Feedback control of transient energy growth in
subcritical plane Poiseuille flow
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Abstract Subcritical flows may experience large transient pertimhanergy am-
plifications, that could trigger nonlinear mechanisms avehaually lead to transi-
tion to turbulence. In plane Poiseuille flow, controlled wiall blowing/suction with
zero net mass flux, optimal and robust control theory has beemtly applied to
a state-space representation of the Orr-Sommerfeld-Sqgurations, leading to re-
duced transient growth as well as increased transitiorstiolds. However, to date
no feedback control law has been found that is capable ofriegstne closed-loop
Poiseuille flow to be monotonically stable. The present pauolelresses first the
possibility of complete feedback suppression of the temsjrowth mechanism in
subcritical plane Poiseuille flow when wall actuation isitalde, and demonstrates
that closed-loop monotonic stability cannot be achievesduich a case. Secondly,
a Linear Matrix Inequality (LMI) technique is employed tosign controllers that
directly target the energy growth mechanism. The perfooeari such control laws
is quantified by using Direct Numerical Simulations of tri¢insal plane Poiseuille
flow, and the increase in transition thresholds due to thérgbaction is assessed.
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1 Introduction

Transient energy growth has recently been recognized assiy®mechanism ex-
plaining subcritical transition in wall-bounded flows. kact, subcritical flows may
experience large transient amplifications of the energyeofupbations, that could
trigger nonlinear mechanisms and lead to transition touerice [1].

In plane Poiseuille flow, optimal and robust control theoasvapplied to a state-
space model derived from the Orr-Sommerfeld-Squire eqnstiby Bewley & Liu
[2] for a single wavenumber pair and byobberg et al. [3] for a large array of
wavenumber pairs. This led to a reduction of the maximurrsteart growth as well
as to an increase in transition thresholds. However, tomafeedback control law
has been ever found that is capable of ensuring closed-l@aptonic stability.

In the present paper, it is shown first that it is impossiblddsign a linear state-
feedback controller ensuring the plane Poiseuille flowtratled via distributed
zero-net-mass-flux transpiration with any velocity comgrunat the walls, to be
monotonically stable. Furthermore, a design techniquesedban a Linear Matrix
Inequality (LMI) approach — is described; this techniquatdas the synthesis of
feedback laws that directly target the transient growthhmaism. Feedback con-
trollers designed with the technique are tested in nontiseaulations of transi-
tional plane Poiseuille flow, evaluating the control periance with different initial
conditions in terms of increase in transition threshold.

2 Discretization

We consider the linearized dynamics of three-dimensioeglpbations to the lam-
inar Poiseuille flow in a plane channel. The governing eguati written inv—n
form, are discretized spectrally by Fourier expansion ieashwise and spanwise
directions, and by Chebyshev expansion in the wall-nornira@ction. For each
wavenumber paifa,3), a lifting procedure [3] is employed to account for non-
homogeneous boundary conditions at the two channel wall$)e most general
case, the three components of the perturbation velocitiov@an be assigned at
each wall, so that there are six degrees of freedom to actumthe system. The
linear perturbation dynamics can be written in standangstpace form as:

X = Ax+Bu (1)

where the input vectan = (Uy, Uy, Viy, Vi , Wy, W )T accounts for “vectorized” transpi-
ration at both the upper and the lower wall, and the stateovadias been rescaled
so that the perturbation energy is written as the Euclideamn|x||> = x"x. The
time-invariant matriceg\ and B characterize the system dynamics; they are func-
tions of the wavenumber pajo, ) and the Reynolds numbge.
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3 System properties

It has been shown by Whidborne & McKernan [4] that a statiesteédback control
law u = Kx exists such that the closed-loop system is monotonicadplst(i.e.
energy decays monotonically from all initial conditioxg, if and only if

B-(A+A")B*M <0 or BB" >0, (2)

whereB' is the left null space oB.

Itis immediate to verify that the second criterion in eq. Béver satisfied for the
controlled Poiseuille flow described by eq. 1, as the systeonderactuated. The
first criterion is verified numerically, by computing the nraxim (real) eigenvalue
Amex Of the hermitian matrix8* (A+A") B as a function of(a, B, Re). Upon
comparison of the region whefg(a, 3,Re) < 0 with the region where the un-
controlled flow admits transient energy growth, portionthef(a, 8, Re) parameter
space can be identified where a feedback controller woulgresp the transient
growth phenomenon. Figure 1 (a) shows the present resuiyalath the well-
known result on the transient growth dependencengiR€) in plane Poiseuille flow
[1] (i.e. the open-loop case), whgh= 0 and wall actuation is performed with the
v-component at the two walls. The white area correspondstddmain where the
open-loop system is monotonically stable, while the shaded is the region where
the open-loop system admits transient energy growth. Tes eirve ofApa, =0
lies on the very boundary between shaded and white arealyimgphat the form
B (A+Af) B is indefinite when the open-loop system is not monotonicstty
ble. This means that a linear state-feedback controllenatare designed to ensure
the closed-loop Poiseuille flow to be monotonically staileen the corresponding
open-loop flow is not. A similar result is shown in fig. 1 (b) fee = 120, where the
three-dimensional case — with actuation on the three wglecdmponents at both
walls — is considered. These results lead to the conclusiat) éven if complete
knowledge of the instantaneous flow state were availaldestent growth suppres-
sion by feedback is not achievable through wall actuation.

