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A technique for measuring the mean impulse response function of stationary homogeneous isotropic turbu-
lence is proposed. Such a measurement is carried out here on the basis of direct numerical simulation �DNS�.
A zero-mean white-noise volume forcing is used to probe the turbulent flow, and the response function is
obtained by accumulating the space-time correlation between the white forcing and the velocity field. This
technique to measure the turbulent response in a DNS numerical experiment is a research tool in that field of
spectral closures where the linear-response concept is invoked either by resorting to renormalized perturbations
theories or by introducing the well-known fluctuation-dissipation relation �FDR�. Although the results obtained
in the present work are limited to relatively low values of the Reynolds number, a preliminary analysis is
possible. Both the characteristic form and the time scaling properties of the response function are investigated
in the universal subrange of dissipative wave numbers; a comparison with the response approximation given by
the FDR is proposed through the independent DNS measurement of the correlation function. Very good
agreement is found between the measured response and Kraichnan’s description of random energy-range
advection effects.
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I. INTRODUCTION

The concept of impulse response tensor of an isotropic
turbulent flow lies at the heart of the direct interaction ap-
proximation �DIA� theory, developed 50 years ago �1� by the
great theoretical physicist Kraichnan, to tackle the turbulence
closure problem analytically. Since then, within the renor-
malized perturbations approach, several closure strategies
have been proposed �a significant example is the local energy
transfer �LET� theory introduced by McComb �2��, eventu-
ally adopting a Lagrangian viewpoint, as done by Kraichnan
himself �3,4� and others �5,6�. In all such theories, either
Eulerian or Lagrangian, closure is achieved by means of a
closed set of integro-differential equations, where the un-
knowns are the two-point two-time velocity correlation ten-
sor and the response tensor itself. An exception is LET,
where the response tensor is replaced with a renormalized
propagator tensor which connects the velocity correlations at
different times, in close analogy with the well-known
fluctuation-dissipation relation of the classical statistical
physics. Recently, Kiyani and McComb �7� showed how a
renormalized response tensor relating the two-point covari-
ance at different times can be derived; the corresponding
relationship reduces to a fluctuation-dissipation relation
�FDR� form, still within the theoretical framework of
second-order renormalized perturbations, by introducing the
so-called time ordering approach to reconcile the time sym-
metry of the correlation with the causality of the response.

During the last decades, several statistics of homogeneous
isotropic turbulence �HIT�, either computed with well-
resolved direct numerical simulations or obtained from ex-
periments, have been compared to the corresponding theoret-
ical predictions at increasing values of Re� �8�, in the

statistically stationary as well as in the freely decaying re-
gime. Encouraging results both for the LET theory and vari-
ous Lagrangian closures have been reported �6,9–11�. Up to
the present day, however, such a comparison for the impulse
response function has never been addressed, owing to the
lack of �experimental or numerical� information about it.
Missing such a comparison is not a minor issue for Eulerian
closure theories: as stressed in Ref. �9�, the differences
among the various theoretical approaches have their roots in
the form of the response or propagator equation, whereas the
covariance equation is most often treated in equivalent ways.
Furthermore, if the response and the two-point covariance
were available, the degree of approximation involved in us-
ing the FDR in the context of HIT could be straightforwardly
evaluated, indirectly gathering information about the invari-
ant probability distribution of the turbulent system �12�.

In recent years Luchini et al. in Ref. �13� proposed an
original method to carry out an Eulerian direct-numerical-
simulation �DNS�-based measurement of the mean impulse
response of a turbulent flow and described the response func-
tion of a fully developed turbulent channel flow to small-
amplitude perturbations applied at the wall. That study was
conceived in the framework of turbulence control �hence the
emphasis on wall flows and wall forcing�; due to lack of
isotropy, the response tensor is quite complicated and does
not directly relate to the previous isotropic theories. How-
ever, the proposed measurement technique provides us with
the required tools to obtain the impulse response tensor for
HIT, where the response function shall be intended to de-
scribe the response of turbulence to volume forcing. The
present paper therefore aims at measuring the Eulerian HIT
response, presenting preliminary results, obtained at low val-
ues of Re�, which will enable us to analyze the characteristic
form and time scales of the response and to compare them
with theoretical predictions and assumptions.

The paper is organized as follows. In Sec. II, the defini-
tion of the impulse response is briefly reviewed to introduce
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the measurement technique, which is numerically validated
against the available analytical viscous solution, and to dis-
cuss accuracy issues. In Sec. III the actual response function
is presented and analyzed with reference to the theoretical
background of renormalized perturbations and FDR. Lastly,
Sec. IV is devoted to a concluding discussion.

