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Suppression of the transient energy growth in subcritical plane Poiseuille flow via feedback control
is addressed. It is assumed that the time derivative of any of the velocity components can be
imposed at the walls as control input and that full-state information is available. We show that it is
impossible to design a linear state-feedback controller that leads to a closed-loop flow system
without transient energy growth. In a subsequent step, state-feedback controllers—directly targeting
the transient growth mechanism—are designed using a procedure based on a linear matrix
inequalities approach. The performance of such controllers is analyzed first in the linear case, where
comparison to previously proposed linear-quadratic optimal controllers is made; further, transition
thresholds are evaluated via direct numerical simulations of the controlled three-dimensional
Poiseuille flow against different initial conditions of physical interest, employing different velocity
components as wall actuation. The present controllers are effective in increasing the transition
thresholds in closed loop, with varying degree of performance depending on the initial condition and
the actuation component employed. © 2011 American Institute of Physics. �doi:10.1063/1.3540672�

I. INTRODUCTION

Transient energy growth has been recognized as a pos-
sible mechanism explaining subcritical transition in wall-
bounded flows; in fact, subcritical flows may experience
large transient amplifications of the energy of perturbations
that could trigger nonlinear mechanisms and eventually lead
to transition to turbulence.1–3

In viscous shear flows, transient energy growth is related
to the non-normality of the linearized Navier–Stokes opera-
tor with respect to the energy inner product.4,5 In the past few
years, several investigators attempted to reduce the transient
growth phenomenon in Poiseuille and boundary layer flows
by employing wall actuation and applying linear control
theory to an appropriate discretization of the linearized equa-
tions. In their seminal work on feedback control of instabili-
ties in two-dimensional Poiseuille flow, Joshi et al.6 em-
ployed a compensator in the form of a constant-gain integral
feedback and demonstrated stabilization of the linearly un-
stable flow as well as attenuation of finite amplitude distur-
bances. They further pointed out that transient amplifications
in the flow energy may not be properly detected by the sen-
sors and also that the control itself may trigger nonlinear
mechanisms by introducing transient disturbances on short
times. Leveraging a state-space formulation obtained after
discretization of the boundary-controlled Orr–Sommerfeld–
Squire equations, optimal and robust control theory was ap-
plied to transitional channel flows by Bewley and Liu7 for a

single wavenumber pair and by Högberg et al.8 for a large
array of wavenumber pairs, leading to a reduction of the
maximum transient energy growth as well as an increase in
transition thresholds. It has recently been shown9 that the
linear coupling term in the Orr–Sommerfeld–Squire equa-
tions plays a role not only in the non-normal behavior of the
small perturbation dynamics but also in the self-sustaining
process of near-wall, low Reynolds number turbulence. This
evidence led investigators to test in turbulent channel flows
the optimal controllers designed on linearized flow models,
and encouraging results have been obtained in terms of drag
reduction.10–13 Feedback control of nonmodal disturbances
in boundary layer flows has been recently considered by
Corbett and Bottaro14 in the framework of optimal control
theory, while Zuccher et al.15 applied steady suction in the
attenuation of the growth of given optimal disturbances in a
Blasius boundary layer.

Although it has been demonstrated13 that optimal and
robust control laws are well suited for reducing the non-
normal behavior of fluid flow systems, to date no feedback
control law has been devised with the capability of ensuring
closed-loop monotonic stability when boundary actuation is
employed. It is therefore natural to ask whether such perfor-
mance can be obtained with a linear feedback and further
which control techniques are available to directly target the
transient growth mechanism. In the control literature, the
transient amplification of certain norms of the state bears the
name of peaking phenomenon and the monotonic stability
requirement is generally referred to as strict dissipativity.
Active controllers with the capability of targeting transient
norm amplifications have received attention in the analysis
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of a class of partially linear cascade systems16 and, more
recently, in conjunction with a linear matrix inequality �LMI�
approach.17,18 In a very recent paper, Whidborne and
McKernan19 extended these results, giving conditions on the
existence of a feedback controller ensuring the strict dissipa-
tivity of the closed-loop system. These results were then ex-
ploited by Whidborne et al.,20 who considered the feedback
control of a single wavenumber pair in plane Poiseuille flow
via LMI design and wall-normal blowing and suction, and by
Martinelli et al.,21 where LMI-based feedback controllers
have been designed and tested for an array of wavenumber
pairs. The present paper aims at expanding and completing
these recent results by showing first that it is impossible to
design a linear state-feedback controller ensuring the plane
Poiseuille flow—controlled via wall transpiration with any
velocity component—to be strictly dissipative. In the second
step, feedback control laws are designed using a LMI tech-
nique for an array of wavenumber pairs; their performance is
compared against that of optimal controllers in the linear
case and, furthermore, closed-loop transition thresholds are
evaluated for optimal initial conditions in the form of a pair
of oblique waves and antisymmetric streamwise vortices, at
the Reynolds number Re=2000, using different velocity
components as wall actuators.

