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Abstract Subcritical flows may experience large transient perturbation energy am-
plifications, that could trigger nonlinear mechanisms and eventually lead to transi-
tion to turbulence. In plane Poiseuille flow, controlled viawall blowing/suction with
zero net mass flux, optimal and robust control theory has beenrecently applied to
a state-space representation of the Orr-Sommerfeld-Squire equations, leading to re-
duced transient growth as well as increased transition thresholds. However, to date
no feedback control law has been found that is capable of ensuring the closed-loop
Poiseuille flow to be monotonically stable. The present paper addresses first the
possibility of complete feedback suppression of the transient growth mechanism in
subcritical plane Poiseuille flow when wall actuation is available, and demonstrates
that closed-loop monotonic stability cannot be achieved insuch a case. Secondly,
a Linear Matrix Inequality (LMI) technique is employed to design controllers that
directly target the energy growth mechanism. The performance of such control laws
is quantified by using Direct Numerical Simulations of transitional plane Poiseuille
flow, and the increase in transition thresholds due to the control action is assessed.
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1 Introduction

Transient energy growth has recently been recognized as a possible mechanism ex-
plaining subcritical transition in wall-bounded flows. In fact, subcritical flows may
experience large transient amplifications of the energy of perturbations, that could
trigger nonlinear mechanisms and lead to transition to turbulence [1].

In plane Poiseuille flow, optimal and robust control theory was applied to a state-
space model derived from the Orr-Sommerfeld-Squire equations, by Bewley & Liu
[2] for a single wavenumber pair and by Högberg et al. [3] for a large array of
wavenumber pairs. This led to a reduction of the maximum transient growth as well
as to an increase in transition thresholds. However, to dateno feedback control law
has been ever found that is capable of ensuring closed-loop monotonic stability.

In the present paper, it is shown first that it is impossible todesign a linear state-
feedback controller ensuring the plane Poiseuille flow, controlled via distributed
zero-net-mass-flux transpiration with any velocity component at the walls, to be
monotonically stable. Furthermore, a design technique – based on a Linear Matrix
Inequality (LMI) approach – is described; this technique enables the synthesis of
feedback laws that directly target the transient growth mechanism. Feedback con-
trollers designed with the technique are tested in nonlinear simulations of transi-
tional plane Poiseuille flow, evaluating the control performance with different initial
conditions in terms of increase in transition threshold.

2 Discretization

We consider the linearized dynamics of three-dimensional perturbations to the lam-
inar Poiseuille flow in a plane channel. The governing equations, written inv−η
form, are discretized spectrally by Fourier expansion in streamwise and spanwise
directions, and by Chebyshev expansion in the wall-normal direction. For each
wavenumber pair(α,β ), a lifting procedure [3] is employed to account for non-
homogeneous boundary conditions at the two channel walls; in the most general
case, the three components of the perturbation velocity vector can be assigned at
each wall, so that there are six degrees of freedom to actuateon the system. The
linear perturbation dynamics can be written in standard state-space form as:

ẋ = Ax+Bu (1)

where the input vectoru = (u̇u, u̇l , v̇u, v̇l , ẇu, ẇl)
T accounts for “vectorized” transpi-

ration at both the upper and the lower wall, and the state vector x has been rescaled
so that the perturbation energy is written as the Euclidean norm ||x||2 = xHx. The
time-invariant matricesA andB characterize the system dynamics; they are func-
tions of the wavenumber pair(α,β ) and the Reynolds numberRe.
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3 System properties

It has been shown by Whidborne & McKernan [4] that a static state-feedback control
law u = Kx exists such that the closed-loop system is monotonically stable (i.e.
energy decays monotonically from all initial conditionsx0), if and only if

B⊥
(

A+AH)

B⊥H < 0 or BBH > 0, (2)

whereB⊥ is the left null space ofB.
It is immediate to verify that the second criterion in eq. 2 isnever satisfied for the

controlled Poiseuille flow described by eq. 1, as the system is underactuated. The
first criterion is verified numerically, by computing the maximum (real) eigenvalue
λmax of the hermitian matrixB⊥

(

A+AH
)

B⊥H as a function of(α,β ,Re). Upon
comparison of the region whereλmax(α,β ,Re) < 0 with the region where the un-
controlled flow admits transient energy growth, portions ofthe(α,β ,Re) parameter
space can be identified where a feedback controller would suppress the transient
growth phenomenon. Figure 1 (a) shows the present result along with the well-
known result on the transient growth dependence on (α,Re) in plane Poiseuille flow
[1] (i.e. the open-loop case), whenβ = 0 and wall actuation is performed with the
v-component at the two walls. The white area corresponds to the domain where the
open-loop system is monotonically stable, while the shadedarea is the region where
the open-loop system admits transient energy growth. The level curve ofλmax = 0
lies on the very boundary between shaded and white areas, implying that the form
B⊥

(

A+AH
)

B⊥H is indefinite when the open-loop system is not monotonicallysta-
ble. This means that a linear state-feedback controller cannot be designed to ensure
the closed-loop Poiseuille flow to be monotonically stable,when the corresponding
open-loop flow is not. A similar result is shown in fig. 1 (b) forRe = 120, where the
three-dimensional case – with actuation on the three velocity components at both
walls – is considered. These results lead to the conclusion that, even if complete
knowledge of the instantaneous flow state were available, transient growth suppres-
sion by feedback is not achievable through wall actuation.