II. MEASURING THE RESPONSE FUNCTION BY DNS

A. Definition of the impulse response function

Following Ref. �14�, the most general definition in wave-
vector space � of the instantaneous impulse response tensor
of a turbulent velocity field u�� , t� to an external volume
force f�� , t� is given by the following input-output relation-
ship between infinitesimal perturbations � �note the different
notation from the Dirac delta function �� · ��:

�ui��,t� =� �
−�

t

Hin��,��,t,t���fn���,t��dt�d��. �1�

It is important to underline that perturbations assume here
a stochastic meaning since they are superimposed to a par-
ticular random realization of u, which itself is a solution of
the fully nonlinear Navier-Stokes equations �NSEs� in Fou-
rier space. Therefore, Hin�� ,�� , t , t�� possesses a random na-
ture, and an integral formulation not only in time but also in
wave-vector space is required. In fact the instantaneous re-
sponse tensor plays the role of a tangent Green’s function,
related to a random and nonlinear state, and satisfies the
instantaneous response equation

� �

�t
+ ��2�Hin��,��,t,t��

= 2Mijm���� uj�p,t�Hmn�� − p,��,t,t��dp

+ Pin������� − �����t − t�� , �2�

which can be derived through a stochastic Green’s-function
formalism applied to the linearized form of Fourier-
transformed NSEs. In Eq. �2� Mijm��� is the inertial transfer
operator given by

Mijm��� = − i/2��mPij��� + � jPim���� , �3�

and Pij��� is the projection tensor in wave-vector space, ex-
pressed as

Pij��� = �ij − �−2�i� j . �4�

The locality of the response tensor in wave-vector space fol-
lows only after averaging:

�Hin	 = Hin��,t,t����� − ��� . �5�

Lastly, exploiting statistical isotropy and stationarity re-

sults in scalar response functions, respectively, Ĝ and G, de-
fined as follows:

Hin��,t,t�� = Pin���Ĝ��,t,t�� , �6�

G��,�� = Ĝ��,t,t − �� . �7�

The causality property holds for both the previous functions;
hence,

G��,�� = 0 for � � 0, ∀ � . �8�

This is obviously a consequence of the realizability of the
dynamical system that is being described through its impulse
response. As indicated by Kraichnan �1�, the scalar response
is a real unit-bounded function,


G��,��
 � G��,0+� = 1, ∀ � 	 0, ∀ � . �9�

B. Direct numerical simulation

The measurement of G described in this paper is carried
out by means of a forced DNS of stationary HIT on a cubic
domain, whose edge length L is chosen to be L=2
 for
convenience, so that the fundamental wave number is �0
=2
 /L=1 without loss of generality. A numerical code has
been developed on purpose and equipped with parallel
�shared-memory� computing capabilities. The code imple-
ments a classical Galerkin-Fourier scheme applied to the
velocity-vorticity formulation of the incompressible Navier-
Stokes equations. In the present context, this formulation
presents interesting advantages in terms of memory require-
ments. Exact removal of the aliasing error is obtained with
the 3/2 zero-padding rule; time integration is carried out by
means of a third-order low-storage Runge-Kutta �William-
son� scheme; see Refs. �15,16� for additional numerical de-
tails. The forcing scheme has been carefully implemented
following the provisions stated in Ref. �17�, from which the
notation adopted below is borrowed. The Kolmogorov scale
is indicated with �, with �d=�−1, the instantaneous dissipa-
tion rate is �, the forcing-containing shell is � f, and the mean
energy injection rate is P that equals ��	 at statistical station-
arity. Then the adopted feedback-acceleration forcing �17� is
formulated in wave-number space as follows:

f��,t� =
Ph��;� f�

2kf�t�
u��,t� , �10�

where kf�t� represents the kinetic energy of the modes within
the forced shell � f and h�� ;� f� is the related indicator func-
tion:

h��;� f� = �1, 
�
 � � f

0, otherwise.
� �11�

A standard resolution of �max�=1.5 is adopted, where �max
indicates the maximum resolved wave number in each direc-
tion of the Fourier space. The numerical code has been thor-
oughly verified by running conventional simulations of sta-
tionary HIT. The computed energy spectra at various Re�’s
compare very well to available results. A comparison of this
kind is shown in Fig. 1, which shows excellent agreement
between our computed energy spectra and those published in
Ref. �17�. The spectral code has been run on a machine
equipped with 4 Opteron 2378 processors, where a case with
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N=256 has a memory requirement of 940 Mbytes and a
typical execution time of 11 s for one Runge-Kutta time step.