II. MODEL OF THE SYSTEM

We consider the dynamics of three-dimensional small
perturbations to the laminar Poiseuille solution in a plane
channel. A Cartesian coordinate system is introduced, where
x, y, and z denote the streamwise, wall-normal, and spanwise
directions, and u, v, and w denote the corresponding pertur-
bation velocity components. The Navier–Stokes equations,
linearized about the laminar solution U�y�=Up�1− �y /��2�,
are nondimensionalized with the centerline velocity Up

and the channel half-width � and rewritten in the form of a
single equation for v one-way coupled to an equation for the
wall-normal vorticity �=�u /�z−�w /�x. Fourier transforma-
tion in the x and z direction yields the well-known Orr–
Sommerfeld–Squire form,

�v̇̃ = �− j�U� + j�U� + ��/Re�ṽ ,

�1�
�̇̃ = �− j�U��ṽ + �− j�U + �/Re��̃

at the wavenumber pair �� ,��. Here, the tilde denotes
Fourier coefficients, the dot denotes time derivative, the
prime denotes y differentiation, �2=�2+�2, j is �−1, and
�=d2 /dy2−�2.

We select boundary conditions representing time-varying
wall transpiration on any of the velocity components at the
two channel walls �“vectorized transpiration”�. In turn, this
results in inhomogeneous Dirichlet and Neumann conditions
on ṽ, as well as inhomogeneous Dirichlet conditions on �̃:

ṽ�y = � 1,t� = ṽu,l�t� ,

� ṽ/�y�y = � 1,t� = ṽu,l� �t� , �2�

�̃�y = � 1,t� = �̃u,l�t� .

A standard lifting procedure8 is then employed, i.e., the un-
knowns are rewritten as homogeneous components �satisfy-
ing homogeneous boundary conditions� plus inhomogeneous
components; thus,

ṽ�y,t� = ṽh�y,t� + fu�y�ṽu�t� + f l�y�ṽl�t� + gu�y�ṽu��t�

+ gl�y�ṽl��t� ,

�3�
�̃�y,t� = �̃h�y,t� + hu�y��̃u�t� + hl�y��̃l�t� ,

where fu, f l, gu, gl, hu and hl are polynomials in y chosen to
satisfy unitary boundary conditions for each lifted compo-
nent appropriately.

We discretize the homogeneous components ṽh and �̃h in
the wall-normal direction using a modified Chebyshev series
cardinal function basis,

ṽh�y,t� = �
n=0

N−4

	n
DN�y�av,n�t� ,

�4�

�̃h�y,t� = �
n=0

N−2

	n
D�y�a�,n�t� ,

where the modified Chebyshev functions 	n
DN�y� and 	n

D�y�
implicitly enforce the required homogeneous Dirichlet and
Neumann boundary conditions, lead to good conditioning of
the discrete Laplacian operator and no spurious modes are
generated.22 The Orr–Sommerfeld–Squire equations are then
evaluated on a set of Gauss–Lobatto collocation points in the
y direction and rearranged to have the time rate of change of
actuation velocity as an input.8 This results in the linear time-
invariant system model23

ẋ�t� = Ax�t� + Bu�t�, x�0� = x0,

where Ā and B̄ are constant system and input matrices, and u
and x̄ are the respective input and state vectors. As noted in
previous work,8 the natural outcome of this procedure is an
augmented state-space form, where additional integrators as-
sociated with the values of the input velocity components at
the walls are explicitly introduced. Consequently, the open-

loop dynamics of the system above �i.e., setting B̄=0� is
different from the dynamics of the original unactuated sys-
tem �where the velocity at the walls is fixed by the no-slip
condition�. This terminology will be used throughout the pa-
per to distinguish between the two cases.

The kinetic energy per unit mass of flow perturbations in
the volume V,
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E =
1

2V
�

V

u2 + v2 + w2dV ,

can be expressed as a function of the state vector x̄ using
the continuity equation, the definition of �, and Parseval’s
identity,

E = �
��,��

Ẽ��,�� = �
��,��

x̄HQ��,��x̄ ,

where the matrix Q is a Hermitian, positive definite matrix;
here, the superscript H denotes conjugate transpose. In the
following, we have transformed the state vector via the
change of variable x=Cx̄ �with C being the Cholesky factor
of Q� in order to rewrite the system dynamics as

ẋ�t� = Ax�t� + Bu�t�, x�0� = x0, �5�

such that the system energy is directly given by the
Euclidean norm xHx.5,23

III. CLOSED-LOOP MONOTONIC STABILITY

We consider the linear time-invariant system model �5�
and further assume that BHB
0, that is, B has full column
rank �i.e., all the actuators are independent—a condition that
is trivially satisfied in the present problem�. Contraction
analysis for this kind of system has been presented by
Whidborne and McKernan19 and, in the general case of non-
linear systems, by Lohmiller and Slotine.24 In particular, re-
ferring to the linear case, it has been shown19 that there exists
a static state-feedback controller u=Kx, where K is a con-
stant matrix, such that the closed-loop system has strict dis-
sipativity �i.e., energy xHx decays monotonically from all
initial conditions x0�, if and only if

B��A + AH�B�H � 0 or BBH 
 0, �6�

where B� is the left null space of B. Additionally,19 if no
static controller that achieves strict dissipativity exists, then
no dynamic state-feedback controller, where u is given from
x by the dynamic system

ẋk�t� = Akxk�t� + Bkx�t�, xk�0� = xk0, �7�

u�t� = Ckxk�t� + Dkx�t� , �8�

where Ak, Bk, Ck, and Dk are constant matrices and xk are
controller states, exists either.

