow is added, thex (stream-

wise) and z (spanwise) directions change character. The
stability analysis of the previous section becomes two-
dimensional, where the streamwise and spanwise wavenum-
bersα andβ of the perturbations play distinct roles.

Modal stability
Traditional asymptotic stability analysis of standard

Poiseuille flow starts with the fact that the modes of the nor-
mal vorticity equation, i.e. the Squire modes, are always
damped, so that the entire system becomes first unstable to
perturbations withβ = 0. Similar arguments can be used in
our case and lead to the conclusion that two-dimensional per-
turbations are the first to become unstable. In figure 6, on the
top right, one observes the usual neutral curve for the Orr-
Sommerfeld problem, where the electrical parameter do not
appear to play a significant role, and the known critical value
Recr = 5773 is obtained. On the left, the instability region de-
termined by electroconvection is confined to very low values
of Re. In this region, we have agreement with the main results
of our previous analysis of EHD without cross-flow, which
exactly corresponds toRe= 0. There is also qualitative agree-
ment with the approximate results presented by Castellanos
& Agrait (1992), who suggested that at lowRe the cross-flow
acts to weaken the EHD instability, while at higherRe the ef-
fects of electrical disturbances tend to be overcome by those
of the velocity perturbations.

The different nature of the instability at lower and higher
Re can be easily appreciated by looking at the spatial shape
of the unstable modes. Figure 7 shows a portion of the entire
spectrum of the system matrix, with the red circle marking
the most unstable mode, which is an electric one. Its spa-
tial shape is described by the wall-normal distribution of its
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Figure 7. Discrete spectrum and spatial shape of the most
unstable mode atRe = 100 andα = 1 (electric mode, high-
lighted by the red circle).
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Figure 8. Discrete spectrum and spatial shape of the most
unstable mode atRe = 7000 andα = 1 (Poiseuille mode,
highlighted by the red circle).

amplitude, in terms of vertical velocity and electric potential
(wall-normal vorticity is null forβ = 0). It is worth noting
that the unstable mode, and in particular its electric part,is
not symmetric with respect to the centerline. IncreasingRe
up to Re = 7000 (at constantα) we obtain a different pic-
ture, shown in figure 8, where the most unstable eigenvalue
coincides with one of the usual spectral branches of the stan-
dard Orr–Sommerfeld, its spatial form is consistent with a
Tollmien-Schlichting wave. It can be further observed that
for α = 0 the equations simplify, with the parabolic base flow
vanishing from the ˆv andψ̂ equations. With the Squire modes
always stable, the stability properties in this case hence reduce
to those of the hydrostatic case.

Non-modal stability
Transient growth is considered first in figure 9 for

two-dimensional perturbations withβ = 0. For Re < 5773,
the maximum valuesGmax for transient growth are larger
than those for the standard Orr-Sommerfeld case (denoted
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Figure 9. Maximum transient growth of perturbation energy
Gmax(α,0,Re) computed forN = 150, M = 10, C = 50 and
Fe = 200 andT = 2000.
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Figure 10. Maximum transient growth of perturbation en-
ergy Gmax(0,β ,Re) computed forN = 150,M = 10,C = 50
andFe = 200 andT = 2000.

Gmax,OS). For example, atRe = 5000 andα = 1, we have
Gmax ≈ 125 compared toGmax,OS ≈ 30 for the pure Poiseuille
case.

A similar observation can be reported for the streamwise-
constant perturbations,α = 0. Figure 10 confirms the pres-
ence of strong transient growth; for example atRe = 1000 and
β = 0.35 we haveGmax ≈ 300 whileGmax,OS ≈ 10. It can be
further observed that in the governing equations, once adapted
to the caseα = 0, the cross-flowU is always multiplied byα
and thus vanishes for the caseα = 0.

It is interesting and instructive to determine the shape
of the optimal initial condition in physical space and ob-
serve how this initial condition evolves in time to yield the
maximum amplification of energy. For spanwise-independent
perturbations, figures 11 and 12 highlight that the transient
growth is due to an Orr-type mechanism, which describes
short-term instabilities based on the tilting of initial distur-
bances, originally opposing the mean shear, into its direc-
tion. Moreover, the non-symmetric EHD problem produces
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Figure 13. Disturbance energy forRe = 1000, α = 1 and
β = 0 (Orr mechanism).
an initial condition which is clearly non-symmetric with re-
spect to the channel center-line. Figure 13, besides verifying

that these initial conditions in fact produce the expected total
energy growth and at the expected time, allows us to isolate
the two contributions in form of the kinetic and electric en-
ergy; the latter is dominant, but at relevant times the electric
contribution is far from negligible, and reaches is maximum
quite sooner than the total energy.

For α = 0, on the other hand, the mechanism at work
is found to be a lift-up mechanism, where horizontal veloc-
ity perturbations are generated by the vertical lift-up of fluid
elements in the presence of mean shear.

Conclusions
In this work we have evaluated the complete linear stabil-

ity characteristics of a flow bounded by two plane walls and
driven by electroconvective motion and/or pressure-gradient
cross-flow. The long-term stability was already described in
the literature; here we suggest that finite values of charge dif-
fusion, previously neglected, could help explaining the dis-
crepancy between the critical value of the forcing parameters
measured in experiments and computed by numerical stud-
ies. A finite-time analysis has then shown the flow to present
transient-growth phenomena, although in absolute terms this
effect is not particularly strong, with a maximum amplifica-
tion of energy of about 5.

We have then addressed the more complex flow induced
by electroconvection in presence of a laminar Poiseuille cross-
flow. For this case too, modal and non-modal analyses have
been carried out. The result of asymptotic stability tells us that
the EHD instability is dominant at very lowRe, but at higher
Re is weakened by the cross-flow. Perhaps the most interest-
ing result comes from the non-modal analysis of the case with
cross-flow. Our preliminary analysis seems to hint at a mech-
anism responsible for a rather strong short-time instability. In
other words, the electroconvection-induced flow interactswith
the instability mechanisms naturally present in the Poiseuille
case to increase by orders-of-magnitude the short-time energy
growth of perturbations.
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