C. Response measurement technique

In Ref. �13� Luchini et al. proposed an innovative method
for measuring the linear impulse response of a turbulent ve-
locity field, resorting to the statistical statement of the input-
output relation for a linear system, i.e., the input-output cor-
relation. This approach is primarily motivated by the
problem of low signal-to-noise ratio �S/N� that one would
face, should the response function be measured according to
its definition. Indeed the linear response of a nonlinear dy-
namical system is obtained by means of infinitesimal pertur-
bations around an equilibrium state, which has a stochastic
meaning in the description of turbulence. Therefore, impul-
sive perturbations externally introduced into the turbulent
field to measure its linear response must be extremely small
compared to the natural turbulent fluctuations for Eq. �1� to
hold; as a consequence, their effect is buried into turbulent
noise.

By definition the impulse response is the output of a linear
system when either harmonic or impulsive signals are used
as inputs. However, for a linearized turbulent system, the use
of a proper statistical probe instead of a deterministic one
will dramatically improve the computational efficiency of the
overall measurement procedure. This is the case of using a
white-noise process in input to the system. Indeed it is well
known from filtering theory �18� that when a linear system is
fed with white noise, the correlation between the input and
the output is proportional to the impulse response of the
system, owing to the delta-correlated property of the white-
noise process. We employ an externally generated random
volume forcing as the input; by computing its cross correla-
tion with the velocity field, the whole wave-number depen-
dency of the response function is obtained at once. At the
same time, forcing is uniformly distributed over time and
space, thus leading to improved S/N and larger allowed am-
plitudes within the linearity constraint. Therefore, this strat-
egy performs much better than a deterministic forcing, be it
either harmonic or impulsive, which would lead to computa-
tionally unaffordable simulations, as highlighted in Ref. �13�.

Starting from Eq. �1�, the input-output correlation can be
written as

��ui��,t��f j�− �,t − ��	

=� �
−�

+�

Hin��,t − t������ − ����fn���,t��

�f j�− �,t − ��	dt�d��, �12�

where Eq. �5� has been used owing to the average operator,
and the response causality property allows the extension to-
ward +� of the upper bound of time integral. Assuming
�f j�� , t�=�wj�� , t�, with ��R+ being a scale factor and
wj�� , t� an independently generated zero-mean white-noise
field with identity covariance matrix,

��fn��,t���f j�− �,t − ��	 = �2�nj��t� − t + �� , �13�

the cross correlation at the left-hand side of Eq. �12� will
result in the properly scaled response tensor:

��ui��,t��f j�− �,t − ��	 = �2Hij��,�� . �14�

We shall denote by ũ�� , t� the turbulent velocity field
when volume forcing with white spectrum is applied. If the
perturbation is small enough for linearity to hold, i.e., ��1,
it follows that

ũ��,t� = v��,t� + �u��,t� , �15�

where v�� , t� indicates a different realization of the turbulent
fluctuating field with respect to the original field u�� , t�, as a
consequence of nonlinearity and stochastic behavior of
NSEs. Then computing the correlation between ũ and �f
results in

�ũi��,t��f j�− �,t − ��	
�2 =

1

�2 ��vi��,t��f j�− �,t − ��	

+ ��ui��,t��f j�− �,t − ��	� .

�16�

Since the applied random perturbation on forcing is un-
correlated with turbulent fluctuations, the term �vi�� , t�
�f j�−� , t−��	 will be averaged out in the previous equa-
tion, leading to

�ũi��,t��f j�− �,t − ��	
�2 = Hij��,�� , �17�

where the input-output correlation law �Eq. �12�� has been
used to handle the nonvanishing term �second term� at the
right-hand side of Eq. �16�. In this way it is still possible to
measure the turbulent response using the cross correlation
between the white-noise input and the whole turbulent veloc-
ity field.

At this point it may be useful to note explicitly that no
relation exists between the energy-driving forcing �Eq. �10��
and the white-noise forcing applied for the response mea-
surement �Eq. �13��. The former obviously represents a mere
artificial, but unavoidable, mechanism to drive the flow and
maintain statistical stationarity, via supply of energy at large
scales. The white noise, on the other hand, is an external field

10
−1

10
0

10
−3

10
−2

10
−1

10
0

κ/κd

E
(κ

)κ
5
/
3
/
〈ε
〉2

/
3

Reλ=84

Reλ=46

Reλ=55

Reλ=77

Reλ=94

FIG. 1. Compensated energy spectrum for HIT: the function
E��� computed with the present DNS code at several values of Re�

is compared with results from Ref. �17� at Re�=84.
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of volume force that enters the stationary turbulent system,
which includes the energy-driving forcing. The jth compo-
nent of the white-noise field, wj�� , t�, is defined as

wj��,t� = exp�i2
�� , �18�

where � is the output of a random number generator with a
uniform probability distribution in the interval �0,1� �19�.
Hence, the white noise is independent of both the turbulent
fluctuations and the energy-driving forcing applied to them
through the feedback formula �10�. A feedback forcing loop
should be considered when looking at the linear response for
wave numbers contained in the forced shell; but, as already
discussed, these are not of physical interest.

