Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work

Conclusions

Drag-reducing characteristics of the generalized spanwise Stokes layer: experiments and numerical simulations

M.Quadrio

Politecnico di Milano

Tokyo, March 18th, 2010

(ロ) (同) (三) (三) (三) (三) (○) (○)

Outline

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

1 Travelling waves (DNS)

2 Travelling waves (experiment)

3 The GSL

4 How do the waves work?

・ロト・西ト・田・・田・ ひゃぐ

Outline

Travelling waves (DNS)

- Travelling waves (experiment
- The GSL
- How do the waves work?
- Conclusions

1 Travelling waves (DNS)

2 Travelling waves (experiment)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 3 The GSL
- 4 How do the waves work?
- 5 Conclusions

The travelling waves

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

The original idea: spanwise wall oscillation Quadrio & Ricco, JFM '04

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

$$w(x, y = 0, z, t) = A\sin(\omega t)$$

Unpractical

・ロット (雪) (日) (日)

The oscillating wall made stationary Viotti, Quadrio & Luchini, ETC 2007

Travelling waves (DNS)

- Travelling waves (experiment
- The GSL
- How do the waves work?
- Conclusions

- Existence of an optimal wavelength λ_{opt} = U_cT_{opt}
- Can be implemented as a passive device (sinusoidal riblets)

・ コット (雪) (小田) (コット 日)

The sinusoidal riblets A new concept under experimental testing

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

 Promising roughness distribution

Better than straight riblets?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The traveling waves: a natural extension

Tr w

w (e

avelling	Purely temporal forcing	Purely spatial forcing
aves (DNS)	The oscillating wall:	The steady waves:
avening aves xperiment) ne GSL	$w = A \sin(\omega t)$	$w = A \sin(\kappa x)$
ow do the aves work?	Infinite phase speed	Zero phase speed
onclusions	Combined space-time forcing	
	The traveling waves:	
	$w = A \sin(\kappa x - \omega t)$ Finite phase speed $c = \omega/\kappa$	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Results from DNS (plane channel) Quadrio et al., JFM 2009

◆□▶★@▶★≧▶★≧▶ ≧ のQで

How much power to generate the waves?

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

- Map of P_{in} is similar to map of R!
- S and G may get very high

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Travelling waves (experiment

The GSL

How do the waves work

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Travelling waves (experiment

The GSL

How do the waves work

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Travelling waves (experiment

The GSL

How do the waves work

Conclusions

Outline

Travelling waves (DNS

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

1 Travelling waves (DNS)

2 Travelling waves (experiment)

How do the waves work?

Why?

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

A proof-of-principle experiment to:

- confirm drag reduction
- improve understanding of the travelling waves

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Main design choices

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions

- Cylindrical pipe
- Friction is measured through pressure drop
- Spanwise wall velocity: wall movement
- Temporal variation: unsteady wall movement
- Spatial variation: the pipe is sliced into thin, independently-movable axial segments

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The concept

Travelling waves (experiment)

The GSL

How do the waves work?

A global view

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work

Closeup of the rotating segments 60 slabs with 6 independent motors

Travelling waves (DNS

Travelling waves (experiment)

The GSL

How do the waves work

The transmission system Shafts, belts and rotating segments

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

The control system

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

Slab motion is feedback-controlled

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Tachimetric sensors
- Vertically-moving reservoir

Flow parameters

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions

- Water, Re = 4900 or $Re_{\tau} = 175$
- **Reference pressure drop** \approx 10 Pa!
- Anticorrosion device
- Pressure sensors flooded in water
- Friction factor verifies Prantl's empirical correlation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Experimental conditions

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Drag variation (1)

Travelling waves (experiment)

The GSL

How do the waves work

Drag variation (2)

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Comments

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions

Quantitative agreement between DNS and experiment is not expected:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Spatial transient
- Cylindrical vs planar geometry
- Difference (small) in *Re* and *A*
- Waveform effects

The discrete waveform

Fourier expansion of the discrete wave

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions

s=3

$$\tilde{w} = \frac{3\sqrt{3}}{2\pi} A \left\{ \sin\left(\omega t - \kappa x\right) + \frac{1}{2} \sin\left(\omega t + 2\kappa x\right) + \dots \right\}$$

s=6

$$\tilde{w} = \frac{3}{\pi} A \left\{ \sin\left(\omega t - \kappa x\right) + \frac{1}{5} \sin\left(\omega t + 5\kappa x\right) + \dots \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Integral representation of the R map

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

$$R(\omega,\kappa) = \int \int K(au,\xi) f_{\omega,\kappa}(au,\xi) d au d\xi$$

*f*_{ω,κ}(τ, ξ) is the sinusoidal wave (monocromatic)
 Kernel K empirically determined by fitting DNS results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The monocromatic R map

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The non-monocromatic wave

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work'

Conclusions

The generating wave does not need be monocromatic Suppose linear superposition:

$$ilde{R}(\omega,\kappa) = \int \int K(\tau,\xi) \left[f_{\omega,\kappa} + rac{1}{2} f_{\omega,-2\kappa}
ight] \mathrm{d} au \mathrm{d}\xi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The non-monocromatic \tilde{R} map

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Wiggles are predicted!

