Drag-reducing characteristics of the generalized spanwise Stokes layer: experiments and numerical simulations

M. Quadrio

Politecnico di Milano

Tokyo, March 18th, 2010
Outline

1. Travelling waves (DNS)
2. Travelling waves (experiment)
3. The GSL
4. How do the waves work?
5. Conclusions
1 Travelling waves (DNS)

2 Travelling waves (experiment)

3 The GSL

4 How do the waves work?

5 Conclusions
The travelling waves

Travelling waves (DNS)
Travelling waves (experiment)
The GSL
How do the waves work?
Conclusions
The original idea: spanwise wall oscillation
Quadrio & Ricco, JFM ’04

\[w(x, y = 0, z, t) = A \sin(\omega t) \]

- Large reductions of turbulent friction
- Unpractical

![Graph showing the effect of spanwise wall oscillation on turbulent friction](image)
The oscillating wall made stationary
Viotti, Quadrio & Luchini, ETC 2007

\[w(x, y = 0, z, t) = A \sin(\kappa x) \]

- Existence of an optimal wavelength
 \[\lambda_{opt} = U_c T_{opt} \]
- Can be implemented as a passive device (sinusoidal riblets)
The sinusoidal riblets
A new concept under experimental testing

- Promising roughness distribution
- Better than straight riblets?
The traveling waves: a natural extension

<table>
<thead>
<tr>
<th>Purely temporal forcing</th>
<th>Purely spatial forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>The oscillating wall:</td>
<td>The steady waves:</td>
</tr>
<tr>
<td>(w = A \sin(\omega t))</td>
<td>(w = A \sin(\kappa x))</td>
</tr>
<tr>
<td>Infinite phase speed</td>
<td>Zero phase speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combined space-time forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>The traveling waves:</td>
</tr>
<tr>
<td>(w = A \sin(\kappa x - \omega t))</td>
</tr>
<tr>
<td>Finite phase speed (c = \omega / \kappa)</td>
</tr>
</tbody>
</table>
Results from DNS (plane channel)
Quadrio et al., JFM 2009

Travelling waves (DNS)
Travelling waves (experiment)
The GSL
How do the waves work?
Conclusions
How much power to generate the waves?

- Map of P_{in} is similar to map of R!
- S and G may get very high
Power efficiency

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions
Power efficiency
Travelling waves (DNS)

How do the waves work?

Conclusions
Power efficiency

Travelling waves (DNS)
Travelling waves (experiment)
The GSL
How do the waves work?
Conclusions
Outline

1. Travelling waves (DNS)
2. Travelling waves (experiment)
3. The GSL
4. How do the waves work?
5. Conclusions
Why?

A proof-of-principle experiment to:
- confirm drag reduction
- improve understanding of the travelling waves
Main design choices

- Cylindrical pipe
- Friction is measured through pressure drop
- Spanwise wall velocity: wall movement
- Temporal variation: unsteady wall movement
- Spatial variation: the pipe is sliced into thin, independently-movable axial segments
The concept

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions
A global view
Closeup of the rotating segments
60 slabs with 6 independent motors
The transmission system
Shafts, belts and rotating segments
The control system

- Slab motion is feedback-controlled
- Tachimetric sensors
- Vertically-moving reservoir
Flow parameters

- Water, $Re = 4900$ or $Re_\tau = 175$
- Reference pressure drop ≈ 10 Pa!
- Anticorrosion device
- Pressure sensors flooded in water
- Friction factor verifies Prantl’s empirical correlation
Experimental conditions

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions
Drag variation (1)
Drag variation (2)

![Graph showing drag variation with different values of s=3 and s=6.](image)
Quantitative agreement between DNS and experiment is not expected:

- Spatial transient
- Cylindrical vs planar geometry
- Difference (small) in Re and A
- Waveform effects
The discrete waveform

Travelling waves (DNS)
Travelling waves (experiment)
The GSL
How do the waves work?
Conclusions
Fourier expansion of the discrete wave

Travelling waves (DNS)

Travelling waves (experiment)

The GSL

How do the waves work?

