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Motivation

In subcritical plane Poiseuille flow:
1 Is complete feedback suppression of transient growth

possible, when employing wall-based actuation?
2 How to design a feedback controller that directly targets

the transient growth mechanism?



Introduction System properties Controller design Results & discussion

Model of the system

Orr-Sommerfeld-Squire stability equations, y discretization
by Chebyshev expansion
For each wavenumber pair (α, β), wall actuation accounted
for by a lifting procedure.

Standard state-space form:

ẋ = Ax + Bu, x(0) = x0, ∀α, β

most general case: u = (u̇u, u̇l , v̇u, v̇l , ẇu, ẇl)
T (“vectorized”

transpiration at both walls).
input: rate of change of transpiration velocity (due to lifting)
rescaling of state variables: energy is ||x ||2 = xHx
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Closed loop monotonic stability

Theorem (Whidborne & McKernan, 2007)
A static, state-feedback control law u = Kx exists such that the
closed-loop system is monotonically stable if and only if:

B⊥
(

A + AH
)

B⊥H < 0 or BBH > 0,

where B⊥ is the left null space of B.

Second criterion never satisfied using wall forcing
First criterion verified numerically
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Numerical verification of the algebraic criterion
2D, v actuation, β = 0 3D, full actuation, Re = 120

Contours of T (α, β,Re) = λmax(B⊥
(
A + AH)

B⊥H)

It is not possible to completely suppress the transient growth
mechanism by feedback wall forcing.
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Upper bound on maximum growth

Linear, time-invariant stable system (open-loop):

ẋ = Ax , x(0) = x0

Upper bound to the maximum transient energy growth G:

Gu = λmax(P)λmax(P−1) ≥ G.

P = PH > 0 satisfies the Lyapunov inequality:

PA + AHP < 0.
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Minimization of the upper bound

Gu depends on the choice of P; to minimize it:

min γ :

PA + AHP < 0, P = PH > 0
I < P < γI

Linear Matrix Inequality (LMI) generalized eigenvalue
problem.
Last inequality ensures that γ > Gu.
Standard solvers exist.
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Feedback minimization of the upper bound

Full-state feedback control law u = Kx . Closed loop dynamics:

ẋ = (A + BK )x , x(0) = x0.

Lyapunov inequality:

PA + AHP + PBK + K HBHP < 0

which is bilinear in K and P.
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Feedback minimization of the upper bound

Introducing Q = P−1 and Y = KQ, and an additional constraint
such that maxt≥0 ||u||2 < µ2, the optimization problem reads:

min γ :

AQ + QAH + BY + Y HBH < 0, Q = QH > 0
I < Q < γI(

Q Y H

Y µ2I

)
> 0

which is a LMI problem. Controller gains recovered from
K = YQ−1.
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Effect of different actuation components - linear case

Wave (α = 1, β = 1).
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Vortex (α = 0, β = 2).
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Tests (Re = 2000, µ = 100) show the bound γ is conservative
of a factor ≈ 2.
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Closed loop transition thresholds

Direct numerical simulations at Re = 2000:
Pair of oblique waves: α0 = 1, β0 = ±1
Streamwise vortices: α0 = 0, β0 = 2
Random noise (Stokes modes) on the array (0,±1,±2)α0
and (0,±1,±2)β0, 1% of total perturbation energy
Controller designed on the same array, µ = 100

Performance: improvement factor =
E (thres)

0,control

E (thres)
0,free

Improvement factor
u v w

Oblique waves ≈ 6.0 ≈ 20.7 1
Streamwise vortices 1 ≈ 2.0 ≈ 1.6
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Conclusions

An algebraic criterion to identify the possibility of feedback
suppression of transient growth has been presented.
Closed-loop monotonic stability is not possible when using
wall actuation in subcritical plane Poiseuille flow.
A new, LMI-based control design technique – directly
targeting the growth mechanism – has been proposed.
In terms of transition thresholds modification, wall forcing
with u and w components is less effective than forcing with
v .
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