◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Turbulent drag reduction by feedback: a Wiener-filtering approach

Fulvio Martinelli¹, Maurizio Quadrio¹ and Paolo Luchini²

¹ Politecnico di Milano

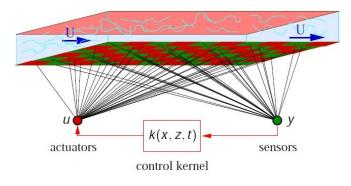
² Universitá di Salerno

ETC XII - Marburg

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

2 Wiener-Hopf design of compensators

Feedback control of wall turbulence



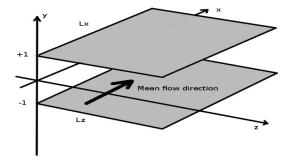
$$u(x, z, t) = \int y(x', z', t') \, K(x - x', z - z', t - t') \, dx' \, dz' \, dt'$$

- Goal: reduction of friction drag
- Actuators: zero-net-mass-flux wall blowing/suction
- Sensors: pressure and skin friction components

Results & discussion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The plant: turbulent plane channel flow



- Flow is spatially invariant in x and z
- Efficient DNS at moderate Re (and $\approx 10^8$ d.o.f.s)
- State variables: $v \eta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

State of the art A young field

- Hope for linear control (Kim & Lim, 2000)
- Modern Optimal Control Theory, state-space formulation
- Kalman-filter-based estimators: very poor performance
- Additional challenge: billions of d.o.f.

A recent step ahead? Luchini & Quadrio, PoF 2006

Problem

- Poor system model: NS equations linearized about the mean velocity profile
- Turbulence dynamics is missing

Solution

- Enrich the model: the average turbulent linear response function \mathcal{H}
- More physics: turbulent diffusion is accounted for (on average)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

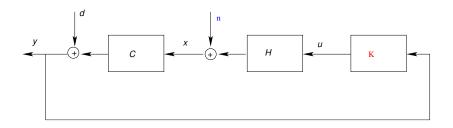
 ${\cal H}$ is measured by cross-correlating small space-time white noise wall forcing with the perturbed flow

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Goal of the present work

- Devise a strategy for using an impulse response to design the control kernel
- Lay down a computationally-efficient procedure
- Test the procedure with the average impulse response in the full nonlinear problem
- Hope it works...

The feedback control problem



- *H* is the average relation between boundary input and (inner) state variables
- n: turbulent fluctuations in the uncontrolled flow
- Aim: design *K* to minimize

$$J = E\{x^H Q x + u^H R u\}$$

・ロット (雪) (日) (日)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Switch to frequency domain! F.Martinelli, PhD thesis, PoliMi 2009

- A state-space realization of $\mathcal H$ is unaffordable
- Rewrite the objective functional in frequency:

$$J(f) = \int_{-\infty}^{+\infty} \operatorname{Tr}[Q\phi_{xx}(f)] + \operatorname{Tr}[R\phi_{uu}(f)] df.$$

with $\phi_{xx}(f)$ psd of state.

- Substituting, *J* is not quadratic in *K*.
- Minimization w.r.t. K does not lead to a linear problem

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Obtaining a quadratic form

J may be written as a quadratic form of the Youla parameter $\overline{K} = (I - KCH)^{-1}K$ as:

$$J = \int_{-\infty}^{+\infty} Tr \Big\{ Q\phi_{nn} + QH\overline{K}C\phi_{nn} + Q\phi_{nn}C^{H}\overline{K}^{H}H^{H} + \dots \\ \dots + QH\overline{K}C\phi_{nn}C^{H}\overline{K}^{H}H^{H} + QH\overline{K}\phi_{dd}\overline{K}^{H}H^{H} \Big\} + \dots \\ \dots + Tr \Big\{ R\overline{K}C\phi_{nn}C^{H}\overline{K}^{H} + R\overline{K}\phi_{dd}\overline{K}^{H} \Big\} df.$$

Minimization yields the best compensator (that is non-causal)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Enforcing causality

Introduce a Lagrange multiplier Λ :

$$J = \int_{-\infty}^{+\infty} Tr \Big\{ Q\phi_{nn} + QH\overline{K}_{+}C\phi_{nn} + Q\phi_{nn}C^{H}\overline{K}_{+}^{H}H^{H} \dots + QH\overline{K}_{+}C\phi_{nn}C^{H}\overline{K}_{+}^{H}H^{H} + QH\overline{K}_{+}\phi_{dd}\overline{K}_{+}^{H}H^{H} \Big\} + \dots + Tr \Big\{ R\overline{K}_{+}C\phi_{nn}C^{H}\overline{K}_{+}^{H} + R\overline{K}_{+}\phi_{dd}\overline{K}_{+}^{H} \Big\} + Tr[\Lambda_{-}\overline{K}_{+}^{H}] df.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A Wiener-Hopf problem

Minimization leads to the (linear) Wiener-Hopf problem:

 $(H^{H}QH + R)\overline{K}_{+}(C\phi_{nn}C^{H} + \phi_{dd}) + \Lambda_{-} = -H^{H}Q\phi_{nn}C^{H}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A Wiener-Hopf problem

