
Turbulent superfluid profiles in a counterflow channel
L. Galantuccia,b, C. F. Barenghib, M. Sciaccab,c, M. Quadrioa and P. Luchinid

a Dip. Ingegneria Aerospaziale, Politecnico di Milano, Italia; b School of Mathematics and Statistics, Newcastle University, UK;
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Introduction

The recent development of visualization techniques in
superfluid helium based on micron-size tracers [1, 2]
and laser-induced-fluorescence of metastable helium
molecules [3] has raised the possibility of experimen-
tally determining superfluid and normal fluid profiles and
the spatial distribution of quantised vortices in a chan-
nel.

In this work we are in particular interested in the tur-
bulent flow induced in a plane channel by heat transfer
(counterflow turbulence). It is well known that if the ap-
plied heat flux Q̇ is less than a small critical value Q̇c

then the heat is carried by the laminar Poiseuille flow of
normal fluid component, and the vortex–free superfluid
component flows uniformly in the opposite direction to
conserve mass. If Q̇ > Q̇c the superfluid component be-
comes turbulent, forming a disorganized tangle of quan-
tised vortices, while the normal fluid might still be lam-
inar or undergo a transition leading to a turbulent state
(Tough 1982, Melotte & Barenghi 1998).

We are concentrated on the intermediate heat transfer
regime, in which the normal fluid is still laminar, while
the superfluid forms a turbulent tangle. Within this flow
pattern, we consider three different vortex re-nucleation
regimes in order to conserve the vortex–line density and
therefore maintain a steady state.

The aim of this work [4] is to determine for the differ-
ent nucleation regimes considered the average steady–
state superfluid velocity profile vs(y) and the average
spatial distribution of the vortices n(y) at scales larger
than the average vortex separation ℓ but smaller than
the channel size D.

Model

We calculate the temporal evolution of N vortex–points
positions in an idealised two-dimensional plane channel
with walls at y = ±D/2 and periodic boundary condi-
tions at x = 0 and x = λ.

Half the N vortices have positive circulation Γj = κ and
half negative circulation Γj = −κ, where κ = 10−3 cm2/s
is the quantum of circulation in superfluid 4He. The
equation of motion of a vortex located at rj is (Schwarz
1988),

drj
dt

= vs0(t) + vsi(rj, t)

+ αs′(rj)× (vn(rj)− vs0(t)− vsi(rj, t))

+ α′(vn(rj)− vs0(t)− vsi(rj, t)),

where: s′j is the unit vector along the vortex j; α and α′

are mutual friction coefficients; vn = −Vn0[1− (2y/D)2]x̂,
Vn0 > 0 is the normal fluid profile which we assume
to be a Poiseuille classical profile; vsi is the induced
superfluid velocity field created by the vortices in rj;
vs0 = Vs0(t)x̂, Vs0(t) > 0 is the uniform superfluid flow
which enforces the counterflow condition of no net mass
flow along the channel.

To model the creation and destruction of vortices within
our model, when the distance between two vortex–
points of opposite circulation becomes smaller than a
critical value ǫ1 or when the distance between a vortex
and a boundary is less than ǫ2 = ǫ1/2, we perform a
numerical vortex reconnection and remove these vortices.

To maintain a steady state, when a vortex is removed a
new vortex of the same circulation is re-inserted into the
channel following three different re-nucleation regimes (in
red the corresponding three-dimensional superfluid vor-
ticity production mechanism):
• case (a) : randomly in the channel

(superfluid vorticity produced by the vortex tangle)

• case (b) : on the channel axis

• case (c) : near the walls
(superfluid vorticity produced by wall-pinned vortices)

Numerical Parameters

The governing equations solved numerically are writ-
ten in dimensionless form employing the following units
of length, velocity and time, respectively δc = D/2 =
4.55 × 10−3 cm , uc = κ/(2πδc) = 3.49 × 10−2 cm/s,
tc = δc/uc = 0.13 s. Non-dimensional quantities are de-
noted by the superscript ‘∗’.