4 Control design

An LMI-based technique [5, 6] can be employed to design stedback control
laws minimizing an upper bound on the maximum transientgngrowth. Addi-
tionally, a control constraint in the form mayx ||u(t)||> < p? is considered to tune
the maximum control effort during the operation of the colr. The resulting
LMI problem is stated as follows:



4 Martinelli, Quadrio, McKernan and Whidborne

050

L 1 T
0 1000 2000 3000 4000 5000
Re

@

0 5

Fig. 1 Numerical verification of the first criterion in eq. 2. Lines arentours at constant
Amex(BE (A+AM) BHH). Ay > 0: solid line; Amex = 0 thick solid line;Amay < 0: dashed line.

(a): Wall actuation with the-component at both wallg = 0. (b): Wall actuation with all compo-
nents at both wallsRe = 120.

miny :
AQ+QA" +BY +YH"B" <0, Q=Q" >0
l<Q<y 3)

QYA
(Y Ya) >0
and the optimal compensator gains are obtaine{ byYQ 1. This is a linear op-

timization problem over a convex set, can be solved numlgribs standard algo-
rithms [8].

5 Results

The linear evolution of the perturbation energy is compafedthe controlled and
uncontrolled flow, in fig. 2; parameters for these simulaianeRe = 2000 and

U = 100. In particular, optimal initial conditions for the optop Poiseuille flow
are assigned to both the controlled and uncontrolled flod/aatuation is performed
with different velocity components. Fig. 2 shows that thetcoller is capable of re-
ducing the energy growth amplitude, with different degrefesuccess depending on
the actuation component used. Specifically, when the obgave(a = 1,3 = 1)
case is considered as initial condition, the most effectia# actuation component
turns out to bey, whereass andw behave similarly (as it should be, since their ef-
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fect on the oblique wave is symmetric). Furthermore, whenstiheamwise vortex
(a =0,B = 2) initial condition is consideredy actuation performs slightly better
thanv actuation, and both outperformactuation, that in this situation acts in a
weakly controllable direction.

800

70

7001

6001

——Open loop|
‘‘‘‘‘ u forcing |
= = =v forcing
+=-=w forcing H

60

50

——Open loop|
‘‘‘‘‘ u forcing ||
= = =v forcing
+=-=w forcing

500

o o 40f

< 400} . Y
u e Y osof
300+ .,
~,
~. L
ook ol ] 20
U ~
qd a--e ' L
100t if L~ .. 1 o L
W B P
0 L i i SR T 0 L L n -
0 100 200 300 400 0 10 20 30 40 50

Fig. 2 Linear dynamics of the perturbation energy in controlled ancontrolled flow. Open-loop
optimal perturbation given as initial conditions to all sintidas; control gains designed with
1 =100. (a): Streamwise vortexr = 0,8 = 2). (b): Oblique wava = 1,3 = 1).

After these numerical experiments in the linear settingfgpmance of LMI-
based controllers in terms of transition delay has beerfieérusing full Direct
Numerical Simulations of transitional channel flowRe = 2000, using the code
described in [7]. Controllers are tested against initialditons in the form of a
pair of oblique wavesdp = 1, By = +1) and streamwise vortices{ = 0, o = 2).
Random noise, in the form of Stokes modes and having 1% ofotlaé pperturba-
tion energy, is added on the wavenumber arf@y-1,+2)ap and (0,+1,+2) 3.
Design of the controllers is performed on the same array,thaccontrol effort
tuning parameter igt = 100. The performance of control laws is quantified by in-

troducing an improvement fact@ <) . /E!™"®) defined as the ratio between the
transition threshold energy computed in the controllec aager that correspond-
ing to the uncontrolled flow. A summary of the results is régdiin table 1, where
it is shown that, for initial conditions in the form of bothreamwise vortices and
oblique waves, wall-actuation with thecomponent is more effective than actua-
tion with other components. Furthermore, the improvemaciiolr measured for the
oblique wave is an order of magnitude larger than that obthinith streamwise
vortices. This result is coherent with previous findings1gdiQR control laws [3],
and itis associated to the fact that targeting oblique wavgates the formation of
streamwise vortices, therefore reducing the entity of sgbent streak instabilities.
Finally, it is worth noting that acting with on streamwise vortices or acting with
on obliqgue waves does not increase the threshold energy.
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Table 1 Improvement factor in transition thresholds for differentialiconditions and actuation.

u \' w
Oblique waves ~ 6.0 ~20.7 1
Streamwise vortices 1 ~ 2.0 ~ 1.6

6 Conclusions

In this paper, an algebraic criterion for the prediction eédback suppression of
the transient growth mechanism — once a state-space ragagse of the system
dynamics is available — has been presented. This criter@@nbleen exploited to
demonstrate that, even if complete knowledge of the inateatus flow state were
available, a feedback controller actuating with all vepciomponents at the two
channel walls would not be able to ensure closed-loop monostability in plane
Poiseuille flow. Furthermore, a design technique for thetmsis of feedback con-
trollers directly targeting the transient growth mechamiby minimization of an up-
per bound to the maximum growth, has been presented. Clensralesigned with
the technique have been tested in a nonlinear case, andghiéng increase of
transition threshold has been quantified. When using walkabvelocity forcing,
results are qualitatively similar to those LQR-based regzbin literature [3]; fur-
ther, results indicate that wall actuation wittandw is less effective than forcing
with v at the walls.
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