In the HIT case Eq. �6� provides us a convenient way of
accumulating just the simple scalar version of the response
tensor by means of shell averaging over tensor trace:

 Hii��,��dS��� = 8
�2G��,�� . �19�

When measuring G�� ,��, a proper spatial and temporal dis-
cretization must be adopted. While in a DNS the discretiza-
tion in � is easily derived from the Fourier representation of
the velocity field �as for the energy spectrum E���; see Ref.
�17��, the definition of the � step is less obvious. Both the
time resolution of the white-noise delta correlation, ��w, i.e.,
the time interval between successive updates of the random
numbers, and the averaging time Tav, i.e., the time interval
over which statistics are computed, must be chosen such that
G is properly described and at the same time the computa-
tional requirements of the numerical simulation are kept rea-
sonable. If �min indicates the smallest time scale at which
proper convergence of the response is sought, ��w must be
chosen so that ��w��min. Assuming uniform sampling of the
response in Nc time instants separated by ��, the time hori-
zon available to represent the decay of the entire response
must be greater than the whole response decay time �max at
the lower wave number in the range of interest, i.e., Nc��
��max. Proper convergence of the average response obvi-
ously requires Tav /�max�1. Indeed, while �d controls ��
resolution and then �t, i.e., the time integration step, the
largest inertial wave number dictates Nc and Tav.

Given such contrasting requirements, characterizing the
function G�� ,�� in the whole universal range of scales via a
sole measurement is possible but computationally demand-
ing. Hence, the entire function G�� ,�� can be measured
through more than one uniform � grid, so that the response is
probed within several subranges of scales, leveraging their
reduced extent. G�� ,�� is then measured in a wide range of
scales via a limited number of DNS runs, each of which
requires roughly the same computational effort. These simu-
lations are independent and can be run simultaneously if the
available computing power allows. However, for the results
to obey the linearity constraint, the level of the introduced
“noise energy,” ���w, must be kept constant across the dif-
ferent �� resolutions adopted at different scales. This means
that a larger �� implies a reduced noise amplitude � and a

longer averaging time. This is partially compensated by the
larger time step size allowed by the time resolution of the
response at lower wave numbers.

D. Test case: The purely viscous Stokes response

The Stokes or viscous response represents the zero-order
term in the expansion series of G as introduced in the context
of renormalized perturbations �see Refs. �9,20��. The Stokes
response G�0� can be easily derived from Eq. �2� after the
removal of nonlinear terms, thus providing the solution for
pure viscous dynamics of the velocity field. Its analytical
form reads

G�0���,�� = exp�− ��2�� . �20�

It is important to notice that the Stokes response has a
deterministic nature, owing to the linearity of the Stokes op-
erator: Kraichnan usually refers to it as “statistically sharp.”
The exact Stokes solution provides a useful tool for the vali-
dation of the full measurement procedure. To this purpose,
the Stokes response can be retrieved from a DNS of the fully
nonlinear NSE through a numerical linearization. In this way
the algorithm employed for the measurement in the turbulent
case is exactly that previously described in Sec. II C, but a
null initial condition is adopted, the energy-driving forcing
of Eq. �10� is turned off, and only the white-noise perturba-
tion is applied. If ��1, no evolution toward turbulence dy-
namics is produced, and nonlinear terms O��2� can be ne-
glected with respect to the linear ones O��� defining the
Stokes equation.

The Stokes response has been measured in numerical ex-
periments with a spatial resolution of 323 modes �before
dealiasing� and Nc=50. In these simulations ��=��w is
adopted, and several values of ��w are used to investigate
time resolution effects. In Fig. 2 �top and center� the time
decay of the Stokes response at � /�0=8 is plotted. The exact
solution and the measured one agree very well �top figure�.
At small viscous time separations, ���2�1, proper conver-
gence of the measured response toward the exact one is ob-
served �center figure� to depend on the ��w resolution. Con-
vergence of the response for different noise amplitudes � and
averaging times Tav has been additionally verified �not
shown�. Lastly, the measured Stokes response plotted at dif-
ferent wave numbers �bottom figure� is observed to possess
the expected collapse when local viscous time scaling is
adopted for �.