It is immediate to verify that the second criterion in Eq.
�6� is never satisfied in the present system, as the Hermitian
matrix BBH is never positive definite but it is always positive
semidefinite because the dimension of the input vector is
always smaller than that of the state vector. In order to have
BBH
0, a number of independent actuators equal to the
number of flow states is required; this is a situation that is
unlikely to occur in practical flow control problems, where
normally actuators are placed at the walls. Even when vol-
ume forcing is available, this condition is unlikely to be sat-
isfied since practical volume forces are not as flexible as to
enforce an arbitrary force distribution in the entire flow do-
main at any time instant.

The first algebraic criterion in Eq. �6� is equivalent to
requiring that the portion of the system dynamics that is not
accessible by the controls must be dissipative. Verifying this
criterion is not trivial. Here, we evaluate it numerically in
order to identify those regions in the �� ,� ,Re� parametric
space where subcritical Poiseuille flow may be rendered
monotonically stable by feedback transpiration. To this aim,
the state-space model �5� is first obtained on a fine grid and,
as suggested by Reddy and Henningson,2 a limited number
Nt of eigenfunctions is retained, discarding those correspond-
ing to highly damped and poorly resolved eigenvalues. Prop-
erly rescaling the variables such that energy is written as an
Euclidean norm leads to a reduced order model Ar, Br, and
the negative-definiteness of the corresponding matrix
Br

��Ar+Ar
H�Br

�H in Eq. �6� is verified by computing its
maximum �real� eigenvalue �max. Figure 1 shows the present
result on the �Re,�� plane for �=0, along with the well-
known result on the transient growth dependence in plane
Poiseuille flow2 �i.e., the unactuated case�. The white area
corresponds to the domain where the unactuated system is
monotonically stable, while the shaded area is the region
where the unactuated system admits transient energy growth.
Solid lines correspond to isocontours of �max, and it appears
that the contour �max=0 lies on the very boundary between
the shaded and the white areas, implying that the Hermitian
matrix Br

��Ar+Ar
H�Br

�H is indefinite when the unactuated
system is not monotonically stable. An analogous result is
reported in Fig. 2, where isocontours of �max are reported on
the plane �� ,��, at Re=120; again, the contour �max=0 lies
on the boundary between the regions of monotonic and non-
monotonic stability. From the aforestated theorem,19 this im-
plies that it is not possible to design a state-feedback control-
ler that ensures the closed-loop Poiseuille flow to be

FIG. 1. Numerical verification of the first algebraic criterion in Eq. �6�.
Lines: contours at constant �max�Re,��, at �=0. Levels are from 0.1 to 0.4
by 0.1 increments; the dashed line is the negative value. The shaded area
corresponds to the region where the unactuated system is not monotonically
stable, i.e., admits transient energy growth. The contour �max�Re,��=0 lies
on the boundary of the region, indicating that no state-feedback controller
can be designed to ensure strict dissipativity of the closed-loop system when
the unactuated system is not strictly dissipative. The results are obtained
with N=100, Nt=50.
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monotonically stable when the corresponding unactuated
flow is not.

This result shows an inherent limitation in the feedback
control of the transient growth mechanism when vectorized
wall transpiration in terms of time rate of change of zero
net-mass flux blowing/suction is employed. Note that vector-
ized transpiration, although being rather idealized, exploits
all the degrees of freedom available for boundary control in
the present problem; therefore, the present result is represen-
tative of a limiting situation. In a practical setting, actuator-
dependent constraints may introduce additional mechanisms
restricting the control authority even more. It is also worth
mentioning that strict dissipativity is a rather tough require-
ment for a controller bound to operate on a largely underac-
tuated flow, and, in fact, an approach based on strict dissipa-
tivity is, in general, quite conservative, i.e., some energy
growth is tolerable in transition control. Finally, it should be
emphasized that the present analysis is limited to linear feed-
back laws, and that the performance of nonlinear controllers
may be more promising. For example, it has been shown25

that introducing a nonlinearity in the form of gain-scheduling
on full-state-feedback laws led to relaminarization of low-Re
turbulence even employing wall actuation only, and that
adjoint-based optimization on the nonlinear turbulent flow
can be successfully employed in feedback relaminarization.11

IV. UPPER-BOUND MINIMIZING FEEDBACK
CONTROLLER

In order to design a state-feedback controller with the
capability of targeting the transient growth mechanism di-
rectly, an estimate of the maximum transient growth is re-
quired. Such estimate is obtained as an upper bound on the
maximum growth via Lyapunov theory. For the linear, time-
invariant, asymptotically stable system

ẋ = Ax, x�0� = x0,

it can be shown that an upper bound on the maximum tran-
sient growth G is given by19,20

Gu = �max�P��max�P−1� � G ,

where P=PH
0 satisfies the Lyapunov inequality

PA + AHP � 0.