Minimization leads to the (linear) Wiener-Hopf problem:

$$(H^{H}QH + R)\overline{K}_{+}(C\phi_{nn}C^{H} + \phi_{dd}) + \Lambda_{-} = -H^{H}Q\phi_{nn}C^{H}$$

• ϕ_{nn} appears in functional form: full space-time structure of the noise easily accounted for

A D F A 同 F A E F A E F A Q A

A Wiener-Hopf problem

Minimization leads to the (linear) Wiener-Hopf problem:

 $(H^{H}QH + R)\overline{K}_{+}(C\phi_{nn}C^{H} + \phi_{dd}) + \Lambda_{-} = -H^{H}Q\phi_{nn}C^{H}$

- Solution yields directly the compensator's frequency response (no separation theorem required)

A D F A 同 F A E F A E F A Q A

A Wiener-Hopf problem

Minimization leads to the (linear) Wiener-Hopf problem:

 $(H^{H}QH + R)\overline{K}_{+}(C\phi_{nn}C^{H} + \phi_{dd}) + \Lambda_{-} = -H^{H}Q\phi_{nn}C^{H}$

- Solution yields directly the compensator's frequency response (no separation theorem required)
- Scalar equation for the SISO case: superfast FFT-based solution

Outline

Wiener-Hopf design of compensators

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The procedure Measure \Rightarrow design \Rightarrow test

- Response function and noise spectral densities are measured via DNS
- Compensator is designed wavenumber-wise by solving a scalar Wiener-Hopf problem
- Compensators are tested in a full nonlinear DNS

Parametric study, more than 300 DNS (\approx 40 years of CPU time)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Measured friction drag reduction

	J=energy			J=dissipation		
$Re_{ au}$	τ_{X}	τ_{z}	р	$ au_{X}$	τ_{z}	р
100	0%	0%	0%	2%	0%	0%
180	0%	0%	0%	8%	6%	0%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Measured friction drag reduction

	J=energy			J=dissipation		
$Re_{ au}$	τ_{X}	τ_{z}	р	τ_{X}	τ_{z}	р
100	0%	0%	0%	2%	0%	0%
180	0%	0%	0%	8%	6%	0%

• Energy norm is not effective

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Measured friction drag reduction

	J=energy			J=dissipation		
$Re_{ au}$	τ_{X}	τ_{z}	р	$ au_{X}$	τ_{z}	р
100	0%	0%	0%	2%	0%	0%
180	0%	0%	0%	8%	6%	0%

• Dissipation norm is effective

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Measured friction drag reduction

	J=energy			J=dissipation		
$Re_{ au}$	τ_{X}	τ_{z}	р	τ_X	τ_{z}	р
100	0%	0%	0%	2%	0%	0%
180	0%	0%	0%	8%	6%	0%

- Dissipation norm is effective
- Pressure measurement alone is not effective

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Measured friction drag reduction

	J=energy			J=dissipation		
$Re_{ au}$	τ_{X}	τ_{z}	р	τ_{X}	τ_{z}	р
100	0%	0%	0%	2%	0%	0%
180	0%	0%	0%	8%	6%	0%

• Performance improves with Re

(ロ) (同) (三) (三) (三) (○) (○)

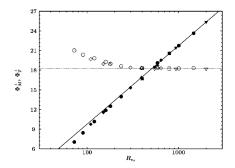
"Inverse" Re-effect

$$\frac{d\langle U\rangle}{dy}\Big|_{w} = -\frac{1}{U_{B}}\Big\langle \underbrace{\frac{1}{2}\int_{-1}^{1}\left(\frac{\partial\hat{U}}{\partial y}\right)_{(0,0)}\left(\frac{\partial\hat{U}}{\partial y}\right)^{*}_{(0,0)}dy}_{D_{mean}} + \underbrace{\sum_{(\alpha,\beta)\neq(0,0)}D(\alpha,\beta)}_{D_{turb}}\Big\rangle$$

- *D_{mean}* is affected indirectly via nonlinear interactions between fluctuations and the mean flow
- *D_{turb}* is affected directly by zero net mass flux wall blowing/suction

"Inverse" *Re*-effect Laadhari, PoF 2007

The relative contribution of D_{turb} to the total dissipation increases with Re!



$Re_{ au}$	D _{turb}	D _{mean}
100	26.8%	73.2%
180	39.5%	60.5%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Critical discussion

Good news

Present compensators are the best possible for LTI systems

Bad news

Their performance is rather poor

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Critical discussion

Good news

Present compensators are the best possible for LTI systems

Bad news

Their performance is rather poor

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Should we blame the cost function?

Critical discussion

Good news

Present compensators are the best possible for LTI systems

Bad news

Their performance is rather poor

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Should we blame the cost function?
- Should we blame the linear, time-invariant framework?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

- Novel formulation for designing the compensator in frequency domain
- Extremely efficient
- Can exploit a measured linear model of the turbulent channel flow
- The time-space structure of the state noise (turbulence) is accounted for