III. TURBULENT RESPONSE

Several DNSs have been run to measure the impulse re-
sponse of homogeneous isotropic turbulence. They are
grouped into simulations with 1283, 1923, and 2563 Fourier
modes before dealiasing. Table I summarizes the discretiza-
tion parameters of the simulations carried out without white-
noise forcing, whereas Table II lists all the simulation runs to
measure the response function, together with the values of
the parameters used to discretize and measure G�� ,��. The
attained values of Re� are low or moderate, ranging from
Re�=55 to Re�=94. Moreover, given our limited computa-
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tional resources, the response is probed only at high wave
numbers. As explained in Sec. II C, long averaging times are
in fact required for proper convergence of the mean response
at low wave numbers. However, it is important to emphasize

here that the proposed measurement technique is capable of
measuring the impulse response at any scale, provided that
adequate computational resources are available.

In Sec. III A the linear behavior and the convergence of
time averages are demonstrated, whereas in Sec. III B the
behavior of the response and its scaling within the dissipative
universal subrange are investigated. The correlation function
is also computed during the stationary reference HIT simu-
lations, so that a comparison with the impulse response func-
tion in terms of the classical FDR will be given at least in the
range of scales considered here.

A. Linearity and time average

A key issue when measuring the response function G�� ,��
is the proper choice of amplitude � for the white-noise forc-
ing. Indeed the true turbulent impulse response reduces to its
linear counterpart G only for vanishing noise energy, i.e.,
when ���w→0. In a finite setting, a reasonable preliminary
requirement is that the white-noise forcing does not affect
turbulence statistics appreciably. Then, suitable convergence
of the measured response to G is observed when the function
G /� becomes independent on �. Indeed, as discussed in Sec.
II C, given a time resolution ��w, � represents the linearity
control parameter. Since the white-noise forcing is spatially
distributed over all the scales, the linearity threshold is fixed
by perturbation effects on smallest scale dynamics, i.e., the
viscous scales: when looking for the response at lower wave
numbers with larger ��=��w, � must be reduced to preserve
the linear response at higher wave numbers.

Figure 3 provides a comparison between the energy spec-
trum E��� computed in standard HIT DNS and those from
simulations forced with white noise at Re�=94. Analogous
results �not shown here� holds for the other spatial resolu-
tions listed in Table II. The value of �, which should be
maximized in order to increase S/N and hence to reduce the
required averaging time, is chosen so that marginal effects on
the spectrum are confined within the numerical wave num-
bers larger than the Kolmogorov scale, �	�d. Moreover,
Table III quantifies the little variations in statistics such as
��	 and �k	 due to white-noise forcing: ���	 and ��k	 are less
then 0.4% and 1.9%, respectively. ���	, which is computed
with respect to the exact asymptotic value P, is of the same
order of the variations of ��	 observed in different runs of
standard HIT DNS. ��k	, which is computed against the
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FIG. 2. Time decay of the measured Stokes response G�0� at
different ��’s with �=0.001 and Tav��2=733.76. Top: comparison
between the measured and exact G�0� at fixed � /�0=8. Center:
zoom of top plot for ���2�1. Bottom: Stokes response at several
wave numbers � /�0 vs nondimensional time separation, emphasiz-
ing collapse with local viscous time scaling ���2.

TABLE I. Parameters for the DNS of HIT carried out in the
present work.

N �max /�0 �d /�0 P � f /�0 Re= ��d /� f�4/3 Re� u0�� f / P�1/3

128 42 28 1 3 20 55 1.7862

192 63 42 1 3 34 77 1.8453

256 84 56 1 3 49.5 94 1.8611

TABLE II. Discretization parameters for the DNS-based mea-
surement of the response function.

N Re� Run Nc ��u0�d � TAvu0�d

128 55 1 150 0.05202 0.00093 1.3004105

2 150 0.0322 0.0015 5643.7

192 77 1 150 0.0484 6.66710−4 9680

2 150 0.0322 0.001 5643.7

256 94 1 150 0.0614 4.352910−4 9981.6

2 150 0.0376 7.115410−4 6580

3 150 0.0267 0.001 2069.2
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value of �k	 obtained from standard HIT DNS �run 0�, seems
to be relatively larger. However, it should be recalled how
the accurate convergence of this statistics, which belongs to
large scales, requires averaging over many turnover times.
Indeed, the observed ��k	’s are of the same order of �k	
fluctuations in standard HIT DNS, under the feedback action
of the energy-driving forcing scheme with an averaging time
of Tav�P� f

2�1/3�250, to which standard HIT averaged values
are referred.