A minimal upper bound can be obtained by solving the fol-
lowing minimization problem:26

min �:

PA + AHP � 0, P = PH 
 0 �9�

I � P � �I

where the last inequality ensures �
Gu. The problem stated
in Eq. �9� is a LMI generalized eigenvalue problem, and
standard solution methods based on interior point algorithms
are available.27

An analogous problem to that stated in Eq. �9� can be
obtained if the feedback minimization of the upper bound is
of interest. Indeed, let us consider the system �5� along with
a state-feedback control law in the form u=Kx so that in
closed-loop the system dynamics is described by

ẋ = �A + BK�x, x�0� = x0.

Leveraging the additional degrees of freedom due to the con-
troller gains K, we move to minimizing the closed-loop up-
per bound on the maximum transient growth. The associated
Lyapunov inequality now reads

PA + AHP + PBK + KHBHPH � 0.

This inequality can be rewritten in the LMI form by recalling
that a similarity transformation preserves the eigenvalues.
Therefore, defining Q=P−1 and Y=KQ, the closed-loop
upper-bound minimization problem can be written as26

min �:

AQ + QAH + BY + YHBH � 0, Q = QH 
 0,

�10�
I � Q � �I ,

	Q YH

Y �2I

 
 0,

where the last additional inequality ensures a limit in the
control effort in the form maxt�0�u�2��2. Problem �10� has
to be solved for Q, Y, and �; controller gains are obtained
from K=YQ−1. This problem is again a LMI generalized
eigenvalue problem that can be solved using standard
methods.27

V. RESULTS AND DISCUSSION

LMI controllers are designed wavenumberwise using the
model of the system �5� and the design equation �10�. In
particular, we consider each actuation component �u, v, or w
on both walls� independently; a limit on the control effort
�=10, kept constant in wavenumber space, is used in the
design of all controllers. In the design procedure, the linear
equations pertaining to each wavenumber pair are discretized

FIG. 2. Numerical verification of the first algebraic criterion in Eq. �6�.
Results obtained for Re=120; levels are from 0.1 to 0.2 by 0.05 incre-
ments. For details, see caption of Fig. 1.
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using N=100 Chebyshev polynomials, and modal truncation
at Nt=54 �the maximum affordable size of the computational
problem� is performed prior to the actual solution of the
generalized eigenvalue problem �10�. In addition to remov-
ing poorly resolved dynamics, modal truncation proved to be
necessary due to the exacting memory requirements of the
existing LMI solvers �scaling as �Nt

6�; in performing modal
truncation, it was thoroughly verified that the reduced order
model preserves the linear transient energy growth of the
unactuated system.

A. Linear analysis

The performance of LMI controllers is evaluated first in
the linear setting at Re=2000; in particular, perturbations at
two representative wavenumber pairs are considered,
namely, an oblique wave ��=1, �=1� and a streamwise
vortex ��=0, �=2�. In the results reported here, the effec-
tiveness of different actuation components is also addressed.

The analysis reported in Sec. III shows that the closed-
loop system will have a non-normal behavior; it is therefore
natural to contrast the maximum closed-loop transient
growth G with the open-loop one in order to verify that a
consistent reduction in G is obtained via the minimization in
Eq. �10�. The results, obtained for the same truncated system
used in the design and for the two wavenumber pairs consid-
ered, are reported in Table I. It is shown that, in both the
oblique wave case and the streamwise vortex case, the solu-
tion of Eq. �10� leads to a closed-loop system experiencing a
reduced maximum transient energy growth. In particular, for
the oblique wave case, v is the most effective actuation com-
ponent, whereas actuating with w is most effective in the
streamwise vortex case. The performance of the present con-
trollers is further compared against full-state controllers de-
signed with the LQR approach,23 considered in a similar
transition problem by Högberg et al.8 The aim of the LQR
control is the minimization of the time integral of the pertur-
bation energy, while keeping the time integral of the control
effort as low as possible; in fact, the control objective is
given in terms of the closed-loop minimization of a func-
tional in the form

J = �
0

+�

x̄HQx̄ + �uHudt .

This is substantially different from the control objective of
the present LMI formulation �10�, which considers bounds

on the disturbance energy and control expenditure;
therefore—at a fixed control expenditure—LMI controllers
can be used to estimate a possible best performance �in terms
of peaking suppression� of other control strategies. In order
to present a fair comparison between the LQR and the LMI
formulation, we iteratively design and test a LQR controller
keeping Q fixed �the same used in LMI design� and � as a
free parameter, and we evaluate the integral of the control
energy 0

�uHudt in closed loop until it matches the value
computed for the LMI controller. The closed-loop systems,
controlled via both LQR and LMI gains, are tested against
the respective optimal perturbations using v-actuation for the
oblique wave case and w-actuation for the streamwise vortex
case �the best performance cases reported in Table I�; further-
more, for the streamwise vortex, we consider the antisym-
metric �with respect to the y=0 plane� optimal perturbation.
The time evolution of the perturbation energy is displayed in
Figs. 3 and 4. The results show that at a given control ex-

TABLE I. Maximum transient energy growth G for the open-loop and
closed-loop cases, for the oblique wave case ��=1, �=1� and the stream-
wise vortex case ��=0, �=2�, using different actuation components on
both walls at Re=2000.

