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Streamwise-traveling waves in a pipe flow:
experimentally assessing
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Spanwise wall oscillation

Quadrio & Ricco, JFM '04

@ Large reductions of
turbulent friction

@ Unpractical

’ w(x,y =0,z,t) = Asin (o) ‘
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The oscillating wall made stationary
Quadrio & Viotti, ETC XI

‘ w(x,y =0,z,t) = Asin(kx) ‘
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The traveling waves: a natural extension

Purely temporal forcing Purely spatial forcing

The oscillating wall: The steady waves:
w = Asin(ot) w = Asin (kx)
@ Infinite phase speed @ Zero phase speed

Combined space-time forcing

The traveling waves:

w = Asin (kx — wt)

@ Finite phase speed c = w/x
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Results from DNS (plane channel)
Quadrio et al., JEM 2009
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How much power to generate the waves?

@ Power ~ wow/dy|,—o

@ Upper bound to energetic
cost

@ Similar to drag reduction
map!

@ Ratio of energy save to
cost up to 30:1

@ Up to 25% net energy save

o 5 = = =
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Motivation for a laboratory experiment

Devise a proof-of-principle experiment to:
@ confirm DR phenomenon
@ improve understanding of the traveling waves
@ explore further the parameter space (Re, A)

Results
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Main design choices

@ Cylindrical pipe
@ Spanwise wall velocity: wall movement
@ Temporal variation: unsteady wall movement

@ Spatial variation: the pipe is sliced into thin,
independently-movable axial segments

@ Friction is measured through pressure drop



Q>



Background Experimental setup Results

The pipe

A closed-circuit water pipe
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The rotating segments

60 slabs with 6 independent motors
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The transmission system
Shafts, belts and rotating segments
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The control system

@ Motion of the slabs is
feedback-controlled

@ Tachometric sensors to
feed back angular speed

@ Fully automated test
management
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Flow parameters

@ Working fluid is water o System degassed after
o U,=0.085m/s filling
® R—0025m ° Tempera}ture and row_ rate
are continuously monitored
@ Re=4900
@ Reference pressure drop
@ Re; =180

~ 7 Pal
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Drag variation

O N=inf
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Drag variation
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Comparison with DNS (plane channel)

Inner units




Drag variation
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Comments

We do not expect quantitative agreement between DNS and
experiment:

@ Spatial transient

@ Cylindrical vs planar geometry
@ Difference in GSL

@ Difference (small) in Re and A
@ Waveform effects
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Conclusions and outlook

@ DR is confirmed
@ Alarge 37% is measured at intermediate intensity

@ Describe effects of spatial discretization
@ Cartesian vs cylindrical

@ Explore parameter space

@ Scaling of DR
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Understanding the physics

The lifetime T, of turbulent structures
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Unsteadiness in the convecting reference frame

Oscillating wall

@ Forcing on a timescale
> T, does not yield DR

@ Timescale: oscillation

period T
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Unsteadiness in the convecting reference frame

Traveling waves

Oscillating wall

@ Forcing on a timescale @ Forcing on a timescale
> T, does not yield DR > T, does not yield DR
@ Timescale: oscillation @ Timescale: oscillation
period T period .7 as seen in a
convecting reference frame
sl he ”:” A:f18
T I Ax
L e T =
/// - “ UW =@
o« S
n20—// * \
N @ Uy: convection velocity at
b the wall
0 T ,eé(illgo @ ¢ = w/k: phase speed
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How spanwise forcing really works
Quadrio et al., JEM 2009
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One step back
Extending the laminar Stokes solution

- v
@ Laminar flow

@ Transverse,
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The generalized Stokes layer

An analytical approximate solution

W(X,y, t) = AR { CeQni(x—ct)/,lei

gmi/6 2mlyo " y—i
AXV Uyo

o : ® dgsL < h

@ Neglect
streamwise
viscous diffusion

@ Threshold
eoer velocity to
discriminate flow
L A regimes
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Using the GSL solution

Thickness of the GSL
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