The convergence of the measured G�� ,�� with respect to
the averaging time Tav is also verified. In Fig. 4 responses
measured with increasingly larger values of Tav are shown
for run 2 at Re�=94. Adequate convergence is obtained at
representative wave numbers � /�d=0.75 when Tav / �Nc���
	920. At larger averaging times, the response curves be-
come indistinguishable. A similar behavior has been verified
for the other numerical experiments reported in Table II.

B. Response function and its scaling in the viscous universal
subrange

The response function measured via the procedure illus-
trated above is first compared with its available analytical

approximations, as given in the original DIA theory �see Ref.
�1��:

G��,�� = exp�− ��2��
J1�2u0���

u0��
, �21�

and in the analysis of random convection effects �9,21� from
which the viscous Gaussian-convective response GGC�� ,��
can be introduced:

GGC��,�� = exp�− ��2� − 1
2u0

2�2�2�, with � 	 0. �22�

In both previous equations u0 represents the rms value of
turbulent fluctuations, and it can be easily recognized as the
Stokes term �Eq. �20��, which reflects the viscous response of
the corresponding linear operator. It is important to recall
that while the nonviscous term of Eq. �21� is derived as an
approximated solution to the DIA equations, the correspond-
ing one of Eq. �22� empirically follows from the analogy
with the solution of the idealized problem of pure random
convection introduced by Kraichnan in Ref. �21� with the
random Galilean invariance �RGI� postulate to explain the
failure of DIA in yielding a Kolmogorov inertial-range scal-
ing. References �22,23� give a more recent investigation on
the role of random convection effects and RGI in renormal-
ized perturbation expansions of the NSEs.

A comparative view of these three response functions at
� /�d=1 is provided in Fig. 5 for Re�=94, run 3. At time
separations smaller than the local energy time scale, i.e., for
�u0��1, the true measured response is in good agreement
with the DIA response function and the viscous Gaussian-
convective solution. The latter result does not come as a
surprise: even though the turbulent field is definitely non-
Gaussian, at times smaller than the characteristic correlation
time the Gaussian approximation still applies �see �20��. The
unexpected result, however, is that the Gaussian convective
solution still approximates very well the measured response
at larger times, whereas the DIA solution clearly deviates
from it.

This evidence provides further motivation for investigat-
ing the convective response scaling in the viscous universal
subrange. Response functions rescaled accordingly are plot-
ted in Fig. 6. For the entire range of values of Re� considered
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TABLE III. Effect of the white-noise forcing on ��	 and �k	, for
various spatial resolutions. The reference simulations without white
noise are indicated as “run 0.”

N Re� Run ��	 / P �k	 / �P /� f�2/3 ���	% ��k	%

128 55 0 0.999595 4.7856 0.0405

1 1.00057 4.7904 0.057 0.1

2 1.00056 4.7374 0.056 1.007

192 77 0 0.999788 5.0538 0.0212

1 1.00177 4.9612 0.177 1.83

2 1.0025 5.0063 0.25 0.94

256 94 0 1.00155 5.1958 0.155

1 1.00268 5.1235 0.113 1.392

2 1.0007 5.1082 0.085 1.686

3 1.00354 5.2561 0.354 1.161
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in the present work, the convective scaling of the response
function is clearly assessed. To further support this state-
ment, Fig. 7 shows the response functions tentatively plotted
with Kolmogorov viscous scaling: it is evident that such
scaling does not produce a good collapse of the different
curves when compared to the convective scaling employed
in Fig. 6.

C. Correlation function and the FDR

The mean correlation tensor is introduced here directly in
its spectral form:

Qij��,t,t�� = �ui��,t�uj�− �,t��	 , �23�

which reduces to the scalar function Q�� ,�� in the homoge-
neous isotropic stationary case:

Qij��,t,t�� = Pij���Q��,t − t�� . �24�

The correlation function Q�� ,�� has been computed thanks
to the DNS simulations carried out without white-noise forc-
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ing. At the various values of Re� considered, the correspond-
ing smallest �� time resolution employed for measuring the
response function has been used. Discretization details can
be found in Table II. The number of time separations at
which the correlations are stored is Nc=200 for the two
cases, respectively, at Re�=55 and Re�=77, while Nc=175
has been employed for the case at Re�=94 due to memory
limitations. Proper convergence of the results with respect to
Tav has been verified, according to what has been done for
the response function itself. Similarly to what has been ob-
served for G�� ,��, the scaling of the normalized correlation
function, Q�� ,�� /Q�� ,0�, is captured by the local convec-
tive time scale ��u0�−1 in the universal viscous subrange in-
vestigated here. This is illustrated for Re�=94 in Fig. 8,
whereas the inadequacy of Kolmogorov viscous scaling is
shown in Fig. 9. The same behavior can be also observed to
hold for the correlations obtained at Re�=55 and Re�=77
�not shown here�. The response and correlation functions, as
measured from our DNS experiments, can be compared
through the well-known FDR