Oblique waves Streamwise vortices

Open-loop Closed-loop Open-loop Closed-loop

u-actuation 67.62 33.04 785.93 635.83

v-actuation 66.81 11.84 33 126.72 129.23

w-actuation 67.13 32.70 163 123.13 85.90
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0

5
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15

t

E
(t

)
/
E

0

FIG. 3. Time evolution of the perturbation energy for the closed-loop sys-
tem controlled using LMI gains �� and LQR gains � �, actuation using
v. The initial condition for the two systems is the respective closed-loop
optimal perturbation, and the LQR gains are iteratively designed so that the
energy expense over the simulated time horizon for the two closed-loop
systems is the same. The results are for ��=1, �=1� at Re=2000.
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FIG. 4. Time evolution of the perturbation energy for the closed-loop sys-
tem controlled using LMI gains �� and LQR gains � �, actuation using
w. The initial condition for the two systems is the respective closed-loop
antisymmetric �with respect to the y=0 plane� optimal perturbation, and the
LQR gains are iteratively designed so that the energy expense over the
simulated time horizon for the two closed-loop systems is the same. The
results are for ��=0, �=2� at Re=2000.
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penditure, the worst-case initial condition for the LMI-
controlled system experiences a lower amplification than the
corresponding perturbation for the LQR-controlled system;
the peak for the LMI-controlled system occurs at later times
for the streamwise vortex case. Despite the mild reduction in
maximum amplification, the results shown here suggest that
a control design technique directly targeting the growth
mechanism is able to better exploit the degrees of freedom in
the controller to achieve a minimal transient peaking of the
energy.

The performance of LMI controllers is also evaluated
against optimal initial conditions for the unactuated flow, and
the results are reported in Figs. 5 and 6. Since the closed-
loop system has additional state equations associated with
the dynamics of wall velocity components used as actuators,
these values are set to zero, assuming that at initial time the
open-loop flow satisfies the no-slip and no-transpiration con-
dition at the walls. In particular, for the oblique wave case, it
is shown that actuating with v reduces the maximum ampli-
fication of the optimal disturbance by a factor �8.2, whereas
a less effective reduction �by a factor �2.5� is obtained using

u or w. Furthermore, the growth curves in these latter cases
are very close to each other, as the effect of actuators on the
oblique wave is symmetric. In the antisymmetric streamwise
vortex case, the most effective components are v and w �re-
duction by factors �6.3 and �9.9, respectively�, whereas u
has a quite poor performance �amplification reduced by a
factor �1.2�. The differences in performance between u and
w may be interpreted with a geometric argument, as for a
streamwise-invariant perturbation the u component acts in a
weakly controllable direction. It is also noteworthy that in all
these cases, the control action reduces the time interval after
which the initial disturbance gets to its maximum amplifica-
tion.

It is finally worth emphasizing that when the closed-loop
system experiences initial conditions in the form of optimal
perturbations for the unactuated flow, the LMI and LQR per-
formance is practically equivalent for a given global control
effort. Considering the best performing LMI controllers
�v- and w-actuation, respectively�, the results are given in
Figs. 7 and 8 for the oblique wave and streamwise vortex.
For the optimal oblique wave �Fig. 7�, the linear evolution of
the perturbation energy using LQR control matches almost
perfectly that obtained with the LMI controller. In the case of
antisymmetric streamwise vortex, we obtain a slightly larger
maximum amplification for the LQR that is, however, fol-
lowed by a faster transient to zero if compared to the LMI
case. The results reported in Figs. 7 and 8 are substantially
independent on a further decrease of the value of �: no sig-
nificant changes in the time evolution of the perturbation
energy are obtained, but at a far larger expense. This indi-
cates that these results are close to the limit of small control
weight.

B. Closed-loop transition thresholds

After these numerical experiments in the linear setting,
the performance of LMI-based controllers in terms of transi-
tion delay capabilities has been verified using direct numeri-
cal simulations �DNSs� of transitional Poiseuille flow at
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FIG. 5. Linear dynamics of the perturbation energy for the unactuated case
�� and closed-loop case actuating with u �−·�, v � �, and w �−+�. The
results are for ��=1, �=1� at Re=2000; in all cases, the initial condition is
the optimal disturbance for the unactuated flow.
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FIG. 6. Linear dynamics of the perturbation energy for the unactuated case
�� and closed-loop case actuating with u �−·�, v � �, and w �−+�. The
results are for ��=0, �=2� at Re=2000; in all cases, the initial condition is
the antisymmetric optimal disturbance for the unactuated flow.
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FIG. 7. Comparison of the linear evolution of the perturbation energy in
unactuated case ��, closed-loop using LMI controller �−·�, and closed-loop
using LQR controller � �. The results are for ��=1, �=1� at Re
=2000 ��=0.5�, actuation with v, optimal perturbation for the unactuated
flow used as the initial condition.
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Re=2000 using an existing computer code and computing
system.28 Controllers are tested against initial conditions in
the form of

�a� a pair of oblique waves ��0=1 , �0= �1� in a box of
size 2��2�2� and

�b� antisymmetric streamwise vortices ��0=0 , �0=2� in a
box of size 2��2��.