Conclusions

\[\tilde{w} = \frac{3\sqrt{3}}{2\pi} A \left\{ \sin (\omega t - \kappa x) + \frac{1}{2} \sin (\omega t + 2\kappa x) + \ldots \right\} \]

\[s=3 \]

\[\tilde{w} = \frac{3\pi}{\pi} A \left\{ \sin (\omega t - \kappa x) + \frac{1}{5} \sin (\omega t + 5\kappa x) + \ldots \right\} \]

\[s=6 \]
Integral representation of the R map

\[R(\omega, \kappa) = \int \int K(\tau, \xi) f_{\omega, \kappa}(\tau, \xi) d\tau d\xi \]

- $f_{\omega, \kappa}(\tau, \xi)$ is the sinusoidal wave (monocromatic)
- Kernel K empirically determined by fitting DNS results
The monocromatic R map
The non-monocromatic wave

The generating wave does not need be monocromatic
Suppose linear superposition:

\[\tilde{R}(\omega, \kappa) = \int \int K(\tau, \xi) \left[f_{\omega, \kappa} + \frac{1}{2} f_{\omega, -2\kappa} \right] d\tau d\xi \]
Travelling waves (DNS)
Travelling waves (experiment)
The GSL
How do the waves work?
Conclusions

The non-monocromatic \tilde{R} map
Wiggles in the experimental data are discretization effects
Outline

1. Travelling waves (DNS)
2. Travelling waves (experiment)
3. The GSL
4. How do the waves work?
5. Conclusions
The spanwise laminar flow

\[w(y, t) \]

\[w(y, x) \]

\[w(y, x - ct) \]
Laminar: the GSL equation

\[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} = \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) \]

- **TSL** (Stokes)
- **SSL** (Viotti et al, PoF 2009)
- one-way coupling with streamwise flow
The analytical solution

1. $\delta \ll h$ (translates into $\lambda/h \ll Re_b$)
2. Linear u profile

$$w(x, y, t) = \mathcal{A} \Re \left\{ Ce^{2\pi i(x-ct)/\lambda} Ai \left[e^{\pi i/6} \left(\frac{2\pi u_{y,w}}{\lambda v} \right)^{1/3} \left(y - \frac{c}{u_{y,w}} \right) \right] \right\}$$
Spanwise turbulent flow agrees with the GSL
Using the GSL solution (1)
Turbulent (DNS) vs laminar (analytical) δ_{GSL}

Black points are “good” waves

![Graph showing comparison between turbulent and laminar waves with black points indicating good waves.](image-url)
Using the GSL solution (2)
Map of analytical δ_{GSL}
Using the GSL solution (3)

R vs analytical δ_{GSL}

Black points are “good” waves
1. Travelling waves (DNS)
2. Travelling waves (experiment)
3. The GSL
4. How do the waves work?
5. Conclusions
The near-wall convection velocity U_c
Quadrio & Luchini, PoF 2003
Near-wall physics 2: the turbulence lifetime T_ℓ
Quadrio & Luchini, PoF 2003

Space-time autocorrelation of wall friction

![Graph showing space-time autocorrelation of wall friction](image-url)
How the waves increase drag

- Waves lock with the convecting structures
- 'Steady' forcing: $c^+ \approx U^+_c$
How the waves decrease drag

- Drag reduction is proportional to δ_{GSL} (WHY?)
- Large $\delta_{GSL} \Rightarrow$ large T
- Too large a T implies quasi-steady forcing
Limit to drag reduction
Forcing must be unsteady

Oscillating wall

- Forcing on a timescale $\gg T_\ell$ does not yield DR
- Forcing timescale: oscillation period T

![Graph showing the effect of oscillation amplitude on drag reduction](image-url)
Limit to drag reduction
Forcing must be ‘unsteady’

Travelling waves

- Forcing on a timescale $\gg T_{\ell}$ does not yield DR
- Timescale: oscillation period \mathcal{T} as seen by the convecting structures

$$\mathcal{T} = \frac{\lambda}{U_c - c}$$
Waves and turbulent friction

Four regions in each half-plane:

\[U_t^+ = U_w^+ \]

\[DR(\%) = 0 \]

\[T^+ = T_{th}^+ \]
1. Travelling waves (DNS)
2. Travelling waves (experiment)
3. The GSL
4. How do the waves work?
5. Conclusions
Conclusions

Streamwise-travelling waves:

- Useful for understanding drag-reduction mechanism (Flatland)
- Extremely energy-efficient
- Still incomplete understanding
- Issue of spatial discretization
Outlook

- Further understanding (why is $\delta_{GSL} \sim R$?)
- Further increase in efficiency
- Further development of actuators
- Explore Re effects
Credits

- Pierre Ricco
- Fulvio Martinelli
- Claudio Viotti
- Franco Auteri
- Arturo Baron
- Marco Belan
- Paolo Luchini
The scaling issue (1)
Drag reduction

Travelling waves (DNS)
Travelling waves (experiment)
The GSL
How do the waves work?
Conclusions
The scaling issue (2)
Do streamwise vorticity fluctuations decrease?

“The streamwise vorticity fluctuation near the wall is reduced by the spanwise wall oscillation.”