Q��,�� = G��,��Q��,0� . �25�

This relation has been originally derived in the context of
Hamiltonian dynamical systems at equilibrium for which a
canonical distribution holds. Only in the last decades the
applicability of the FDR to the wider class of nonlinear cha-
otic dynamical systems has been addressed on a theoretical
basis �24–26�. For this class of systems �to which fluid tur-
bulence belongs� a generalized FDR is demonstrated to hold,
provided the system is dynamically mixing: only when a
Gaussian distribution holds for the invariant probability dis-
tribution the generalized FDR reduces to the classical form
of Eq. �25�. Obviously Eq. �25� cannot be exact for fully
developed fluid turbulence, for which both experimental and
numerical investigations have shown marked departures
from Gaussianity, with long tails in the probability density
function and intermittent behavior. However, on an intuitive
ground, one would expect a proportionality between the re-
sponse and the correlation function to hold, at least in terms
of characteristic time scales, respectively, indicated by �G���
and �Q��� �27�. FDR has been then successfully applied in
the context of climate study on sensitivity analysis with re-
spect to external perturbations and parameters �28,29�, as
well as in viscosity renormalization �30�. Nevertheless, in
Refs. �26,29� it is noted how in many such attempts the
Gaussian form of the FDR has been often not critically in-
voked, with little awareness about its inherent limitations.
Moreover, in the field of spectral closures, different opinions
exist on the possibility to recover the classical FDR in the
Eulerian rather than in the Lagrangian framework. In Ref. �5�
the Gaussian form of the FDR is exactly recovered within
the Lagrangian renormalized approximation of turbulence,
where the Lagrangian response function is introduced. In the
Eulerian frame the proper use of the FDR has been recently
addressed by Kiyani and McComb �7�. In their paper they
showed that FDR as stated in Eq. �25� is exact up to second
order in renormalized perturbation expansions of NSEs;
hence, it can be properly used in related closure formulations
�31�. However, Kraichnan suggested �32� that even a valid
Gaussian FDR would not immediately be a step forward in
the closure problem. In Kraichnan’s view, the strong depar-
ture from equipartition in the inertial range is not followed
by a corresponding strong violation of the Gaussian FDR in
the Eulerian frame. This is because large-scale random con-
vection dominates the decay of both the response and the
correlation functions, with corresponding time scales for
mode � ruled by the local characteristic convective time
��u0�−1. Kraichnan’s analysis thus implies that the local dy-
namics cannot be captured by the elementary FDR, and the
expected deviations can be found only by looking to a gen-
eralized FDR that involves a Lagrangian form of the statis-
tics.

These considerations motivate investigating the approxi-
mation introduced by the Gaussian FDR within the Eulerian
frame: a preliminary assessment is given Fig. 10 where
G�� ,�� and Q�� ,�� /Q�� ,0� are plotted together for � fixed
at the Kolmogorov scale, i.e., for � /�d=1. As expected from
theoretical arguments �see, for example, Ref. �20��, a longer
decorrelation time is observed for Q�� ,�� /Q�� ,0� when
compared to G�� ,��. However, the time scales �G��� and
�Q��� turn out to be of the same order. At fixed Re�, the plots
in convective units of Fig. 10 �top and center� suggest that
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the response and the correlation functions are strictly related
within the whole dissipative subrange of scales, owing to
their inherent energy-convective scaling property previously
discussed.

When examining the response and the correlation func-
tions obtained at different values of Re�, one first observes
that, in agreement with the very good approximation pro-
vided by the analytical viscous Gaussian-convective formu-
las of Eq. �22� to the response function, the latter is well
described as a universal function of the adimensional vari-
able ��u0. The same observation does not hold true for the
normalized correlation function Q�� ,�� /Q�� ,0� which once
plotted in convective scaling shows a residual dependence on
Re�. In particular when increasing Re�, the correlation func-
tion moves toward the response function, and this implies
that the approximation involved by the classical FDR �Eq.

�25�� is gradually improving. For completeness the two func-
tions G�� ,�� and Q�� ,�� /Q�� ,0� are also plotted in terms of
Kolmogorov viscous units, as shown in Fig. 10 �bottom�.
When this scaling is employed, neither the response nor the
correlation shows a collapse.