These initial conditions are obtained by computing the
optimal perturbations for the unactuated flow at the corre-
sponding wavenumber pairs, and specifically for the stream-
wise vortices, the optimal initial condition having antisym-
metric �with respect to the center plane y=0� distribution of
wall-normal velocity is considered, as it provides the optimal
transition time in the nonlinear case.29 Random noise, in the
form of a random combination of the first 30 Stokes
modes—ordered by decreasing real part of the corresponding
eigenvalues—is added on the wavenumber array
�0, �1, �2��0 and �0, �1, �2��0, and the noise energy is
chosen as 1% of the total perturbation energy. The resulting
optimal perturbations are identical to those reported in the
previous works.8,29

In order to reduce the computational problem of control
design to an affordable size, LMI controllers are designed on
the same array of wavenumber pairs where random noise is
introduced. Furthermore, the control effort tuning parameter
is set at �=10, a value that is derived from preliminary tests
and previous work on the control of the linearized dynamics
of streamwise vortices.22 The value of the parameter � has
been kept constant in wavenumber space; however, it should
be emphasized that this parameter could be a function of the
wavenumber pair—thus providing room for optimization of
the control performance.

The performance of LMI controllers is quantified by
evaluating the closed-loop transition threshold29 of a given
initial condition for all the wall actuation components. The
mixed spatial discretization �fourth-order compact finite dif-
ferences in the y direction and Fourier expansion in the x and
z directions� employs 64 grid points in y and 16�64 modes

in x and z. Time integration is performed via the usual semi-
implicit approach, where nonlinear terms are advanced ex-
plicitly using a low-storage Runge–Kutta algorithm, whereas
linear diffusion terms are advanced implicitly via a Crank–
Nicholson scheme. Each simulation was run over a time win-
dow of 2000 nondimensional time units that proved suffi-
ciently long to ensure that a laminar or a turbulent state was
reached after the initial transient growth of the perturbation
energy. In order to obtain the thresholds reported in Table II,
a bisection algorithm was employed; this procedure requires
a large number of simulations, corresponding to approxi-
mately 3 months of CPU time.

The open-loop transition thresholds reported in Table II
agree with previous findings.29 The results summarized in the
table indicate that the LMI controller is able to increase the
transitional energy of the initial conditions considered. In
particular, a synthetic performance measure is indicated in
the table as improvement factor �IF�, corresponding to the
ratio between the threshold energy computed in the con-
trolled case over that corresponding to the unactuated flow.
In general, for both the oblique waves and the streamwise
vortices, actuation with the wall-normal velocity v outper-
forms actuation with the other components. This behavior is
expected, as forcing with wall-parallel components affects
the flow by means of viscous diffusion only, whereas forcing
with v introduces an additional nonzero momentum flux at
the boundary. The improvement factors associated with the
oblique wave case are higher than those pertaining to the
streamwise vortex case when using u and v-actuation. For
the v-component case, this is coherent with the previous
works8 and can be interpreted physically by the argument
that targeting oblique waves mitigates the subsequent devel-
opment of streamwise vortices, therefore reducing the
strength of the associated streak instability. The u component
provides the overall worst performance in the streamwise
vortex case, a result that can be interpreted as a consequence
of the particular geometrical configuration. In fact, with re-
spect to a streamwise-invariant spatial structure, u-actuation
works in an approximately null direction, whereas actuation
with w is better-suited, as shown by its improvement factor.
A similar geometrical interpretation can be given for the al-
most equal improvement factors obtained with u and w when
an pair of oblique waves is given as initial condition.

The results reported in Table II for the thresholds ob-
tained using v-actuation are in qualitative agreement with the
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FIG. 8. Comparison of the linear evolution of the perturbation energy in
unactuated case ��, closed-loop using LMI controller �−·�, and closed-loop
using LQR controller � �. The results are for ��=0, �=2� at Re
=2000 ��=8.0�, actuation with w, antisymmetric optimal perturbation for
the unactuated flow used as the initial condition.

TABLE II. Open-loop and closed-loop transition thresholds as measured by
DNS. The values of transitional energy are given with an uncertainty of
�3%. The column labeled IF indicates the improvement factor in the closed
loop with respect to the unactuated case with an initial condition having the
same spatial structure.