4 Control design

An LMI-based technique [5, 6] can be employed to design state-feedback control
laws minimizing an upper bound on the maximum transient energy growth. Addi-
tionally, a control constraint in the form maxt≥0 ||u(t)||2 < µ2 is considered to tune
the maximum control effort during the operation of the controller. The resulting
LMI problem is stated as follows:
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(a) (b)

Fig. 1 Numerical verification of the first criterion in eq. 2. Lines arecontours at constant
λmax(B⊥

(

A+AH
)

B⊥H). λmax > 0: solid line;λmax = 0: thick solid line;λmax < 0: dashed line.
(a): Wall actuation with thev-component at both walls,β = 0. (b): Wall actuation with all compo-
nents at both walls,Re = 120.

minγ :

AQ+QAH +BY +Y HBH < 0, Q = QH > 0

I < Q < γI
(

Q Y H

Y µ2I

)

> 0

(3)

and the optimal compensator gains are obtained byK = Y Q−1. This is a linear op-
timization problem over a convex set, can be solved numerically by standard algo-
rithms [8].

5 Results

The linear evolution of the perturbation energy is compared, for the controlled and
uncontrolled flow, in fig. 2; parameters for these simulations areRe = 2000 and
µ = 100. In particular, optimal initial conditions for the open-loop Poiseuille flow
are assigned to both the controlled and uncontrolled flow, and actuation is performed
with different velocity components. Fig. 2 shows that the controller is capable of re-
ducing the energy growth amplitude, with different degreesof success depending on
the actuation component used. Specifically, when the oblique wave(α = 1,β = 1)
case is considered as initial condition, the most effectivewall actuation component
turns out to bev, whereasu andw behave similarly (as it should be, since their ef-
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fect on the oblique wave is symmetric). Furthermore, when the streamwise vortex
(α = 0,β = 2) initial condition is considered,w actuation performs slightly better
than v actuation, and both outperformu actuation, that in this situation acts in a
weakly controllable direction.

0 100 200 300 400
0

100

200

300

400

500

600

700

800

t

E
 / 

E
0

 

 

Open loop
u forcing
v forcing
w forcing

(a)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

t

E
 / 

E
0

 

 

Open loop
u forcing
v forcing
w forcing

(b)

Fig. 2 Linear dynamics of the perturbation energy in controlled anduncontrolled flow. Open-loop
optimal perturbation given as initial conditions to all simulations; control gains designed with
µ = 100. (a): Streamwise vortex(α = 0,β = 2). (b): Oblique wave(α = 1,β = 1).

After these numerical experiments in the linear setting, performance of LMI-
based controllers in terms of transition delay has been verified using full Direct
Numerical Simulations of transitional channel flow atRe = 2000, using the code
described in [7]. Controllers are tested against initial conditions in the form of a
pair of oblique waves (α0 = 1,β0 = ±1) and streamwise vortices (α0 = 0,β0 = 2).
Random noise, in the form of Stokes modes and having 1% of the total perturba-
tion energy, is added on the wavenumber array(0,±1,±2)α0 and (0,±1,±2)β0.
Design of the controllers is performed on the same array, andthe control effort
tuning parameter isµ = 100. The performance of control laws is quantified by in-

troducing an improvement factorE(thres)
0,control/E(thres)

0, f ree , defined as the ratio between the
transition threshold energy computed in the controlled case over that correspond-
ing to the uncontrolled flow. A summary of the results is reported in table 1, where
it is shown that, for initial conditions in the form of both streamwise vortices and
oblique waves, wall-actuation with thev-component is more effective than actua-
tion with other components. Furthermore, the improvement factor measured for the
oblique wave is an order of magnitude larger than that obtained with streamwise
vortices. This result is coherent with previous findings using LQR control laws [3],
and it is associated to the fact that targeting oblique wavesmitigates the formation of
streamwise vortices, therefore reducing the entity of subsequent streak instabilities.
Finally, it is worth noting that acting withu on streamwise vortices or acting withw
on oblique waves does not increase the threshold energy.
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Table 1 Improvement factor in transition thresholds for different initial conditions and actuation.

u v w

Oblique waves ≈ 6.0 ≈ 20.7 1
Streamwise vortices 1 ≈ 2.0 ≈ 1.6

6 Conclusions

In this paper, an algebraic criterion for the prediction of feedback suppression of
the transient growth mechanism – once a state-space representation of the system
dynamics is available – has been presented. This criterion has been exploited to
demonstrate that, even if complete knowledge of the instantaneous flow state were
available, a feedback controller actuating with all velocity components at the two
channel walls would not be able to ensure closed-loop monotonic stability in plane
Poiseuille flow. Furthermore, a design technique for the synthesis of feedback con-
trollers directly targeting the transient growth mechanism, by minimization of an up-
per bound to the maximum growth, has been presented. Controllers designed with
the technique have been tested in a nonlinear case, and the resulting increase of
transition threshold has been quantified. When using wall-normal velocity forcing,
results are qualitatively similar to those LQR-based reported in literature [3]; fur-
ther, results indicate that wall actuation withu andw is less effective than forcing
with v at the walls.
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