IV. CONCLUSIONS

The mean linear-response function of homogeneous iso-
tropic turbulence to an impulsive body force has been mea-
sured through a number of numerical experiments carried out
with DNS, at low and moderate values of the Reynolds num-
ber Re�. The measurement method leverages a white-noise
forcing to probe the flow within the linearity constraint while
maintaining the computational effort at reasonable levels.
The method employed for measuring the response of the full
turbulent flow has been thoroughly validated by computing
the response function for purely viscous dynamics: the very
same procedure yields this simpler response, for which an
exact analytical expression is available to compare with.
Based on this test case, the proper convergence with respect
to the parameters of the time discretization has been verified.
The methodology proposed here for measuring the response
function has then proved effective in the quantitative descrip-
tion of the whole time decay of the response within the uni-
versal equilibrium range of scales. Our results have been
verified both in terms of linearity of the response with re-
spect to the amplitude of the forcing and adequateness of the
time averaging. The same direct numerical simulations have
been additionally employed for determining the turbulence
correlation function. Its examination within the same range
of scales has allowed us to preliminarily address the approxi-
mations involved by the classical fluctuation- dissipation re-
lation when applied to turbulence dynamics.

The analysis of the response function in the universal dis-
sipative subrange confirms the theoretical prediction of
energy-convective scaling for both the response and the nor-
malized correlation functions and, as shown in Figs. 6 and 8,
establishes such scaling as the dominant one, at least in the
rather limited range of Re� considered here. A somewhat
surprising result is that the analytical solution provided by
Kraichnan in Ref. �21� to the problem of idealized convec-
tion turns out to be an extremely good approximation of the
measured response function, with small deviations limited to
the tail region, as shown in Fig. 5.

When comparing the normalized correlation function and
the response function, a longer decorrelation time is ob-
served for the former, as suggested by the theoretical argu-
ments put forward in Ref. �20�. Both G�� ,�� and
Q�� ,�� /Q�� ,0� obey the same convective temporal scaling
within the dissipation range; hence, the two time scales �G���
and �Q��� are in an approximately constant ratio. Obviously
the Gaussian form of the FDR �Eq. �25�� is not exactly sat-
isfied, as witnessed from the departure between G�� ,�� and
Q�� ,�� /Q�� ,0� in Fig. 10. Nevertheless, Eq. �25� remains a
good approximation in terms of characteristic time scales,
even at the moderate value of Re� considered here and in the
dissipation subrange, where less agreement would be ex-
pected in comparison to the inertial subrange, which is the
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proper context in which the FDR should be considered �33�.
Moreover, the FDR approximation in the present range of
scales appears to be increasingly better supported when the
value of Re� is increased, as shown in Fig. 10. This last
conclusion is in partial agreement with a previous study by
Biferale et al. �12�, who examined the response function
within the inertial range of scales as extracted from the shell
model. In that work the concept of halving-time statistics
was introduced to better characterize the time properties of
the response function for lower shells, where the proper �
convergence of the response cannot be easily achieved. The
ratio between characteristics times is still constant in the in-
ertial range, but �Q��� and �G��� show Kolmogorov inertial
time scaling. Both Kraichnan’s arguments on random con-
vections effects as well as the more recent and related dis-
cussion on the validity of the FDR in the context of turbu-
lence �32� are strongly supported by the present results.
However, Kraichnan indicated that the dominance of energy-
advection effects on both the Eulerian response and the cor-
relation functions is expected to extend to the dissipation
range only at high values of Reynolds number, while this has
been found in the present work to happen already at low or
moderate values of Re� addressed here. One possible expla-
nation might be provided by considering the energy-
convection effects as a feature of turbulence that remains
limited to the dissipative subrange of scales, so that the pres-
ence of significant scale separation from the energy scales

would let the random convection picture to hold; however,
the same could not be true for inertial scales at higher Re�.

A more thorough description of the response function and
of its relevant time scales, together with a precise assessment
of the approximations involved by the classical FDR, obvi-
ously calls for an extension of the present study toward much
higher values of Re�, so that a well-defined inertial range can
develop. When such data will be available, the question
about a possible asymptotic vanishing of the convective scal-
ing in favor of a true Kolmogorov scaling could be properly
answered, thus enlightening the framework of Eulerian clo-
sure theories. To this purpose, an analysis using halving-time
statistics can be exploited to accurately characterize the prop-
erties of the response function in time over a wide range of
scales. If Kolmogorov scaling will indeed be recovered at
higher Re�, then the local relaxation processes of the turbu-
lent response would be captured, opening a new scenario in
the understanding of turbulence physics and modeling.
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