Oblique waves Streamwise vortices

Thres. IF Thres. IF

Open-loop 2.39�10−6 6.47�10−6

u-actuation 9.89�10−6 �4.14 8.57�10−6 �1.32

v-actuation 3.04�10−5 �12.72 4.86�10−5 �7.51

w-actuation 9.77�10−6 �4.09 3.86�10−5 �5.97
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previous work using the LQR controllers;8 however, in quan-
titative terms the LQR approach outperforms the present
LMI approach. In particular, the improvement factors re-
ported with LQR for oblique waves and streamwise vortices
at Re=2000 are IF=102 and IF=10, respectively;8 therefore,
LQR controllers seem to perform substantially better than
LMI controllers in the presence of oblique waves as initial
conditions. It should be emphasized, however, that such
comparison is not entirely appropriate. In fact, even if the
same energy norm is used to quantify the magnitude of ve-
locity disturbances, control laws are designed with different
parameters constraining the control effort. As a matter of
fact, the linear results reported in Figs. 5 and 6 show that the
LMI controller performs similar to the LQR controller for a
value of the LQR control weight �=0.5 and �=8.0, respec-
tively. These values are different from the value of �=0.01
used uniformly in wavenumber space in Ref. 8. A fair com-
parison between the two approaches is not possible in this
case; therefore, it is impossible to draw a conclusive state-
ment about the effectiveness of feedback minimization of
transient growth versus feedback minimization of the distur-
bance energy in transition delay.

As the ultimate goal of LMI controllers is to prevent
transition to turbulence, it is important to quantify the energy
efficiency of these controllers in the nonlinear case. For in-
stance, given a transitional initial condition, it is possible to
compare the energy expenditure of the controller to prevent
transition with the additional energy to be introduced into the
unactuated flow to compensate for the increase in friction
over the same time window �i.e., the time necessary for the
transient in the controlled flow to die out�. Referring to the
best performing cases in Table II, we consider actuation with
wall-normal velocity v and, in the two cases, initial condi-
tions having energy �3% below the corresponding closed-
loop threshold. Using the present nondimensionalization, a
conservative estimate of the energy required for the control
action in the time interval �0,T� can be given by11

Ec =
1

V
�

0

T �
Au,l

	�v3

2
� + �pv�
dAdt ,

where p is the fluctuating wall pressure and Au,l is the upper
and lower blowing/suction surface, whereas the additional
energy required to drive the unactuated flow against the in-
creased viscous drag on the same time interval is given by

E� =
1

V
�

0

T �
Au,l

1

Re
	 �U

�y
−

�Ulam

�y

dAdt .

The ratio Ec /E� reads 1.39�10−3 and 1.68�10−3 for the
oblique waves and streamwise vortex case, respectively. Fur-
thermore, linear tests using v-actuation have shown that Ec

can be of the same order of magnitude of the actual reduction
in maximum transient energy growth. Hence, these results
indicate that even if the energy expenditure due to the control
action is comparable to that experienced in the linear ampli-
fication of the optimal disturbance, it is nevertheless negli-
gible if compared to the potential energy saving due to tran-
sition prevention.

VI. CONCLUSIONS

The present work has considered the design of state-
feedback controllers specifically targeting the transient en-
ergy growth mechanism in laminar channel flow. It has been
shown that full transpiration at both walls and full-state
knowledge are not sufficient to ensure a monotonically stable
closed-loop system via a linear feedback law. Furthermore,
an advanced control design technique—based on a LMI
formulation—has been employed to design feedback control-
lers that have been tested in both the linearized setting and in
the nonlinear transitional flows.

Linear tests indicated that the LMI strategy allows to
obtain a consistent reduction of the maximum open-loop
transient growth. At a given global control expenditure over
a time window sufficiently long for the perturbations to de-
cay to zero, the LMI-controlled closed-loop system experi-
ences a lower transient energy amplification than a LQR-
controlled closed-loop flow. However, in the presence of an
optimal perturbation for the unactuated flow, the perfor-
mance of the two control strategies is practically equivalent.
The results obtained in the linear setting further indicate that
in the case of perturbations in the form of oblique waves and
streamwise vortices, the most effective actuation components
are v and w, respectively.

In the nonlinear case, it has been found that these con-
trollers are capable of increasing the threshold energy for
transition when initial conditions are given to the flow in the
form of oblique waves or streamwise vortices; the effective-
ness of different actuation components has been addressed,
indicating that wall blowing/suction is most effective in pro-
viding a higher closed-loop threshold energy. Additionally, in
transitional conditions, LMI controllers prove to be energy-
effective,, as the energy required by the control action is
negligible when compared to the energy saving due to avoid-
ing transition.

1K. M. Butler and B. F. Farrel, “Three-dimensional optimal perturbations in
viscous shear flow,” Phys. Fluids 4, 1637 �1992�.

2S. C. Reddy and D. S. Henningson, “Energy growth in viscous channel
flows,” J. Fluid Mech. 252, 209 �1993�.

3P. J. Schmid and D. S. Henningson, “Optimal energy density growth in
Hagen-Poiseuille flow,” J. Fluid Mech. 277, 197 �1994�.

4P. J. Schmid and D. S. Henningson, Stability and Transition in Shear
Flows �Springer, New York, 2000�.

5P. J. Schmid, “Nonmodal stability theory,” Annu. Rev. Fluid Mech. 39,
129 �2007�.

6S. S. Joshi, J. L. Speyer, and J. Kim, “A systems theory approach to the
feedback stabilization of infinitesimal and finite-amplitude disturbances in
plane Poiseuille flow,” J. Fluid Mech. 332, 157 �1997�.