Travelling waves (experiment)

The GSL

How do the waves work

Conclusions

 Wiggles in the experimental data are discretization effects

Outline

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

1 Travelling waves (DNS)

2 Travelling waves (experiment)

3 The GSL

4 How do the waves work?

The spanwise laminar flow

- Travelling waves (DNS
- Travelling waves (experiment)

The GSL

How do the waves work'

Conclusions

w(y, t)

 $w(y, \mathbf{x})$

w(y, x - ct)

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Laminar: the GSL equation

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work'

Conclusions

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} = v \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

TSL (Stokes)

- SSL (Viotti et al, PoF 2009)
- one-way coupling with streamwise flow

The analytical solution

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

1 $\delta \ll h$ (translates into $\lambda/h \ll Re_b$) 2 Linear *u* profile

$$w(x, y, t) = A\Re\left\{Ce^{2\pi i(x-ct)/\lambda}\operatorname{Ai}\left[e^{\pi i/6}\left(\frac{2\pi u_{y,w}}{\lambda v}\right)^{1/3}\left(y-\frac{c}{u_{y,w}}\right)\right]\right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Spanwise turbulent flow agrees with the GSL

- Travelling waves (DNS)
- Travelling waves (experiment
- The GSL
- How do the waves work?
- Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Using the GSL solution (1) Turbulent (DNS) vs laminar (analytical) δ_{GSL}

Black points are "good" waves

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Using the GSL solution (2) Map of analytical δ_{GSL}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Using the GSL solution (3) R vs analytical δ_{GSL}

Black points are "good" waves

Travelling waves (experiment

The GSL

How do the waves work'

Conclusions

▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > の Q @

Outline

How do the waves work?

2 Travelling waves (experiment)

4 How do the waves work?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The near-wall convection velocity U_c Quadrio & Luchini, PoF 2003

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Near-wall physics 2: the turbulence lifetime T_{ℓ} Quadrio & Luchini, PoF 2003

Space-time autocorrelation of wall friction 4506 2253 ئىر 0 -2253 -50 50 100 150 200

waves (DNS)

waves (experiment

The GSL

How do the waves work?

Conclusions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

How the waves increase drag

Waves lock with the convecting structures
'Steady' forcing: c⁺ ~ U_c⁺

Travelling waves (DNS)

Travelling waves (experimen

The GSL

How do the waves work?

How the waves decrease drag

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

Drag reduction is proportional to δ_{GSL} (WHY?)
 Large δ_{GSl} ⇒ large T

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

■ Too large a *T* implies quasi-steady forcing

Limit to drag reduction Forcing must be unsteady

Oscillating wall

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

Forcing on a timescale ≫ *T*_ℓ does not yield DR
 Forcing timescale: oscillation period *T*

Limit to drag reduction Forcing must be 'unsteady'

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

Travelling waves

- Forcing on a timescale T_{ℓ} does not yield DR
- Timescale: oscillation period *T* as seen by the convecting structures

$$\mathscr{T} = \frac{\lambda}{U_c - c}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Waves and turbulent friction

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work

Conclusions

1 Travelling waves (DNS)

2 Travelling waves (experiment)

3 The GSL

How do the waves work?

Conclusions

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions

Streamwise-travelling waves:

 Useful for understanding drag-reduction mechanism (Flatland)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extremely energy-efficient
- Still incomplete understanding Example
- Issue of spatial discretization

Outlook

- Travelling waves (DNS)
- Travelling waves (experiment
- The GSL
- How do the waves work?
- Conclusions

Further understanding (why is $\delta_{GSL} \sim R$?)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Further increase in efficiency
- Further development of actuators
- Explore Re effects

Credits

Travelling waves (DNS)

Travelling waves (experiment

The GSL

How do the waves work?

Conclusions

- Pierre Ricco
- Fulvio Martinelli
- Claudio Viotti
- Franco Auteri
- Arturo Baron
- Marco Belan
- Paolo Luchini

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The scaling issue (1) Drag reduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The scaling issue (2)

Do streamwise vorticity fluctuations decrease?

- Travelling waves (DNS)
- Travelling waves (experiment
- The GSL
- How do the waves work?
- Conclusions

"The streamwise vorticity fluctuation near the wall is reduced by the spanwise wall oscillation."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