We choose the parameters of the simulations taking into
account the experiments of Tough et al. (1979,1983):
T = 1.7◦K, D∗ = 2, λ∗ = 6, N1 = 1876 and N2 = 4800.
To make connection with experiments, we interpret
n = N/(λD) (number of vortex points per unit area)
as the vortex line density L (vortex length per unit vol-
ume), from which ℓ = n−1/2 is the average intervortex
spacing.

The values N1 and N2 lead respectively to ℓ∗1 ≈ 0.08
and ℓ∗2 ≈ 0.05 which correspond to the dimension-
less numbers L

1/2
1 D = 25 and L

1/2
2 D = 40 (typical

of counterflow experiments). The maximum normal
fluid velocities V ∗

n01
= 553.6 and V ∗

n02
= 882.3 are con-

sistently determined employing experimental data.

Vortex configurations
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FIGURE 1: Initial random vortex configuration (left) and steady state vor-
tex configuration (right) for case(a) andN2 = 4800. Positive and negative
vortices are respectively denoted by empty red and filled black circles.

Fig. 1 compares, for case (a) and N2 = 4800, the
steady state vortex configuration reached after a tran-
sient interval τ ∗a = 1 × 10−2 with the initial random con-
figuration shared by all three cases. A strong - but
not complete - polarization is seen to characterize the
steady state, in agreement with Barenghi et al. (2002).

Superluid Velocity Profiles
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FIGURE 2: Left. Coarse-grained superfluid velocityv̄∗s(y
∗) for case(a):

solid red linea1 for N = 1876, dot-dashed blue linea2 for N = 4800.
Normal fluid velocity profile forN = 1876 (solid green linevn1) and
N = 4800 (dot-dashed black linevn2). Right. v̄∗s(y

∗) for case(b): solid
red lineb1 for N = 1876; dot-dashed blue lineb2 for N = 4800. Dashed
green lineGb2: analytical laminar solution of HVBK equations deduced
applying Geurst’s approach (Geurst,1979) to Cartesian geometry.

Given the vortex configuration rj(t) (j = 1, · · ·N ) we
define a coarse-grained superfluid velocity v̄s by aver-
aging the components of the (microscopic) velocity vs

over channel strips of size ∆ in the y direction, such
that ℓ < ∆ < D (the limit ℓ ≪ ∆ ≪ D corresponds
to the Hall - Vinen - Bekarevich - Khalatnikov (HVBK)

equations).
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FIGURE 3: Coarse-grained superfluid velocitȳv∗s(y
∗) for case(c) and

N2 = 4800. Solid linesc2I (blue) andc2II (red) correspond respectively
to nucleation distances from the wallξ1 = ℓ andξ2 = ℓ/2. Dashed green
lineGc2: analytical laminar solution of HVBK equations.

Fig. 2 and 3 show the dependence of the profile v̄∗s(y
∗)

on N and on the nucleation regimes considered. Note
the exactly parabolic profile for case (a2), the agreement
between numerical and analytical solutions in large re-
gions of the channel and the opposite convexity shown
by curves (c) and curves (a) and (b).

Vortex Density Profiles

On the same lengthscale ∆ we define the average vor-
tex density n∗(y∗) and the average positive vortex den-
sity n∗

+(y
∗). The corrispondent profiles for N2 = 4800 are

plotted in Fig. 4.
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FIGURE 4: Vortex density profilesn∗(y∗) (left) and positive vortex den-
sity profilesn∗+(y

∗) (right) for N2 = 4800 and the nucleation regimes
considered in this work.

Note the uniform profile of n∗ (left) and the partial vortex
distribution polarization (right) for case (a), consistently
with Fig. 1. An even more intense polarization is ob-
served in case (b).

Conclusions

•Profiles of v̄∗s(y
∗) and n∗(y∗) show a strong depen-

dence on the re-nucleation models adopted; a depen-
dence on N is also clearly observed.

•Comparison of the vortex density profiles n∗ in Fig. 4
with experimental results obtained with the technique
described in [1] can

–establish the predominant superfluid vorticity pro-
duction mechanism

–predict the coarse-grained superfluid velocity profile
v̄∗s(y

∗) in a channel.
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