7T. R. Bewley and S. Liu, “Optimal and robust control and estimation of
linear paths to transition,” J. Fluid Mech. 365, 305 �1998�.

8M. Högberg, T. R. Bewley, and D. S. Henningson, “Linear feedback con-
trol and estimation of transition in plane channel flow,” J. Fluid Mech.
481, 149 �2003�.

9J. Kim and J. Lim, “A linear process in wall-bounded turbulent shear
flows,” Phys. Fluids 12, 1885 �2000�.

10K. Lee, L. Cortelezzi, J. Kim, and J. L. Speyer, “Application of reduced-
order controller to turbulent flows for drag reduction,” Phys. Fluids 13,
1321 �2001�.

11T. R. Bewley, P. Moin, and R. Temam, “DNS-based predictive control of
turbulence: An optimal benchmark for feedback algorithms,” J. Fluid
Mech. 447, 179 �2001�.

12J. Kim, “Control of turbulent boundary layers,” Phys. Fluids 15, 1093
�2003�.

014103-8 Martinelli et al. Phys. Fluids 23, 014103 �2011�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1017/S0022112093003738
http://dx.doi.org/10.1017/S0022112094002739
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1017/S0022112098001281
http://dx.doi.org/10.1017/S0022112003003823
http://dx.doi.org/10.1063/1.870437
http://dx.doi.org/10.1063/1.1359420
http://dx.doi.org/10.1063/1.1564095


13T. R. Bewley, “Flow control: New challenges for a new Renaissance,”
Prog. Aerosp. Sci. 37, 21 �2001�.

14P. Corbett and A. Bottaro, “Optimal control of nonmodal disturbances in
boundary layers,” Theor. Comput. Fluid Dyn. 15, 65 �2001�.

15S. Zuccher, P. Luchini, and A. Bottaro, “Algebraic growth in a Blasius
boundary layer: Optimal and robust control by mean suction in the non-
linear regime,” J. Fluid Mech. 513, 135 �2004�.

16H. J. Sussmann and P. V. Kokotovic, “The peaking phenomenon and the
global stabilization of nonlinear systems,” IEEE Trans. Autom. Control
36, 424 �1991�.

17E. Plischke and F. Wirth, “Stabilization of linear systems with prescribed
transient bounds,” Proceedings of the 16th International Symposium on
Mathematical Theory of Network and Systems, Leuven, Belgium, 2004.

18E. Plischke, “Transient effects of linear dynamical systems,” Ph.D. thesis,
Universität Bremen, 2005.

19J. F. Whidborne and J. McKernan, “On the minimization of maximum
transient energy growth,” IEEE Trans. Autom. Control 52, 1762 �2007�.

20J. F. Whidborne, J. McKernan, and G. Papadakis, “Minimising transient
energy growth in plane Poiseuille flow,” Proc. Inst. Mech. Eng., Part I: J.
Syst. Control Eng. 222, 323 �2008�.

21F. Martinelli, M. Quadrio, J. McKernan, and J. F. Whidborne, “Feedback
control of transient energy growth in subcritical plane Poiseuille flow,” in

Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent
Transition, edited by D. S. Henningson and P. Schlatter �Springer, Swe-
den, 2009�, Vol. 18.

22J. McKernan, “Control of plane Poiseuille flow: A theoretical and compu-
tational investigation,” Ph.D. thesis, Cranfield University, 2006.

23S. Skogestad and I. Postlethwaite, Multivariable Feedback Control �Wiley,
Chichester, England, 1996�.

24W. Lohmiller and J. J. Slotine, “On contraction analysis for nonlinear
systems,” Automatica 34, 683 �1998�.

25M. Högberg, T. R. Bewley, and D. S. Henningson, “Relaminarization of
Re�=100 turbulence using gain scheduling and linear state-feedback con-
trol,” Phys. Fluids 15, 3572 �2003�.

26S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory �SIAM, Philadelphia, 1994�.

27Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in
Convex Programming �SIAM, Philadelphia, 1994�.

28P. Luchini and M. Quadrio, “A low-cost parallel implementation of direct
numerical simulation of wall turbulence,” J. Comput. Phys. 211, 551
�2006�.

29S. C. Reddy, P. J. Schmid, J. S. Baggett, and D. S. Henningson, “On
stability of streamwise streaks and transition thresholds in plane channel
flows,” J. Fluid Mech. 365, 269 �1998�.

014103-9 Linear feedback control of transient energy Phys. Fluids 23, 014103 �2011�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1016/S0376-0421(00)00016-6
http://dx.doi.org/10.1007/s001620100043
http://dx.doi.org/10.1017/S0022112004000011
http://dx.doi.org/10.1109/9.75101
http://dx.doi.org/10.1109/TAC.2007.900854
http://dx.doi.org/10.1243/09596518JSCE493
http://dx.doi.org/10.1243/09596518JSCE493
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1063/1.1608939
http://dx.doi.org/10.1016/j.jcp.2005.06.003
http://dx.doi.org/10.1017/S0022112098001323

